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Introduction

The purpose of this paper is the study of some basic properties of
universal induced characters and their applications to the representation
theory of the classical groups (for the definition of a universal induced
character, see § 3).

The starting point was the paper [F] by E. Formanek on matrix in-
variants. In his paper [F], Formanek has investigated the Hubert series
for the ring of matrix invariants from the point of view of the repre-
sentation theory of the general linear group and the symmetric group.
In this paper we shall study polynomial concomitants of a group from
the same point of view.

The induced character of a representation is very useful and funda-
mental tool in the representation theory. Let G be a subgroup of the
general linear group GLn over the complex number field C and p a finite
dimensional representation of G. We shall generalize the notion of the
induced character X(p f %ln) and introduce the universal induced character
X(p f %Ln). The universal induced character is defined as an element of the
symmetric formal power series ring in infinitely many variables.

One of the most fundamental properties of induced representations
is the Frobenius reciprocity theorem. So our first object in section 3 is
to establish a result for universal induced characters analogous to the
Frobenius reciprocity theorem. This is done by Theorem 3.1 in this
paper. In the proof of Theorem 3.1, we use the classical Molien-Weyl
theorem, which gives an expression for the Hubert series of a graded
module of polynomial concomitants as an integral over a maximal torus
of a compact Lie group.
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174 YASUO TERANISHI

In our consideration, close relations with classical invariant theory
appear. For example, let V be an ^-dimensional vector space and G a
subgroup of GL(V). Consider the diagonal action of G on the vector
space 0 V, the direct sum of countably infinitely many copies of V.
Then denoting by \]N the countably infinitely many copies of TV, the
ring C[φ V]G of polynomial invariants is a Π^-graded ring over C in a
canonical way and the Hubert series

H(C[® V]G, tu tt, •) = Σ.e™ dime C[© V]Uf^

with d = (du d2, •)

of the Π TV-graded ring C[0 V]G is equal to the universal induced charac-

ter X(l t %Ln) for the trivial representation 1 of G.

By using the (generalized) Frobenius reciprocity theorem (Theorem

3.1), we shall prove some basic properties of universal induced characters.

Let G be one of the classical groups of type Bn, Gn and Dw:

S0(2n
Sp(2n)

S0(2n)

+ 1) for

for

fro

type
type

type

Roughly speaking the irreducible representations of G are paramet-
rized by the partitions of length < n. For a partition λ of length < n,
let ρG(λ) denote the irreducible representation corresponding to λ. Under
the natural embedding G C GLV (p = 2n, if G = Sp(2ή) or SO(2ή), and
v = 2n -f 1, if G = S0(2n + 1)), we present a combinatorial expression
for the universal induced character X(pG(λ) | "")•

Let ^ be an irreducible representation of the general linear group
GLV and consider the restriction p [%Lv of the representation:

H. Weyl ([W-2], Chap. VII) has calculated the multiplicities mλ. Since
the irreducible representations of the classical groups are parametrized
by the partitions, the multiplicities mλ should be calculated from parti-
tions only, R.C. King ([K-l], fK-2]) and K. Koike-I. Terada [K-T] have
presented the algorithm to calculate the multiplicities mλ from given
partitions. The expression for the universal induced character presents
the combinatorial algorithm to calculate the multiplicities.
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This paper is organized as follows. In rsection 1, we study poly-

nomial concomitants of a group G (G-equivariant polynomial mappings).

In section 2, we review some basic results on the representations of the

general linear group GLn and the symmetric group Sn which we will use

later.

In section 3, we introduce the notion of a universal induced charac-

ter and study its fundamental properties. In section 4, we review the

results on the representations of the classical groups of type Bn, Cn and

Dn, which we will use in section 5. In section 5, we study the universal

induced characters of the irreducible representations of the classical

groups, and prove the restriction rules for the classical groups.

This research has been done while the author was visiting The

University of Mannheim of West Germany. He wishes to express his

hearty thanks to Professor H. Popp for an enjoyable stay at The Uni-

versity of Mannheim.

§ 1. Concomitant

Let G be a linearly reductive group acting on finite dimensional

vector spaces V and W over a field k of characteristic zero. Let k[V, W]

(resp. k(V, W)) denote the set of all polynomial (resp. rational) mappings

y-> W. Then the group G acts on k[V, W] (resp. k(V, W)) as follows:

for fek[V, W] (resp. k(V, W) and geG, g f(x) = gftg^x).

A polynomial (resp. rational) mapping /: V-> W is called a poly-

nomial (resp. rational) concomitant of G if it is invariant under the

action of G on k[V, W] (resp. k(V, W)). Equivalently for all x e V and

geG, gf(x) = f(g x). We denote by k\V, W]G (resp. k(V, W)Q) the Minear

space of polynomial (resp. rational) concomitants of G.

Suppose Vi9 1 < i < r, be a family of finite dimensional ^-vector

spaces on which G acts linearly. Then G acts on ©i<i<r Vi9 the direct

s u m o f Vu b y g ( x u , xr) = ( g x u , g x r ) , f o r g e G a n d ( x u . . - , x r )

®i<,i<r Vi. If G acts linearly on a vector space W, a polynomial (resp.

rational) mapping /: ©i^<;r V* -> W is called a simultaneous polynomial

(resp. rational) concomitant if / satisfies

g(f(XU ' " , Xr)) = f(g(Xl, , Xr)) ,

for all geG and (xl9 , xr) e φ i ^ ^ r Vt.

Let k[V] (resp. k(V)) be the ring of polynomial (resp. rational) func-

tions on V. We denote the ring (resp. field) of polynomial (resp. rational)
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invariants on V by k[V] (resp. k(V)G). Then k[V, W]G is a A[F]G-module

by

(h f)(x) : = h(x)f(x), for Λ e k[V]G and /e MV, W]G .

Similarly £(V, W0G is a vector space over the field k(V)G. Moreover

k[V, W]G is a finitely generated MVF-module and

/e(F, pp)* = k(V)G-k[V, W]G.

A fundamental theorem of Hochster and Roberts [H-R, Main Theorem]

says that the ring £[V]G is a Cohen-Macaulay ring. A similar result for

k[V, W]G is also true if G is a finite group. For the sake of reader's

convenience, we give a proof (cf. [S] 3.2 Theorem).

PROPOSITION 1.1. // G is finite group, k[V, W]G is a Cohen-Macaulay

module over k[V]G.

Proof. Let (Θu , θn) be a homogeneous system of parameters of

^[V]^. Since G is a finite group, k[V] is integral over the subring &[V]G

and hence (θl9 •• ,^n) is a homogeneous system of parameters of k[V].

Trivially, k[V, W] is a Cohen-Macaulay module over k[V]. Therefore

k[V, W] is a free module over the subring k[θu ,θn] of k[V] generated

by elements θu , 0», and hence k[V9 W\lθMY, W] + + θnk[V, W] is

a finite dimensional vector space over k. Consider the projection opera-

tor t) : = \G\-χΣgeβg\k[V, W[-+k[V, W]G. Then \\ bives a decomposition

k[V, W] = k[V, W]G®M, M={fek[V, W]fp = 0}

as έfyj^-module. We choose a basis (fu * ,ffc) of the £-vector space

A[V; Wl/ΘMV, W] + •- + θnk{V, W] such that Λ, ,/m is a basis for

Jfe[V, ^ ] G / ^ [ y , VF]G + . + θnk[V, W]G and fm+u ..-,/» is a basis for

MjθM + -" +θnM. Let /j, « ,/TO be representatives in k[V, W]G for

fu ' '' 9 fm, respectively. This gives a decomposition

k[V, W]G = φ^^fMθi, ,0J ,

which completes the proof.

Let e1? , en be a basis for V and /i, ,/m a basis for W. A poly-

nomial mapping u: V -> VF,

^ ( Σ i x ^ i ) = Σ * ui(χu , Λ»)Λ

has degree d if all polynomials M<(XI, •••,#„) are homogeneous polyno-

mials of degree <i.
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For every deN, let k[V, W]G denote the £-vector space of polynomial

concomitants of degree d. Then the ^-module k[V, W]G of polynomial

concomitants is an ΛΓ-graded ^-module

Similarly, let (G, pi9 Vt)9 1 < ί < r, (G, T, W) be finite dimensional repre-

sentations of G. For each i e {1, 2, , r}, let e(i)u , e(i)nt be a basis of

Vu (Πi = dimfc Vt). A polynomial mapping u: ©!<*<; r Vt -> W,

u(Σj xO )tfX)s> » Σ j Φ)Ar),) = Σu uMΐ), \ l < i < r , l < j < dt)h

has degree d = (du , dr) e ΛΓr, if for each ί e {1, 2, , r}, all the poly-

nomials

j 11 < j < nt)

are homogeneous with respect to the variables

x(ί)u - -

of degree dt.

For every d = (du ., dr) e 7Vr, let A[φ^« m V, W]G

d be the fe-vector

space of simultaneous polynomial concomitants of degree d. Then

MΘi<^r Vt9 W]G is an iVr-graded module:

In general, for an iVr-graded yfe-module M, the associated Hubert series

H(M, t), t = (ίlf , tr), is defined to be

where
fd fdi fdr

Hereafter, throughout this paper, we take the complex number field

C as the basic field k. If (G, p, V) and (G, T, W) are finite dimensional

continuous complex representations of a compact group G with the

normalized Haar measure dg, then the Molien-Weyl formula gives an

expression for the Hubert series H(C[V, W]G, t) as an integral over the

group G:

H([V, W]°, t) = f , ^ ( r ( g j " ' γ-dg (n = dim, V).
h det(ln - tp(g))
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Similarly for finite dimensional complex representations (G, ρu VJ, 1 <

i < r, and (G, Γ, W) of a compact group G, we obtain:

PROPOSITION 1.2 (Molien-Weyl formula).

HiCm^ Vu W)G,t) = f _- ψ^lΆ—^dg,
JG Πi<^<rdet(lw. - tipt(g)

where

nt = dimc V< /or 1 < i < r, and t = (ί1? ., ίr).

For a compact group G, let T be a maximal torus of G, dg the nor-

malized Haar-measure on T and W the Weyl group of G. Let {αt, α2, ,

aN} be the set of roots of G with respect to T and set

d*2 = Πi<*<^0- - <xt)dg.

Let G be a compact subgroup of GL( V) and (G, |0, W) a finite dimensional

representation of G. Then by WeyΓs integration formula, we have

\W\JG\W\JG Πi<^rdet(ln - ttg)

PROPOSITION 1.3. Let G be a semi-simple linear algebraic group and

V a finite dimensional representation of G. Suppose that V is G-equίvalent

as a G-module to its dual space V*. Then for any r > 1 and d =

(du ...,dr)eNr,

]fdimc Cm V, V]G = dimc C[0 ' + 1 V]fίfl)

Proof. By WeyΓs unitarian trick we may assume that G is a com-

pact group. Let p denote the representation of G on V. Since V — V*

as G-modules, Ύτ(p(g)) = Tr^^)" 1 ) . Notice that

det(l»-ίx)- 1 = 1 + Ύr(x)t +

for any n by n matrix X and a variable t. Then using the Molien-Weyl

formula, we obtain the desired result.

As an application of the proposition above, we prove the following

PROPOSITION 1.4. Let G be a semi-simple connected linear algebraic

group and Lie (G) its Lie algebra on which G acts as the adjoint repre-

sentation. Let (,) denote the Killing form on Lie (G) X Lie (G). For x —

(*i, '",xr, xr+i) e Θ r + 1 Lie (G), set xf = (xu , x r) ami x" = x r + 1. TΛerc /or

any d e Nr, the C-linear map
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T: C [ 0 - Lie (G), Lie (G)]£ • C [ 0 ' + 1 Lie (G)]fΛ|1)

defined by

T(f)(x) = (/(*'), *") , /e C [ 0 r Lie (G), Lie (G)]£ <md * e ®r+ί Lie (G)

is an isomorphism between C-vector spaces C [ 0 r Lie (G), Lie (G)]d and

Proo/. Since G is semi-simple, the Killing form (,) is G-invariant

non-degenerate bilinear form and hence the map T is well-defined and

injective. By the previous proposition, T is surjective.

Using the same method as in the proof of 4.3 Theorem [T], we obtain

PROPOSITION 1.5. Let G be a semi-simple connected linear algebraic

group. Then for any r > 3, the Hilbert series R(t) for C [ 0 r Lie (G),

Lie (G)]G satisfies the functional equation

. . . , tr),

where

d = (r - 1) dim G .

§2. Representations of the general linear groups and symmetric
groups

In this section we review definitions, notations and some results on

the representations of the general groups and symmetric groups. We use

the terminology of Macdonald [M] although we occasionally modify it.

A finite or infinite sequence

of nonnegative integers in decreasing order λx > λ2 > and containing

only finitely many nonzero terms is called a partition. For a partition

λ, the associated Young diagram (denoted also by X) is the set of points

{(Uj)\iJeZ9 1<U l<J<λτ)eZ\

If (/, j) e Z2 is contained in a Young diagram λ, then (i, j) is called a

node of λ. The i-th row (resp. column) of a Young diagram λ consists of

nodes whose first (resp. second) coordinates are i. For example if λ =

(4, 3, 2, 1), the associated Young diagram is
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For a partition λ, the number of nonzero terms in λ is called the

length of λ and will be denoted by £(λ). The size of λ is defined to be

the sum of all terms in λ and will be denoted by \λ\:

\λ\ = λx + λ, + .

We denote by ιλ the conjugate of a partition λ.

Consider the graded ring Z[tu , tn] of polynomials in n indetermi-

nates tu , tn with integer coefficients and let Λn denote the graded ring

of symmetric polynomials in n variables:

Λn = Z[tu .••,*»]*,

where Sn denotes the symmetric group on n letters which acts on

, tn] by permuting the variables.

For each d = (du , dn) e Nn define

and for each partition λ of length < n, the monomial symmetric poly-

nomial mλ is defined by

where the sum is over all distinct permutations d of λu , λn. Then

the monomial symmetric polynomials m's form a Z-basis of Λn. Let πm,n:

Λm->Λn (m> n) be the homomorphism of graded rings defined by πm,n(tt)

= tt if 1 < i < n and nm,n(tt) = 0 if n < i. Then the (Am, πm,n) satisfy a

compatibility condition of a projective system. We denote the projective

limit of this system in the category of graded rings by A, so that A =

limyίn. We call this projective limit the ring of symmetric functions in

infinitely many variables.

For any partition λ of length < n, setting

aλ = aλ(tu , tn)

= ΣoGsn (sign σ)tϊω tλj\n) ,

the Schur polynomial sλ = sλ(tu , tn) is defined by
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where

δ = (n - 1, n - 2, , 1, 0).

Then the Schur polynomials sλ corresponding to the partitions of length

< n form a Z-basis for An. Since sλ(tu , tn) = 0 if £(λ) > n and

πm,n(sλ(tu , O ) = Sχ(tu , *„), iΐ m> n, sλ(tu , ίn), ra eΛΓ, form a pro-

jective system and hence we may define a symmetric functions sλ in in-

finitely many variables. The canonical projections πn: A-+Λn carry sλ

to sx(tu , Zπ). The symmetric function sλ is called the Schur function

corresponding to λ. The set {sλ\λ a partition} forms a Z-linear basis for

A. Hence for two partitions λ and μ, sλsμ is a Z-linear combination of

Schur functions:

sλ8μ = Σ

The coefficients LRv

λμ are called the Littlewood-Richardson coefficients.

The Littlewood-Richardson rule gives a combinatorial description

for computing LRv

λμ. Similarly for partitions λu , λr9 the (general)

Littlewood-Richardson coefficients LRlu...iλr are defined by

where the sum is over all partitions λ. If r = 1, we employ the conven-

tion

0 otherwise.

We denote by Mod (GLn) the Grothendieck ring of finite dimensional

polynomial GLn-modules. For each finite dimensional GL-module M, let

X(M) = X(M)(tu ••-,*„) denote its GL^-character. Then X(M) is a sym-

metric polynomial in tl9 , tn and M is irreducible if and only if X(M) —

Sχ(tu , tn) for some partition λ of length < n. Thus the map M -+X(M)

induces a ring isomorphism between Mod (GLn) and An.

The equivalence classes of finite dimensional irreducible polynomial

GLn-modules correspond to bijectively to the partitions of length < n.

Hence hereafter, if M is a finite dimensional irreducible GLn-module cor-

responding to a partition λ of length < n, we shall write it by the same

symbol λ.
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Let Mod(Sw) denote the Grothendieck ring of finite dimensional Sn-

modules. For each finite dimensional Sn-module [M]9 consider ch [M],

where ch stands for the characteristic map (see [M], p. 82). Then ch [M]

is a symmetric polynomial of degree n and M is irreducible if and only

if ch [M] = sx, the Schur function associated with a partition of size n.

Hence the map [M] -» ch [M] induces a bijective correspondence between

the isomorphism classes of finite dimensional irreducible Sw-module and

the partitions of size n. So, if [M] is a finite dimensional irreducible Sn-

module corresponding to a partitions λ of size n, we shall write it by [λ].

For two finite dimensional S-modules [M] and [N], consider the di-

agonal action of Sn on the tensor product [M] ® [N]. The map

Mod (Sn) <g> Mod (Sn) • Mod (Sn)

induced by this action of Sn is called the inner product. Let Λn be the

degree n part of A and define the inner product on it by

ch ([M] <g> [N]) = ch [M] * ch [N] .

In particular if λ and μ are partitions of size n, we have

sλ * sμ = ch ([λ] (g) [μ]) .

Similarly, for partitions λu , λr of size n, we define sλl * * sλr by

sλl • * sXr = ch (UJ (x) ® μ r ]).

For a partition 3 of size n, we denote by Xλ the associated irreduci-

ble character of Sn. The following proposition was proved by I. Schur

[(S], p. 68) for r = 2 and his proof works as well for general case. For

reader's convenience, the proof is here included.

PROPOSITION 2.1. Consider r, r > 2, infinite sequences of independent

variables:

x = fa, xz, --), y = (yu y2, -•),'-, z = 0i> %, •)

and take an infinite sequence t — (tu t2, •) of independent variables. Then

= Σ (βx * sμ*

where the sum is over all partitions λ, μ, , v with \λ\ = \μ\ = , , = \v\.

Proof. We set R = Π<,y, ,*,meΛr+ ί1 ~ ^ * * * ̂ O " 1 . Then clearly R
is a symmetric function in x, y, , z and t. Hence R has the form
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R = Σ« ftμ. .Mχ)8μ(y) sv(z)sa(t) with /;„..., e z .

On the other hand, one has

p _ V1 1 / Si(ΦiQ) ' ' Sί(z)s1(t) V1

Kil fc2l - - - \ 1 /

v / s2(x)s2(y) - - - s2(z)s2(t) V2

where Ar1? Λ;2, are over all nonnegative integers, and si9 ίeN+, stand for

the power sums of the variables:

st(x) : = x\ + x\ + .

Recall the Frobenius character formula for the symmetric group:

SκΛt)s?(t) = Σa *'(*!, 2̂, )sλ(t) ,

where (ATJ, Λ:2, •) is a permutation with cycle length κl9 tc2, , Xλ(/cu /c2, •)

stands for the value of the character of the symmetric group correspond-

ing to a partition λ, evaluated on (κu κ2, •) and the sum is over all parti-

tions of size /Cj + κ2 +

Using the Frobenius character formula, we get

R = Σ^2,. ΐ
κλ\κ2\

Since for each partition a,

1 i \ — : I

x! A:2 ! \ 1 /

V2

x 2 2 /

we obtain

X\κu /c2, - )Xμ(fcu Λ2, •) ^ i , Λ2, * •) = Σ « / V - Π Λ I , Λ2, •),

which completes the proof.

Let I be a finite dimensional irreducible polynomial GLr-module

corresponding to a partition λ of size r and consider the sub-vector

space [M] of M defined by

fe M and D(tu , tr) = /ft ίr)/,

for all diagonal matrices D(tl9 , tr)

whose main diagonal entries are tu , tr)
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Then identifying the symmetric group Sr with the permutation matrices

in GLr, [M] is an Sr-module. The following proposition will be used

later:

PROPOSITION 2.2 ([G], § 6). With notation as above, [M] is a finite

dimensional irreducible Sr-module corresponding to the partition λ.

We can regard a non-negative integer k as a partition of length 1

(denoted by (£)). For two partitions λ = (λu λ2, •) and μ = (μu μ2, •)>

let Kλμ denote the number of Young tableaux of shape λ and weight μ.

Then it follows easily from the Littlewood-Richardson rule that LR*μi)Λμ2h...

§3. Universal induced characters

Let D(r) denote the subgroup of GLr consisting of diagonal matrices

and let D(tu , tr) denote the diagonal matrix whose main diagonal

entries are tU'-',tr. Let M be an iVr-graded polynomial GLr-module

over C and suppose that, for each d — (du , dr) e Nr

9 the C-vector

space Ma is finite dimensional and is given by

' * *' W =&"• tdrf, for all

Then, for each d e N, the C-vector space Md spanned by all homogeneous

elements of total degree d is a finite dimensional GL-representation space

and its character X(Md) is equal to Σ dimc Mjfi9 where the sum is over

all d = (du - - , dr) e iVr with |d | = d and ί* = t<t td

r\

The character 1(M) of M is defined to be

= H(M, t).

The character of M is an element of the ring of formal power series

Z\tu , trj and equal to the Hubert series of M.

Let V be an ^-dimensional complex vector space, G a linearly reduc-

tive subgroup of GLn ( = GL(V)) and (G, p, W) a finite dimensional com-

plex representation of G on a vector space W. From now on, for each

r e TV, we denote by p\%Ln the C vector space C[© r V, W]G of simulta-

neous polynomial concomitants /: V Θ Θ V(r copies of V) -> W.
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We have seen that p f %Ln(r) is an iVr-graded, GLr-module and the

character of it is equal to the Hubert series of p f %Ln(τ). It is clear that

X(p I %Ln(r)) is a symmetric function in tu , tr.

Let ίj, , tr be commuting indeterminates and consider the ring of

formal power series Z\tu •• , ί r ] with Z-coeίBcients. Let Λr denote the

subring of Z\tu , trj of symmetric functions in tu , tr. Λr is an Ag-

graded ring whose grading is inherited from Z\tu , trj. Suppose that

r > s. Then

10, s + 1 < i < r

defines a degree preserving surjection

πr,s: A r >AS.

The system {Λr, reN} satisfies the compatibility condition of a pro-

jective system in the category of commutative rings. We set

Λ : = lim Λr,

and call it the ring of symmetric formal power series in infinitely many

variables tl912, .

If r > s, then

*r.,(Z(j> t GσLn(r)){tu , tr) = X(p t %Ln(s))(tu ' , ts),

and hence there is a well-defined element %(p t ĝ ") of t̂ such that the

canonical projection τrr: A-± Λr carry ^(^ | %Ln) to %(̂o f iLn(^)) for all reN.

We call X(p | i1"1) the universal induced character of the representation

(G, p, WO. Notice that p t GZ"(^) is the (usual) induced representation of

(G, p, W) and X(ρ f GLn(n)) is the induced character.

Since the Schur functions are Z-linear basis of A, there are integers

cλ such that

σLn) = Σ

where Λ varies over all partitions. For each λ, the integer cλ is called

the multiplicity of λ in X(p t gLn) and will be denoted by m(p t %Ln, l̂). For

a partition λ with (̂Λ) < n, let λ f g in denote the restriction of the irre-

ducible representation of GLn corresponding to λ.

3.1. The Frobenius reciprocity theorem

In this section, we prove the following
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THEOREM 3.1 (The Frobenius reciprocity theorem for the universal

induced characters). Let (G, p, W) be a finite dimensional irreducible rep-

resentation of a compact subgroup G of GLn. Then, for each partition λ,

[0, otherwise,

where m(λ j %Ln, p) denotes the multiplicity of p in λ | $Ln. In other words,

*(p t GLn) = Σx m(λ i %L«, p)sλ,

where the sum is over all partitions of length < n.

Proof Let x = (xu x2, •) and y = (yl9 y2, •) be two finite or infi-

nite sequences of independent variables. Then, by Cauchy's formula,

where the sum is over all partitions. Let T be a maximal torus of G.

Then we may assume that T has of the form

where

r = rank of G, for 1 < i < n.

Let r be a non-negative integer and set

, l<i<n (tj, l<j<r
and y7- = <

0, n <i 3 [0, r<j.

Then we obtain

Π * f i ( l - u'H,)-1 = Σsχ(uai: l<i< ή)sλ(tu , tr).

On the other hand,

sλ(uaι: 1 < i < ή) = < ,n /

\θ , if £(λ) > n

and, if £(λ) < n,

Γ^T ί riλ I G

G

Ln)χ(p(g))-1dΩ =

Hence, by the Molien-Weyl formula, we have
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J

which completes the proof.

If r = n, the theorem above gives the usual Frobenius reciprocity

theorem for the induced representation of (G, p, W) in GLn. By WeyΓs

Unitarian trick, the theorem is true for complex semi-simple groups. The

following proposition follows from Theorem 3.1.

PROPOSITION 3.1. Let (G, p, W) be a finite dimensional irreducible

representation of a compact subgroup G of GL^.

(1) The multiplicity m(p f %Ln(r), X) of an irreducible representation λ

of GL(r) in p f %Ln(r) does not depend on r.

(2) The irreducible decomposition of p\ %Ln{r) contains no irreducible

components corresponding to partitions of length > n.

3.2. Basic properties of universal induced characters

In this section, we will prove some properties of universal induced

characters. We use the notation GL(ri) instead of GLn.

PROPOSITION 3.2.

(1) Let λ be a partition of length < n. Then

(2) Let H c G be compact subgroups of GL(ή). Let (H, p) be a finite

dimensional irreducible representation of H. Then

where p]% denotes the (usual) induced representation.

Proof (1) By the Frobenius reciprocity and WeyΓs unitary restric-

tion, we have

X(λ t g£88) = Σic>*« m(λ t gfSI, μ)sμ

GLi *)S

(2) By the Frobenius reciprocity,
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and

t £ = Σr

where the sum is over all equivalence classes of irreducible representa-
tions ϊ of G and m(ϊ I %, p) denotes the multiplicity of p in ϊ \, % By (1),
we have

Since

^ ( ^ I έ£ ( κ ), P) = Σr

we obtain the desired result.

%^\ γ),

PROPOSITION 3.3. Let Gu , Gr be compact subgroups of GL{nx), ,

GL(nr), respectively. We consider the product group G1 X X Gr as a

subgroup of GL(πι + - - + nr) by

( A u - - - , A r )
A

0

0
i e d , 1 < i < r.

L e t p u ' - ' , ρ r be finite dimensional representations of Gu - ,Gr, respec-

tively. T h e n

GL{nr)\
or )

Ύίn 6d . 6dn t GL(m+'"+nr)\ γ(n f GL(m)\ . # .

Proof. For meN, we apply the Molien-Weyl formula. Then

X((h ® ® ̂  t gf^ί xS ^^Xί ! , , O

- π

where dμt is the normalized Haar measure on Gt

which completes the proof.

PROPOSITION 3.4. We consider the product group GL(nx) X X

GL(nr) as a subgroup of GL{nx + + nr). let λu , λr be partitions

with £(λt) < nu - - , ̂ (^r) < nrt respectively. Then
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7 t GL(ni+ -+nr) \ e . . . Q V 7" 7?^ <?
Λr I GL(ni)X" χGL(nr)) — SXt

 Sλr — Z-iλ LiJ:+λi, ' ,λr

 Sλ

Proof. This follows from the previous two propositions.

Let λ be a partition of length < Σi<t<r nt. Then by the Frobenius

reciprocity theorem, we obtain

GL(jiχ + "+Ίw)
ψ GL(m)X'"XGL(nr) > *1

and hence

λ ψ GL{ni)X'"XGL(.Ίlr) ~ 2-Λ*u ~,i

where the sum is over all partitions λu , λr with £(λt) < nu , 6{λr)

< nr, respectively.

In particular, putting 77,! = /z2 = = nr = 1, we obtain a well known

formula:

Consider the representation GL(rti) X X GL(nr) -> GL{nx nr) de-

fined by (Al9 , Ar) -> Λ (g) ® Ar, Λ e GLO*), 1 < i < r. Then we

can consider

as a GLirii) X X GL(τιr)-module.

PROPOSITION 3.5. Lβί ^, , λr be partitions of length < nu , nr,

respectively and consider the representation (GL(n^) X X GL(nr). λt ®

• (x) λr). Then

l Λ l U ' ^y Λr j GL(m)X"'XGL{nr))

* s ^ 2 * * s λ r , if | Λ | = = . . . = \ λ r \ ,

, otherwise .

Proo/. This follows from Proposition 2.2 and the Molien-Weyl for-

mula.

Let (G, ̂ o, W) be a finite dimensional representation of a linearly re-

ductive subgroup G of GL(V), dimc V = rc. Recall that ^ t f ^ r ) , reiV,

is an ΛΓ-graded module. We denote by [p | βL(n)(r)] the subspace with degree

(1, , 1) e Nr, that is,
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The symmetric group Sr acts on V®r by permuting positions:

σ(vλ <g> <8> υr) = vσ-la) 0 -" 0 vσ-Hr) .

On the other hnad, G acts on V®r by

£(tΊ ® ® Vr) = (̂ Ui) ® ® (gϋr) .

Since these two actions of Sr and G on V®7" commute each other,

p\aL(n)(r) is an Sy-module. Let 2 be a partition with \λ\ = r and denote

by m([p t G

G

L{n)(r)l [λ]) the multiplicity of [λ] in [p f gL(7l)(r)].

THEOREM 3.2. Lβί G be a linearly reductive subgroup of GL(ή) and p

a finite dimensional representation of G. For a positive integer r, let λ

be a partition with \λ\ = r. Then, m(p t $Lin)(Λ λ) = m([p t GLin)(r)], [λ]).

Proof. This follows from Proposition 2.2.

We introduce a multiplication © on A by

sλ®sμ =
sk*sμ, if \λ\ = |/i|

0, otherwise .

PROPOSITION 3.6. Let Gu G2, , Gr be compact subgroups of GL(nt),

GL(n2), , GL(nr), respectively. We consider the group Gx X G2 X X Gr

as a subgroup of GL(n{n2 nr):

(A, A2, - , Ar) i—> A (x) A ® (x) Ar

A< e Gί, 1 < i < r.

Lei ί>!, ̂ 2j --',Pr be finite dimensional rational representations of Gu

G2, , Gr, respectively. Then

= Z(ft ί gχL(ni))®%(ft t gf(W2))© ®X(Pr t ^

Proof. This follows from Proposition 3.5.

Consider the adjoint representation Ad: SL(ri) -> GL(n2) of SL(ή). It

follows from Proposition 2.1, that

for infinite variables £ = (tu t2, •)> ε = (εu ε2, * •)•

By the Molien-Weyl formula, we obtain:

THEOREM 3.5. Let λ be a partition of length < n. Then
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where the sum is over all partitions μ and v of length < n. In particular

we have

y/1 f GL(n2)\ __ y Q Q

Let C [ 0 r Mn(C)]ffZi<n) be the ring of matrix invariants by the simul-

taneous adjoint action of GL(ri) on the vector space of r n X n complex

matrices 0 r Mn(C). Since

we obtain a result of E. Formanek:

THEOREM 3.6 (E. Formanek [F], Theorem 17). The Hilbert series of

C[®r Mn{C)]σL{n) is equal to

where the sum is over all partitions of length < n.

By Theorem 3.5, and Theorem 3.2, we have

On the other hand,

= the C-vector space of multi-linear

matrix invariants of degree r .

We denote by I(λ) the minimal two-sided ideal of the group ring

C[Sr] corresponding to a partition λ of size r. Moreover we put

I(n,r) = ® {I(λ)\\λ\ = rj(λ) < n).

Then, as is well known, as Sr-modules, I(X) = [λ] ® [λ]. Hence we obtain

a fundamental result on matrix invariants due to Procesi-Razymslov:

THEOREM 3.7 (Procesi [P] Theorem 4.3. Razmyslov [R] p. 755).

((XT Mn(C))GW s I(n, r), as Sr-modules .

In particular, if r = n, we obtain Schur's commutator theorem

EndβL(n)(V®n) = C[Sr], where V = Cn, because /(Λ, ή) = C[Sn] and
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§4. Representations of the symplectic group and the orthogonal
group

In this section we shall review some fundamental results on finite

dimensional irreducible representations of classical groups Sp(2ή),

S0(2n + 1) and SO(2ή). For details see [W-2].

In general let G be a connected semi-simple complex Lie group, K

a maximal compact subgroup of G and

T = {(eu , er) I fo, , er) 6 C r, |e«| - 1} r = rank of T ,

a maximal torus of K. For each i, 1 <; ί < r, let tt denote the map U\

T - > C ? ti{eu . ,er) = εt. Let Mod(G) άenote the Grxotlaendiek xing of

finite dimensional holomorphic representations of G. By the Cartan-Weyl

theory, Mod(G) is determined by the domainant integral weights.

Case 1, G = Sj9(2ft). The symplectic group Sp(2ft) consists of all linear

transformations leaving invariant the non-degenerate skew-symmetric

bilinear form

[x, y] = (χiyΊ - xίyd + + (χny'n - <yn)

for

x = («i, '",xn,xi -", O and y = (yu , yn, y[, , yO

We take as T the set of all diagonal matrices

(e4, ••-,£„, εj1, , ε;1) "with |e,| = 1, 1 ^ i < n .

If M is a finite dimensional irreducible Sp(2^)-module, the associated

dominant integral weight has the foxm α> — λ^ + * + λntn, λ = (λl5 ,

λn) is a partition. Therefore the equivalence classes of finite dimensional

irreducible Sp(2rc)-modules correspond bijectively to the set of all parti-

tions of length < n. If M is a finite dimensional irreducible Sp(2n)-

module corresponding to a partition λ of length < n, we shall write it by

Case 2, G = S0(2n + 1). The orthogonal group S0(2n + 1) consists

of all special linear transformations leaving invariant the non-άegenerate

symmetric bilinear form

(x, y) = χoyo + (xiyΊ + ύyd + + (*»/» +

for

x = (x09 xl7 - , *„, xί, - , a£) and 3/ = (y0, JΊ, ,
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We take as T the set of all diagonal matrices

(1, εl9 , en, εΓ\ , εΰ1) with |e,| = 1, l<i<n.

If M is a finite dimensional irreducible S0(2n + l)-module, the associated

dominant integral weight has the form

Ui + + λntn, ix > h > . > xn^ >λn>o

with λu , λn e Z .

Therefore the equivalence classes of finite dimensional irreducible

S0(2n + l)-modules correspond bijectively to the set of all partitions λ

of length < n. If M is a finite dimensional irreducible S0(2n + 1)-

module corresponding to a partition λ of length < n, we shall write it by

Case 3, G = SO(2ή). The orthogonal group SO(2ή) consists of all

special linear transformations leaving invariant the non-degenerate sym-

metric bilinear form

(x, y) = (x,yί + x[yx) + + (̂ ny»

for

x = fo, , xn, xi, ", x'n) and y = (yu --,yn,yΊ, , jή).

Take as Γ the set of all diagonal matrices

(εl9 --,εn, ef1, , e^1) with |e*| = 1, 1 < ί < n .

If M is a finite dimensional irreducible SO(2ra)-module, the associated

dominant weight has the form

J A + ••• + * n ί n , Λ > ^ 2 > ••• Λn-i>UJ with {21, , y e Z .

In this case, λn can be negative and irreducible ASO(27z)-modules corre-

spond bijectively to the sequences λ = (λl9 •• ,^n) of integers satisfying

the condition

For such a sequence λ, we denote by (^, Vλ) the corresponding irreduci-

ble representation of S0(2n) and by (p, Vλ) the representation of S0(2n)

on Vλ defined by pλ = ^ ω, with ω = the involutive outer automorphism

of S0(2Λ).
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For a partition λ of length < n, define the representation p80Qn)(X) of
S0(2n) by

pi if Λn = 0,

θ ft if Λw > 0 .

Then pS0(2n)(X) is the representation obtained by an irreducible representa-

tion of the orthogonal group O(2ή).

§5. The universal induced characters for the classical groups

Let G be a classical group of type Bn, Cn or Dn. For a partition λ

of length < n, let ρG(λ) be the representation of G defined in the previous

section. H. Weyl calculated the universal induced character for pG(X) in

1926. More recently D.E. Littlewood, R.C. King and K. Koike-I. Terada

had shown the restriction formula for X(μ j $Lv), v = 2n if G = Sp(2ή) or

SO(2rc) v = 2rc + 1 if G = SO(2M + 1). In this section we shall rewrite

WeyΓs formula for the universal induced character and obtain an ex-

pression for the universal induced character as an infinite linear combi-

nation of Schur functions. By the Frobenius reciprocity theorem, this

gives the restriction formula (see [K-l]).

Now we refer to the following theorem.

THEOREM 5.1 (H. Weyl [W-l]). Let λ be a partition of length < n and

r (> ή) an integer. Then we have

(1) zfopβ

\Δ) λ\psoa

W ^\Pso(

\tr~ί+λl, tr~2+λ%

\4.r~ί + Xi /r-2 + 2̂

• , tr~

1

...,r-

)
• , t

n + λn -i-r —n-1 fr — n-τ _\ fr-n
, I -f L

n-ί _i -j-r-n
\ l > ' * * J

I ,

, ••-,!+ tUr~n~λ)

1 + F'-*-1

Here in general, for given polynomials ft(t), , fr{t), \ /ΐ(ί), /2(ί), ,

/r(ί) I stands for the polynomial in r variables tu t2, • •, tr defined by

-,fr(t)\ = Σ.e
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The following identities are called Littlewood's identities. For the

proof, see [M, p. 45].

LEMMA 5.1. We have the following identities in the ring of symmetric

functions in infinitely many variables tu t2, .

(1) Σ*;= ΓWi-M,)-\
where the sum is over all even partitions λ.

(2) 2>a= iWi-M,)-1,
where the sum is over all partitions λ such that ιλ are even partitions.

For a Young diagram μ, we mean by a skew-hook h of μ a con-

nected part of the rim of μ which can be removed to leave a Young

diagram. Let h be a skew-hook of a Young diagram μ and remove h

out of μ. Then we denote by μ — h the resulting Young diagram. The

skew-hook length of h is defined as the number of nodes in h and the

leg length ω(h) of h is defined by

ω(h) = max {7 | (i, j) eh} — min {7 | (ί, 7) e h}.

For a sequence (/i,/2, ,/r) of r integers, we set

1 / 1 ? / 2 > 9 T r ) — | * > ̂  > • • ' , £ ' | ,

where ^ = ft + r — i, for 1 < i < r. Then we obtain easily the rule:

(*) {- ,f*,f*+u •••} = —{•••,/*+! - i,Λ + 1, •••}•

In particular if /Λ+1 = fk + 1 for some β, then {/i,/2, ,/r} = 0.

We begin with a combinatorial

LEMMA 5.2. Lei / = (/l5 /2, , /r) 6β α sequence of non-negative integers

and f(h) = (fu /2, , /fc), k <r, a subsequence of f. Suppose that f(k) is

a partition (i.e. fx > /2 > > /fc).

(1) // ί/ierβ is α partition g = (gugι, —9gu+i) of length k + 1 sαίis-

/ymg" ί/iβ following two conditions (a) α^d (b):

(a) ^ Λαs α skew-hook h of skew-length fk+1 through the node (k + 1,1),

(b) f(k) = g - h, then

{fuf* ' ' ,/r} = ( - l ) ("}{ft,ft, * ,ft+l,Λ+2, ,/r}

(2) 1/ Z/iere is no partition g of length k + 1 satisfying the two con-

ditions (a) and (b), ί/ien

{/I,Λ, •••,/;} = 0.

Proof. By the rule (*), we obtain, for any 1 < 7 < k,
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(**) {fu * * ',fk,fk+U * ,/r}

> * * > Λ - j> /fc+1 — Λ /fc-j+1 + 1> * * * > /fc + 1> /fc+2, * * , fr}

The conditions (a) and (b) mean that the sequence

\fli ' ' ' i fk-ω(h)) fk+1 — Q>\h/9 /fc-ω(Λ)+l + 1, * * * >/fc + 1)

is a partition and equal to g = (gu g2, ---,gk+i)- Then (1) follows from

(**).

The assumption of (2) means that

/fc+i — J = Λ-i + 1, for some j < k .

But then again by (*) and (**), we obtain {Λ,/2, ,/r} = 0.

EXAMPLE. / = (4, 2, 2, 5) and /(3) = (4, 2, 2). In this case

X X X X

X X ®
_ (4,3,3,3) _ χ

skew-hook of length 5

has a skew-hook h of length 5 through the node (4, 1). Therefore {4, 2,

2, 5} = {4, 3, 3, 3}.

We now describe the universal induced character for the representa-

tion po(λ) of each classical group G.

Case 1, G = Sp(2n). In this case the set of irreducible representa-

tions of G is parametrized by the set of all partitions of length < n. For

a partition λ of length < n and a partition μ, we define an integer κ(μ, X)

e{— 1, 0, 1} as follows: we divide into two cases,

Case (a), i(μ) < n + 1.

f l , iίμ = λ,
κ(μ,λ) : = .

(0, otherwise .

Case (b), ^(μ) > n + 1.

In this case we set β : = £(μ) — n — 1. If μ has no skew-hook of length

2e through the node (S(μ), 1), tc(μ, λ) is defined to be zero. If μ has a skew-

hook h of length 2e through the node (£(μ), 1), we set

If .#(// — Λ) > ft + 1, we continue this process.
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EXAMPLE. G = Sp(8),

X X X

X X X

X X
X X X

μ = (3, 3, 2, 2, 2, 2, 2, 2) = * ® , λ = (3, 3, 2) = X X X .

X ®

X <g)

<8> ®

There is a skew-hook of length 6 through the node (8, 1), and hence

κ(μ9 χ) = Λ<(3, 3, 2,1, 1, 1,1), Λ). The Young diagram

X X X

X X X

X X

yl = (3, 3, 2, 1, 1, 1,1) = <g)

has a skew-hook of length 4 through the node (7, 1), and hence «(//,

= - 1. Thus κ(μ, λ) = - 1.

THEOREM 5.2. Lβί λ be a partition of length < zz.

ί&)) = Σ,,,,,' LR;tμ,ιe(μ, λ)sv,

where v and μ range over all partitions of length < 2n and μf ranges over

all partitions of length < 2n such that ιμ' is an even partition (i.e., with

all parts of even numbers).

Proof. By (1) of Theorem 5.1, we have, for any r > n,

*r (1 - ttts)X(p89an)(λ) f

where the sum is over all sequences («i, α2ί •• ,αr-n-i) of n o n negative

integers such that at = r — n — ί — 1 or r — n + ί — 1 for all 1 < i <

r — ft — 1.
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Let E be the set of all sequences a = (au α25 , αr-n-i) of non-negative

integers such that at = 0 or 2ί for all 1 < ί < r — n — 1. Then we can

rewrite (*) as follows:

= Σαe^ {̂ i> 2̂> * * * 9 λ, 0, au a2, , αr_TO_J .

Let μ = (μ1? μ2, , μr), r > ii + 1, be a partition and suppose that

ίc(μ9 X) φ 0 and (̂//) > n + 1. Then μ has a skew-hook /i of length 2(S(μ)

— n — 1) through the node (#(μ), 1). Set μ — Λ = ( ί̂, ^ , , ^ ( ^ - I ) - Then

this sequence μ — h is a partition and it follows from (1) of Lemma 5.2

that

( - l ) - ^ , pk, , /ιr} = W, Acί, — , f/tw_ί9 0, , 0}.

Applying this process many times if necessarily, we find that

(**) κ(μ, λ){μu μ2, , μr] = R, 2̂, , λ«, 0, au α2, , α^^ .J

for some (au a2, , αr_n-i) e E.

Conversely take a sequence α = (al9 α2, , βr-n-i) € E and suppose
that {λu λ2, , ̂ n, 0, au a2, , αr_TO_i} = 0. If a Φ 0, let αm be the first

non zero number in the sequence (au a2, , αr_n_j). Then by (2) of

Lemma 5.2, there is a partition g = (gu g2, •) of length n + m + 1 such

that g has a skew-hook h of length 2m through the node (n + m + 1, 1)

satisfying (λu λ2, - , λn) = g — h. Then by (1) of Lemma 5.2, we see that

{λί, λ2, - ' , λn, 0, α1 ? α2, , β r_n_i}

Repeating this process, we can construct a partition μ satisfying the

equation (**) with κ(μ, X) Φ 0. Therefore we obtain

Using Littlewood's formula ((2) of Lemma 5.1) and Proposition 3.1, this

yields the desired result.

PROPOSITION 5.1 (The restriction rule from GL2n to Sp(2ή)).

Let v be a partition of length < 2n and λ a partition of length < n.

Then
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where μ and μf range over all partitions of length < 2n such that ιμf is

an even partition.

Proof. This is an immediate consequence from the Frobenius reci-

procity and Theorem 5.2.

Case 2, G = SO(2n + 1). In this case the set of irreducible repre-

sentations of G is parametrized by the set of all partitions of length < n.

For a partition λ of length < n and a partition μ, we define an integer

κ(μ9 λ) 6 {— 1,0, 1} as follows: we divide into two cases,

Case (a), ί(μ) < n. In this case

(I, if μ = λ,
fc(μ,λ) : =

0, otherwise

Case (b), S(μ) > n. In this case we set e : = ^(μ) — n. If μ has no

skew-hook of length 2e — 1 through the node (£(μ), 1), tc(μ, X) is defined

to be zero. If μ has a skew-hook Λ of length 2e — 1 through the node

(%), 1), we set

κ(μ,λ):=(-ϊy*h>κ(μ-h9λ).

If (̂// — h) > n, we repeat this process.

EXAMPLE. G = SO(7),

XX

X

X

= (5, 4, 3, 3, 3, 3, 2) = X

X

X

X

X

X

X

X

(X)

X

X

(8)
(x)

(X)

(X)

X

X

and

X

= (5, 4, D =
X

X

X

X

X

X

X

X

X

In this case μ has a skew-hook of length 7 through the node (7, 1) and

hence κ(μ, X) = κ(μ\ X), where

https://doi.org/10.1017/S0027763000001847 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001847


200

X
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X

X

X

X

X

X

(x)

TERANISHI

X

X

I

1

X

X

Since μ has a skew-hook of length 5 through the node (6,1), we

have κ(μ', λ) = — κ(μ", X), where

X X X X X

„ X X X X
μ = x

X

The Young diagram μ" has a skew-hook of length 1 through the node

(4, 1), and hence tc(μ", X) = 1. Thus κ(μ, X) = - 1.

THEOREM 5.3. Let λ be a partition of length < n. Then

μ/c(μ, X)SV,

where v and μ range over all partitions of length < 2n and μf ranges over

all partitions of length < 2n such that μ is an even partition*

Proof, By (2) of Theorem 5.1, we have, for any r > n,

I f r - ί + λ! f r - 2 + λ 2 . . f r - n + λ n f a i f a i . . . f a r - n \

2-1 , ! 2 T~γj '

where the sum is over all sequences (au a2, , α r _J of non-negative in-

tegers such that oci = r — n — i or r — n + i — 1 for all 1 < i < r — n.

Let E be the set of all sequences a = (α^ a2, , αr-w) of non-negative

integers such that at = 0 or 2ί — 1, for all 1 < i < r — τι. Then we have

== 2-ιαe^ {̂ i> 2̂> > Λ, aί9 a2, , ar-n}.

One may proceed in a fashion analogous to the case of the sym-

plectic group Sp(2ή) and obtain the equation
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Using Littlewood's formula ((1) of Lemma 5.1) and Proposition 3.1, we

obtain the desired result.

By the Frobenius reciprocity theorem, we have the following

PROPOSITION 5.2 (The restriction rule from GL2n+ί to SO(2n + 1)).

Let v be a partition of length < 2n + 1 and λ a partition of length

< n. Then

where μ ranges over all partitions of length < 2n + 1 and μr ranges over

all even partitions of length < 2n + 1.

Case 3, G = S0{2n). In this case the set of representations of G

obtained from the restriction of irreducible representations of O(2n) is

parametrized by the set of all partitions of length <C n. For a partition

λ of length < n and a partition μ, we define an integer κ(μ, X) e { — 1, 0, 1}

as follows:

Case (a), ί{μ) < n. In this case we set

1, if μ = λ ,

0, otherwise.

Case (b), £(μ) > 72. In this case we set e : = £(μ) — n. If μ has no

skew-hook of length 2e through the node (S(μ), 1), we set /c(μ, X) = 0. If

has a skew-hook h of length 2e through the node (£(μ), 1), we set

If κ(μ — h)> n, we repeat this process.

EXAMPLE. G = SO(6),

X X X X X

X X X X

/i = (5, 4, 3, 3, 3, 2) = ^ ^ ® and λ - (5, 4,1).

X ® (x)

® (X)

The Young diagram // has a skew-hook of length 6 through the node

(6, 1). Hence κ(μ, λ) = κ(μ\ λ), where

https://doi.org/10.1017/S0027763000001847 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001847


202

X

YASUO

X

X

X

X

X

(X)

TERANISHI

X

X

X

X

The Young diagram μ' has a skew-hook of length 4 through the node

(5, 1), and hence we have κ(μ'9 X) = — κ(λ, λ) = — 1. Thus κ(μ, X) = — 1.

THEOREM 5.4. Let λ be a partition of length < n. Then

where v and μ range over all partitions of length < 2n and μ ranges over

all partitions of length < 2n such that μ is an even partition.

Proof. By (3) of Theorem 5.1, for any r> n,

where the sum is over all sequences (au a2, ,arr_w) of non-negative in-

tegers such that oίi = r — n — i or r — n + ί, for all 1 < / < r — n, and

1, if at = r — 72 — ί,

— 1, if ^ί = r — 72 — i .

Then the rest of the proof goes in the same way as Theorem 5.2.

By the Frobenius reciprocity theorem, we obtain

PROPOSITION 5.3 (The restriction rule from GL2n to SO(2ή)).

Let v be a partition of length < 2n and λ a partition of length < n.

Then

where μ ranges over all partitions of length < 2n and μf ranges over all

even partitions of length < 2n.

For a pratition λ = (λu λ2, , λn) with λn > 0, consider the irreducible

representations (pi9 Vλ) and (ρx, Vλ) of SO(2τι), (see § 4). The following

result is obtained by the method similar to that used in the proof of

Theorem 5.1, (cf. [W-2], p. 229).
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PROPOSITION 5.4. If r> n, we have

(1) *(ft t ίhlίnΛr)) = \ {X(pSow(X) t ίLo2$n) U
Δ

(2) ΠPi f gfo)(r)) = - ί {%(psovn>(λ) ί

_ | r - 1 + i i , tr~2+λ% - - ',tr-n+i», tr-n-χ +

We set

UpSOί2nM) t fθ2(L)) = feίWwW t

Then we obtain the following theorem.

THEOREM 5.5. Let λ = (λu λ2, , λn), λn > 0, be a partition of length

n. Then

Ϊ(p8ow(λ) ί ίo\ίn)) = Σ ^ , , ' LRv

μ,μ,fc(μ, λ)sv ,

where v and μ range over all partitions of length < 2n and y! ranges over

all even partitions of length < 2n. Here the integer κ(μ, λ) is defined as

follows: If £(μ) < n, κ(μ, λ) is 1 or 0, according as μ = λ or μ Φ λ. If

ί(μ) > n, let e : = £(μ) — n, If μ has no skew-hook of length 2e through

the node (£(μ), 1), then tc(μ, X) is zero. If μ has a skew-hook of length 2e

through the node (S(μ), 1), then

The universal induced characters for the representations pλ and ρλ

are obtained from the equations below.

and

ΛVrA I S0(2n)/ — ~ LΛ\r'SΌ(2n)VΛ/ I

We give a version of the Frobenius reciprocity theorem.

Let G be a complex semi-simple subgroup of GLn and consider the

character function XG(p)(tu t2, , tr), r = rank of G, as a polynomial in
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ti, if1, , tr, tr1. Let R = C[tu tϊ1, - -, tr, t'1] be the Laurent polynomial

ring in the variables tu t2, , tr and R[zu

 Z2, *] the formal power series

ring of infinite independent variables zu z2, over R.

PROPOSITION 5.5. In the formal power series ring R[zuz2, •••], the

following formulas fold:

, U, , tr)X(p t %L»)(zu z2, •)

(* 4 GLn)(tu U, ,

Σ,

where p ranges over all equivalence classes of finite dimensional holomor-

phίc representations of G and λ ranges over all partitions of length < n.

Proof This follows from the Frobenius reciprocity theorem and the

orthogonal relation of irreducible characters.

Putting zn+1 = zn+2 = = 0 , consider the formal power series ring

R\zu z2, , zn~\ over the ring R.

PROPOSITION 5.6 (Littlewood's formulas, cf. [L] or [K-T], p. 486). In

the ring R\zu z2) , znj, the following formulas hold:

(1) V 1 %gg(2n)(flgg(2n)w)(^l> 2̂? * * ' > ^n)Sλ\Zu Z2, , Zn)

Π (1 Ut)

(2)
Π i

= Σx Sχ(l, tu . .

W»)(fco<wW)(ίι,

,<»,!

( i -

ff1,

• •) i

- ίi*,)

• , i

Qsώ

1

ι-Γ

"n >

;(^i, Z2, , 2ίπ)

)s (<2 z z

Zi, , ^ w )X"1

i ϊere Λ ranges over all partitions of length < n.

Proof. This follows from Proposition 5.5 and WeyΓs formulas (Theo-

rem 5.1).
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