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AN EXPLICIT HECKE'S BOUND AND EXCEPTIONS OF
EVEN UNIMODULAR QUADRATIC FORMS

K O K SENG CHUA

We prove an explicit Hecke's bound for the Fourier coefficients of holomorphic cusp
forms for SLi2{Z) and apply it to derive effectively computable constants c(m) for
each dimension m, divisible by 8, for which every even integer is always represented
by every even unimodular form of m variables.

1. INTRODUCTION

Let f(xi,..., xm) be an even unimodular positive definite quadratic form in m vari-
ables. (This implies m is a multiple of 8.) An even integer a is said to be exceptional for
/ if / does not represent a for integral (x\,...,xm). A theorem of Tartakovsky [8] imples
that a is not exceptional if it is sufficiently large. More exactly, for each dimension m

divisible by 8, there is a constant c(m) such that a ^ c(m) implies that a is represented by
all / of m variables. In [6], Peters initiated a method for finding explicit values for c(m)

and he computed some values of c(m) for m ^ 64. This was improved and extended first
to m ^ 72 by Odlyzko and Sloane [5] and later by Charaborty, Lai and Ramakrishnan [1]
and Lai and Ramakrishnan [3] up to m ^ 184 by essentially transforming Peter'sidea to
one of linear programming. However it seems to us that an explicit value of c(m) which
works for all m has still not been given.

In this note we shall give one such explicit bound based on a modification of Peters'
idea. His method in [6] is based on the theory of modular forms and especially an effec-
tive Deligne's estimate for the Fourier coefficients of eigenforms (Ramanujan-Petersson
conjecture). Peters remarked that his method would work in principle in any dimensions
but it gets laborious as soon as the dimension of the space of cusp forms grow bigger than
two. The main problem with the method is that to use an effective form of Deligne's
estimate, one needs to first obtain a basis of eigenforms which are hard to compute. Our
first idea is to replace Deligne's estimate by an effective Hecke's bound which is weaker
but more general and will avoid the need to compute eigenforms. Hecke's bound is

(1) an = O(nk'2)
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where an is the n-th Fourier coefficient for a cusp form of weight k. In (1) there is an
implied constant which depends on the modular form which we need to make explicit. Our
first result is an effective and explicit version of (1). Even though weak asymptotically,
it may be of some independent interest for small values of n. We have the following.

00

THEOREM 1 . Let f(z) = £2 o.nQn € Sk, the space of holomorphic cusp forms of
n=l

weight k for SL2 (Z) and let s be the dimension ofSk• Then we have for each n— 1 , 2 , 3 , . . .

the estimate

(2)
3=1

where Ck is a constant depending only on k which may be taken as

(3) Ck =
3=1

and fj,k(z) = Y2 aj,k{n)^n ~ &(z)Ek-i2j(z), A(z) being the unique cusp form of weight
1=0

12 and Ej(z) is the normalised Eisenstein series of weight j (with E0{z) = 1) and the
supremum is taken over the upper half plane H, and Xk is the maximum eigenvalue of
(HkHl)~l, Hk being the s by s matrix given by (10) below constructed from the initial
s coefficients {aj<k{n)} of fj,k{z).

From Theorem 1 we obtain immediately our main result.

THEOREM 2 . Let f(xi,..., xm) be an even unimodular quadratic form in m = 2k
variables. Then with the notation of Theorem 1, f represents 2n provided

3 = 1

2/(*-2)

aj a r e constants depending on f which may be bounded
1

where ak = \ YHaj\2

uniformly above using the crude estimate \a.j\ ^ max l<lj(2j.+ I)4*, {2itj)k/{jT(k)) j
for j — 1, . . . , s.

REMARK. The aj are the coefficients of a cusp form which is the difference between the
theta series of/ and the Eisenstein series of weight k (see the proof of Theorem 2 below).

We shall prove our main results (Theorem 1 and 2) in Section 2. In Section 3 we
give explicit computable bounds for the right hand side of (4) and give numerical values
c(m) for m ^ 192 above which an even integer is not exceptional for any even unimodular
form in m variables.
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2. P R O O F O F M A I N RESULTS

Let Mk (respectively Sk) be the space of holomorphic modular forms (respectively

cusp forms) of weight k. Let s be the dimension of Sk so that dim(Mfc) = s + 1. It is

well know that

f [Al k £ 2 mod 12

l d 1 fc = 2mod12

Since the space of cusp forms has dimension s, it is reasonable to expect that an

explicit form of (1) should take the form

(6) | a B | < M ( o 1 ) . . . , a , ) n * / 2

and in order to prove an estimate of form (6), one needs a way to express every cusp form
in terms of its first s coefficients. This can be done explicitly if one chooses a standard
basis "supported on { 1 , . . . , s}" in a sense. Indeed there is always one such integral basis
as proven in Lang [4, Chapter X, Theorem 4.4] and [1, Lemma A.I].

LEMMA 2 . 1 . There is a basis < gjk{z) = J2 9jk{n)qn • 0 ^ j ^ s\ for Mk such
I n=o J

that the coefficients gj,k{n) are all integral and gj,k(n) = <5j,n for all 0 ^ j , n ^ s. It
oo

follows that any f(z) = Yl anQn J n Mk can be expressed uniquely as a linear combination
n=0

s
f(z) — £3 a-j9j,k{z) and ifa0,..., a3 are integral so are all the an. In particular the gjtk(z)

are themselves unique and have integral coefficients. The same holds for the cusp forms

{Si,*i • • • 19s,k} as a standard basis for Sk-

By the uniqueness of the standard basis in Lemma 2.1, we can compute explicitly
oo

their Fourier coefficients in a uniform way. Let A(z) = J2 T{n)<ln be the unique cusp
7 1 = 1

OO

form of weight 12 and Ej(z) — 1 + Aj £) Oj-\(n)qn be the normalised Eisenstein series
ln = l

of weight j . Here r(n) is the Ramanujan function, and

(7) Ai - {-i

and CTj_i(n) is the sum of the (j — l)th power of the divisor of n. The coefficients of

{9JAZ)}
 c a n be expressed explicitly in terms of r(n) and <x,(n) as follows. Let

oo

(8) fjA*) = &j(z)Ek-uj(z) = Y, Hk(n)qn 0 ^ j ^ s.
n=0
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The coefficients {a,jk(n)} can be explicity computed to be

(9) ajtk(n) = I

0

1

Ti (n)-
n - l

" Ak_i2j Yl Tj(t)&k-l
'=}

oo

2j-i(n-t)

n<]

n — 3

n > j

where the Tj(n) are coefficients of AJ(z) = J2 Tj(n)<ln- Note that the entries are rational.
n=;

LEMMA 2 . 2 . Let Hk be the s by s upper triangular matrix given by

(10) Hk =

a2,/t(s)

as-i}k(s)

1 /

where {fflj,*(i)} a r e defined explicity by (9), then we have

(ii)

PROOF OF LEMMA 2.2: By Lemma 2.1, we have

(12) for 0
i=0

which gives us (11) when we delete the first equation. D

REMARK. By taking the nth coefficients in (11), we obtain an explicit formula for
{9j,k(n)}i< <s

 m t e r m s °f {aj,k(n)}- A similar formula for {go,k(n)} can be obtained
from (12). We note incidentally that this gives explicit formulae for the coefficients of
the theta series go,k(z) of the extremal lattice in dimension 2k.

We can now derive an estimate for our basis forms.

LEMMA 2 . 3 . For all z € H, the upper half plane, we have

(13)

where Xk is the maximum eigenvalue of {HkHl)~l and Hk is defined as in (10).
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P R O O F OF L E M M A 2.3: By Lemma 2.2 (11), we have J2 ki ,*(z) | = Qiv^) where

Q is the positive definite quadratic form given by the symmetric matrix (HkHf)~y and

v is the vector (/i,fc(z), • • •, f,,k(z))T. Clearly Q(v,v) ^ Xkv
Tv. D

LEMMA 2 . 4 : Let N2i be the number of representations of2i by an even quadratic

form, in m = 2k variables, then £ N2i < 4j(2j + l)k.

PROOF OF LEMMA 2.4: It is more convenient to use the language of lattices. We
follow an argument of Conway [2, p. 332]. Let u, v be lattice vectors in an m = 2k

dimensional lattice L with u ^ ±v and ||u||2, ||u||2 < 2j, and suppose they belong to
the same class in L/XL. If A2 ^ 2j then 2A2 ^ ||Aw||2 = ||u - v\\2 = 4j - 2{u,v) ^ 4j,
where we replace v by — v if ncessary. We must therefore have equality everywhere and

(u,v) = 0. It follows that £} N* + {N2j/2m) ^ A2* and the Lemma follows. D
i=l

P R O O F O F T H E O R E M 1: By a standard argument using the invariance of | / ( z ) | yk

and the residue formula as in, for example Serre [7, Chapter VII, Theorem 5], we have

(14) K l ^ e2"Mn"2

where

(15) M = Snp(\f(z)\y1"2).

5

By Lemma 2.1, we have f(z) = Yl o>j9j,k{z), so

3=1 1=1 3=1 J = l

by Lemma 2.3. (2) and (3) follow immediately from (14), (15) and the last inequality.

REMARK. We note that the supremum is finite since one need only maximise over the

fundamental domain by invariance and the fact that |/(z)|j/*^2 —> 0 as y -> ioo.

PROOF OF THEOREM 2: By a result of Hecke, the theta series of / , 9f{z) =
oo

]£ 9 / ( l ) = Z) ^2nQn € Mk for A; = m/2 where N2n is the number of times In is
x£Zm n=0

oo
represented by / . Clearly 8/(z) = Ek(z) + h(z) where h(z) = ^3 o,nq

n G Sk. It follows
n=l

that

(16) N2n ^ Akak^(n) + an.

I 3 I

cannot be zero if \an\ < Ak/2ak-\{n), or using (2) if C*. j^2 \a,j\2 jn*/2"1 < Ak/2So

(we have used the fact that {ok-x{ri))/nk~l = ^( l /d*" 1 ) > 1). This gives the sufficient
d\n
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condition
2/(*-2)

(17) n>

,|2and this is just (4) on substituting the value of C* from (3) if we set a* to be , / £ |a,
The upper bound for \a.j\ follows from (16), Lemma 2.4, and that V J = 1

3. EXPLICIT ESTIMATES

In order to give explicit values c(m) beyond which an even integer is not exceptional
for a quadratic form in m variables, we must give explicit computable bounds for the
terms a*, A* and the supremum occuring on the right side of Theorem 2. These are given
in the three lemmas below.

LEMMA 3 . 1 . |o,| < max{4j(2j + 1)*, (2Kj)k/jY{k)}. This has already been ob-
served in the Proof of Theorem 2.

LEMMA 3 . 2 . Let H^1 = (/iy) and At be the maximum eigenvalue of (HkHf)~l,

then Xk^Z \hij\2.

PROOF OF LEMMA 3.2: This follows from the general fact that for any real matrix
A(— H^1 = (hij)), the maximum eigenvalue of ATA is equal to the operator norm
which is trivially bounded above the Frobenius norm ||J4| |F =

OO 00

LEMMA 3 . 3 . Let f(x) = J2 n&xn~l and fj(x) = £ njxn which are convergent
n=l n=l

for \x\ < 1. then for j = 1,2,...

PROOF OF LEMMA 3.3: By invariance we only need to prove a bound for z in a
fundamental domain so we may assume y ^ %/3/2. We split the left hand side into three
parts,

OO

For I, we have \A(z)/e-2*y\ ^ £) ^(nJle2*^-1^. Using Delinge's estimate that |r(n)| ^
n=l

d(n)nnl2 and tha t \d(n)\ < y/Sn gives the first term in the bound of (19). The bound

for H i s jus t calculus and the bound for III follows from
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M
24
32
40
48
56
64
72

c(m)

169
249
992
3603
4194
10405
23378

m

80
88
96
104
112

120
128

c(m)

25081
49688
90217
92012
161847
259764
270168

m
136
144
152
160
176
184
192

c(m)
418771

619999
644199
928589
1345330
1842966
2470014

Table 1.

where we have used

d\n

An explicit (though somewhat crude) upper bound c(m) can now be computed for

(4) using Lemma 3.1-3.3. Explicitly, we have the right hand side of (4) bounded above

by

(20)
(2TT)*

2/(*-2)

where we may replace a, by the righ hand side of Lemma 3.1, fjk by the right hand side
of (19) and the fty computed explicitly by inverting the matrix in (10) with the entries
given explicitly by (9).

In this way it is easy to obtain the values of c(m) as given in Table 1 above though
some care must be taken to arrange the terms so that the numbers do not grow bigger
than that representable by the computer. Not surprisingly the values are inferior to those
obtained in [2] using Deligne's sharp estimte. However Theorem 2 now gives an explicit
c(m) for all m. D
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