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Introduction

The purpose of this paper is the study of some basic properties of
universal induced characters and their applications to the representation
theory of the classical groups (for the definition of a universal induced
character, see § 3).

The starting point was the paper [F] by E. Formanek on matrix in-
variants. In his paper [F], Formanek has investigated the Hilbert series
for the ring of matrix invariants from the point of view of the repre-
sentation theory of the general linear group and the symmetric group.
In this paper we shall study polynomial concomitants of a group from
the same point of view.

The induced character of a representation is very useful and funda-
mental tool in the representation theory. Let G be a subgroup of the
general linear group GL, over the complex number field C and p a finite
dimensional representation of G. We shall generalize the notion of the
induced character 2(o 1 %*) and introduce the universal induced character
X(o 1 §*»). The universal induced character is defined as an element of the
symmetric formal power series ring in infinitely many variables.

One of the most fundamental properties of induced representations
is the Frobenius reciprocity theorem. So our first object in section 3 is
to establish a result for universal induced characters analogous to the
Frobenius reciprocity theorem. This is done by Theorem 3.1 in this
paper. In the proof of Theorem 3.1, we use the classical Molien-Weyl
theorem, which gives an expression for the Hilbert series of a graded
module of polynomial concomitants as an integral over a maximal torus
of a compact Lie group.
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In our consideration, close relations with classical invariant theory
appear. For example, let V be an n-dimensional vector space and G a
subgroup of GL(V). Consider the diagonal action of G on the vector
space @V, the direct sum of countably infinitely many copies of V.
Then denoting by [|N the countably infinitely many copies of N, the
ring C[® V¢ of polynomial invariants is a [[ N-graded ring over C in a
canonical way and the Hilbert series

HC® VI, tiy ty, - ) = Zgery dime C[® VG e - - -,
with d=(dy, d, - )

of the [] N-graded ring C[® V]° is equal to the universal induced charac-
ter Z(1 1 ¢%) for the trivial representation 1 of G.
By using the (generalized) Frobenius reciprocity theorem (Theorem
3.1), we shall prove some basic properties of universal induced characters.
Let G be one of the classical groups of type B,, C, and D,

SO@n + 1) for type B,
G = {Sp(2n) for type C,
SO0(2n) fro type D, .

Roughly speaking the irreducible representations of G are paramet-
rized by the partitions of length < n. For a partition 2 of length < n,
let ps(2) denote the irreducible representation corresponding to 2. Under
the natural embedding G c GL, (v = 2n, if G = Sp(2n) or SO(2n), and

=2n 4 1, if G=8S0@n + 1)), we present a combinatorial expression
for the universal induced character X(os(2) T ).

Let o be an irreducible representation of the general linear group
GL, and consider the restriction p | % of the representation:

ol & = 2 mapg(d) .

H. Weyl ([W-2], Chap. VII) has calculated the multiplicities m,. Since
the irreducible representations of the classical groups are parametrized
by the partitions, the multiplicities m, should be calculated from parti-
tions only, R.C. King ([K-1], [K-2]) and K. Koike-I Terada [K-T] have
presented the algorithm to calculate the multiplicities m, from given
partitions. The expression for the universal induced character presents
the combinatorial algorithm to calculate the multiplicities.
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This paper is organized as follows. In rsection 1, we study poly-
nomial concomitants of a group G (G-equivariant polynomial mappings).
In section 2, we review some basic results on the representations of the
general linear group GL, and the symmetric group S, which we will use
later.

In section 3, we introduce the notion of a universal induced charac-
ter and study its fundamental properties. In section 4, we review the
results on the representations of the classical groups of type B,, C, and
D,, which we will use in section 5. In section 5, we study the universal
induced characters of the irreducible representations of the classical
groups, and prove the restriction rules for the classical groups.

This research has been done while the author was visiting The
University of Mannheim of West Germany. He wishes to express his
hearty thanks to Professor H. Popp for an enjoyable stay at The Uni-
versity of Mannheim.

§1. Concomitant

Let G be a linearly reductive group acting on finite dimensional
vector spaces V and W over a field k of characteristic zero. Let k[V, W]
(resp. kR(V, W)) denote the set of all polynomial (resp. rational) mappings
V — W. Then the group G acts on E[V, W] (resp. k(V, W)) as follows:
for fe k[V, W] (resp. (V, W) and ge G, g-f(x) = gf(g'x).

A polynomial (resp. rational) mapping f: V— W is called a poly-
nomial (resp. rational) concomitant of G if it is invariant under the
action of G on k[V, W] (resp. k(V, W)). Equivalently for all xe€ V and
ge@, gf(x) = f(g-x). We denote by k[V, W]¢ (resp. k(V, W)?) the k-linear
space of polynomial (resp. rational) concomitants of G.

Suppose V,, 1<i<r, be a family of finite dimensional k-vector
spaces on which G acts linearly. Then G acts on @, ;<. Vi, the direct
sum of V, by g(x, ---,x,)=(gx, -, 8x,), for geG and (x, ---,x,)
@rcicr Vi. If G acts linearly on a vector space W, a polynomial (resp.
rational) mapping f: ®icicr Vi — W is called a simultaneous polynomial
(resp. rational) concomitant if f satisfies

8(f(xs, -+, x,)) = f(g(xy, -+ -, %)),
for all ge G and (x,, -+ -, x,) € Picicr Vi
Let k[V] (resp. AZ(V)) be the ring of polynomial (resp. rational) func-
tions on V. We denote the ring (resp. field) of polynomial (resp. rational)
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invariants on V by k[V] (resp. A(V)%). Then A[V, W1¢ is a k[V]%module
by

(h-N(x) := Wx)f(x), for hek[V]® and fek[V, W]°.

Similarly k(V, W)¢ is a vector space over the field k(V)°. Moreover
k[V, W]¢ is a finitely generated k[V]¢-module and

R(V, W)¢ = k(V)¢-k[V, W]¢.

A fundamental theorem of Hochster and Roberts [H-R, Main Theorem]
says that the ring 2[V]¢ is a Cohen-Macaulay ring. A similar result for
k[V, W]¢ is also true if G is a finite group. For the sake of reader’s
convenience, we give a proof (cf. [S] 8.2 Theorem).

ProrositioN 1.1. If G is finite group, k[V, W]¢ is a Cohen-Macaulay
module over k[V]C.

Proof. Let (6, ---,0,) be a homogeneous system of parameters of
k[V]é. Since G is a finite group, k[V] is integral over the subring k[V]¢
and hence (4, ---,60,) is a homogeneous system of parameters of E[V].
Trivially, k[V, W] is a Cohen-Macaulay module over k[V]. Therefore
k[V, W] is a free module over the subring k[f,, - - -, 6,] of R[V] generated
by elements 6,, - - -, 6,, and hence k[V, W1/6.k[V, W] + --- + 6.k[V, W] is
a finite dimensional vector space over k. Consider the projection opera-
tor b := |G| > e 8 RV, W] — E[V, W]¢ Then § bives a decomposition

KLV, Wl = k[V, W@ M, M={feklV,W][f" =0}

as k[V]%module. We choose a basis (fi, -, fx) of the k-vector space
E[V, W1/6.E[V, W] + --- + 6,k[V, W] such that f,.--,f. is a basis for
E[V, WI°/0.E[V, W1° + .. + 6,k[V, W]® and fn,, ---, fx is a basis for
M6M + .- 4+ 6,M. Let f,---,f. be representatives in E[V, W]¢ for
fi, - -+, fm» respectively. This gives a decomposition

k[V, W1° = @rcicn [kl - -+, 0],
which completes the proof.
Let e, ---,e, be a basis for V and f;, ---,f. abasis for W. A poly-
nomial mapping u: V—> W,
(3o xsey) = 2 udx, -0, X
has degree d if all polynomials u(x,, ---, x,) are homogeneous polyno-
mials of degree d.

https://doi.org/10.1017/S0027763000001847 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001847

UNIVERSAL INDUCED CHARACTERS 177

For every d e N, let k[V, W]§ denote the k-vector space of polynomial
concomitants of degree d. Then the k-module k[V, W]¢ of polynomial
concomitants is an N-graded k-module

kLV, W]¢ = @uen KLV, WG .

Similarly, let (G, p;, V), 1< i< r, (G,7, W) be finite dimensional repre-
sentations of G. For each ie{l,2, ---,r}, let e(i), - - -, e(i),, be a basis of
Vi, (n; = dim, V;). A polynomial mapping u: @Picic, Vi —> W,

w2y 2(1)e()y, - -+, 20, %(r)e(r)) = 2o ux(d); |1 < i < 1 <j < dofs
has degree d = (d,, ---,d,) e N,, if for each ie{1,2,.-.,r}, all the poly-
nomials
u(x(i),;11 <j < ny)
are homogeneous with respect to the variables

x(i)l, DY x(i)nz
of degree d,.
For every d =(d,, ---,d,)eN", let k[@icicn V, WI§ be the k-vector

space of simultaneous polynomial concomitants of degree d. Then
R[@1cicr Vi, W19 is an N7-graded module:

k[@lm‘sr Vi; W]G = @dezvf k[@lsisr V,-, W]g .

In general, for an N’-graded k-module M, the associated Hilbert series
H(M, b, t =, ---,t,), is defined to be

H(M,t) = 3 zen- dim, - M2,
where
t¢= t‘lil oo tzf.

Hereafter, throughout this paper, we take the complex number field
C as the basic field k. If (G, p, V) and (G, 7, W) are finite dimensional
continuous complex representations of a compact group G with the
normalized Haar measure dg, then the Molien-Weyl formula gives an
expression for the Hilbert series H(C[V, W]¢, t) as an integral over the
group G:

6 5 — Tr (7(g)™! ST
H([V, W], t) = o et (L, — t(2)) dg (n=dim, V).
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Similarly for finite dimensional complex representations (G, p, V,), 1<
i<r and (G,7, W) of a compact group G, we obtain:

Proposirion 1.2 (Molien-Weyl formula).

dg,

. ¢ 5y — Tr (r(g)™")
H(C[®Drzizr Vi, WIS H) = L} H ;;;det (ln,‘— tipz(g)f

where
n,=dime V, for 1<i<r, and t=(,- --,¢t).

For a compact group G, let T be a maximal torus of G, dg the nor-
malized Haar-measure on 7 and W the Weyl group of G. Let {a}, a3, - - -
ay} be the set of roots of G with respect to T and set

dQ = [licien (1 — a;)dg .

Let G be a compact subgroup of GL(V) and (G, p, W) a finite dimensional
representation of G. Then by Weyl’s integration formula, we have

b

1 Tr (o(g)~")
H(C[®"V, W% 1) = — aq.
[(W]Je [[icicr det (1, — t,8)
ProposiTiON 1.3. Let G be a semi-simple linear algebraic group and
V a finite dimensional representation of G. Suppose that V is G-equivalent
as a G-module to its dual space V*. Then for any r>1 and d =
(dh "‘,d,)GNT,

dime C[@" V, V1§ = dime C[D* V] ,

Proof. By Weyl’s unitarian trick we may assume that G is a com-
pact group. Let p denote the representation of G on V. Since V= V*
as G-modules, Tr (o(g)) = Tr (o(g)~"). Notice that

det(1, —tx)'=1+Tr(x)t + ---,

for any n by n matrix X and a variable ¢. Then using the Molien-Weyl
formula, we obtain the desired result.
As an application of the proposition above, we prove the following

ProposiTiON 1.4. Let G be a semi-simple connected linear algebraic
group and Lie (G) its Lie algebra on which G acts as the adjoint repre-
sentation. Let (,) denote the Killing form on Lie (G) X Lie (G). For x =
(xp, « 0 Xy, X,,0) € DT Lie (G), set ¥ = (xy, -+, x,) and ¥ = x,,,. Then for
any d € N', the C-linear map
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T: C[@" Lie (G), Lie (@®)]§ — C[@ " Lie ()14, ,
defined by
T(f)x) = (f(x), "), feC[D"Lie(Q), Lie (G)]§ and xe @' Lie(G)

is an isomorphism between C-vector spaces C[@" Lie (G), Lie (G))§ and
Cl@*! Lie (]S, 1.

Proof. Since G is semi-simple, the Killing form (,) is G-invariant
non-degenerate bilinear form and hence the map 7T is well-defined and
injective. By the previous proposition, T is surjective.

Using the same method as in the proof of 4.3 Theorem [T], we obtain

ProrosiTioN 1.5. Let G be a semi-simple connected linear algebraic
group. Then for any r> 3, the Hilbert series R(t) for C[@®" Lie (G),
Lie (G)]¢ satisfies the functional equation

RE, -, 67) = (= Dt - L) R(ty -+, 1,),
where
d=(r—1)dmdG.
§2. Representations of the general linear grcoups and symmetric
groups

In this section we review definitions, notations and some results on
the representations of the general groups and symmetric groups. We use
the terminology of Macdonald [M] although we occasionally modify it.

A finite or infinite sequence

1= (217 227 "’)

of nonnegative integers in decreasing order 14, > 4, > --- and containing
only finitely many nonzero terms is called a partition. For a partition
2, the associated Young diagram (denoted also by A) is the set of points

{GDijez 1<i, 1<j<}eZ’.

If (i,j) € Z* is contained in a Young diagram A, then (i,j) is called a
node of A. The i-th row (resp. column) of a Young diagram 2 consists of
nodes whose first (resp. second) coordinates are i. For example if 2 =
(4, 3, 2, 1), the associated Young diagram is
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X X
X

>

I
X X X X
X X X

For a partition 1, the number of nonzero terms in 2 is called the
length of 2 and will be denoted by #¢(2). The size of 1 is defined to be
the sum of all terms in 2 and will be denoted by |2]:

=242+ -

We denote by ‘2 the conjugate of a partition A.

Consider the graded ring Z[t, - - -, t,] of polynomials in n indetermi-
nates ¢, - - -, t, with integer coefficients and let 4, denote the graded ring
of symmetric polynomials in n variables:

An = Z[th ) tn]S'L?

where S, denotes the symmetric group on n letters which acts on
Z[t, ---,t,] by permuting the variables.
For each d = (d,, - - -, d,) € N* define

td___t'lil...tgn,

and for each partition 1 of length < n, the monomial symmetric poly-
nomial m, is defined by

ml——‘ztg,

where the sum is over all distinct permutations d of 1, ---,1,. Then
the monomial symmetric polynomials m’s form a Z-basis of 4,. Let x,,,:
A, — 4, (m> n) be the homomorphism of graded rings defined by z,,,(t,)
=t if 1<i<n and 7,.() =0 if n <i. Then the (4,, r,,,) satisfy a
compatibility condition of a projective system. We denote the projective
limit of this system in the category of graded rings by 4, so that 4 =
lim 4,. We call this projective limit the ring of symmetric functions in
infinitely many variables.
For any partition 2 of length < n, setting

a, = al(tl’ Y tn)

= Zaes,, (sign U)tﬁl(l) R 7

the Schur polynomial s, = s,(¢;, - - -, t,) is defined by
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8 = y44Qs ,

where
o=(n—-1,n—-2,---,1,0).

Then the Schur polynomials s, corresponding to the partitions of length
<n form a Z-basis for A, Since s, ---,t,)=0 if 4(1)) > n and
Tmn(Sslty, ~++, t) = 86, - -+, ty), if m>n, s(t, -+, t,), neN, form a pro-
jective system and hence we may define a symmetric functions s; in in-
finitely many variables. The canonical projections rx,: 4 — A4, carry s,
to s;(t, - -+, t,). The symmetric function s, is called the Schur function
corresponding to A. The set {s;|1 a partition} forms a Z-linear basis for
A. Hence for two partitions 2 and g, s;s, is a Z-linear combination of
Schur functions:

88, = 2, LR;s, , LR, eZ

The coefficients LRj;, are called the Littlewood-Richardson coefficients.
The Littlewood-Richardson rule gives a combinatorial description
for computing LRj;,. Similarly for partitions 4, ---, 4,, the (general)
Littlewood-Richardson coefficients LR} ..., are defined by

r

2
Sy 0t 8y = Za, LRzl,---,zrsz ,

1

where the sum is over all partitions 2. If r = 1, we employ the conven-
tion

1 if A=y,

LR; = .
0 otherwise .

We denote by Mod (GL,) the Grothendieck ring of finite dimensional
polynomial GL,-modules. For each finite dimensional GL-module M, let
X(M) = (M), ---,t,) denote its GL,-character. Then 2(M) is a sym-
metric polynomial in ¢, ---, ¢, and M is irreducible if and only if X(M) =
sty - -+, t,) for some partition 2 of length < n. Thus the map M — (M)
induces a ring isomorphism between Mod (GL,) and 4,.

The equivalence classes of finite dimensional irreducible polynomial
GL,-modules correspond to bijectively to the partitions of length < n.
Hence hereafter, if M is a finite dimensional irreducible GL,-module cor-
responding to a partition 1 of length < n, we shall write it by the same
symbol 2.
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Let Mod (S,) denote the Grothendieck ring of finite dimensional S,-
modules. For each finite dimensional S,-module [M], consider ch [M],
where ch stands for the characteristic map (see [M], p. 82). Then ch [M]
is a symmetric polynomial of degree n and M is irreducible if and only
if ch [M] = s,, the Schur function associated with a partition of size n.
Hence the map [M] — ch [M] induces a bijective correspondence between
the isomorphism classes of finite dimensional irreducible S,-module and
the partitions of size n. So, if [M] is a finite dimensional irreducible S,-
module corresponding to a partitions 2 of size n, we shall write it by [].

For two finite dimensional S-modules [M] and [N], consider the di-
agonal action of S, on the tensor product [M] ® [N]. The map

Mod (S,) ® Mod (S,) —> Mod (S,)

induced by this action of S, is called the inner product. Let A* be the
degree n part of 4 and define the inner product on it by

ch ((M] ® [N]) = ch [M] x ch [N].
In particular if 2 and u are partitions of size n, we have
si%8, = ch([A1® [¢]).
Similarly, for partitions 4, ---, 4, of size n, we define s; * - -- % ;, by
sux k8, =ch(A]® - ®1)).

For a partition A of size n, we denote by X* the associated irreduci-
ble character of S,. The following proposition was proved by I. Schur
[(S], p. 68) for r = 2 and his proof works as well for general case. For
reader’s convenience, the proof is here included.

ProrosiTiON 2.1. Consider r, r > 2, infinite sequences of independent

variables:
x=(x1,xz, ),y =, Ve ced)y e, 2=10(2,2, ")
and take an infinite sequence t = (¢, t,, - - -) of independent variables. Then
Magernomens (U — Xy, -+ 2,) "
=2 (18, % -+ x8)Dsi(x)s,(¥) - -+ 8.2,
where the sum is over all partitions 2, y, - - -, v with || = |pg| =, -+, = |

Proof. We set R = [[ij,....tsmens (1 — %5, - -+ Zetn)”". Then clearly R
is a symmetric function in x,y, ---,2z and ¢{. Hence R has the form
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R= 3. 5. .8(2)8(y) - -+ 8(2)s,(f) with f5..eZ.
On the other hand, one has

R = Zn,:g,... 1 ( sl(x)sl(y) ot 31(2)31(t) )‘1

Kl!kz!"' 1

82()8o(y) - - - 8(2)se(B) \* .
X( 2 ) ’

where k,, k,, are over all nonnegative integers, and s;, i€ N,, stand for
the power sums of the variables:

syx) 1= + x4 -
Recall the Frobenius character formula for the symmetric group:
S;I(t)s;g(t) rer = Z:Z X‘(Icly Kgy * ')sl(t) ’

where (&, £, - - -) 1s a permutation with cycle length &, &, - - -, X¥(ky, £, - - +)
stands for the value of the character of the symmetric group correspond-
ing to a partition 2, evaluated on (ky, k,, - - -) and the sum is over all parti-
tions of size k, + K, + - - -.

Using the Frobenius character formula, we get

R = Zl‘lam,“' '-'_—1'———_ ZZ,#,'--,v Xl(xl’ Koy ')XF('CH Koy * * ) Tt
IR I
X 25,1 -+ Jsi@s,(0) - 5.2 (H2)(#0)7

Since for each partition «,

50 = T 1) (SOY(8O)

P 7 B 1 2

we obtain

Xl(lfu Egy - ')x’"("l, Koy * ¢ ) c x”("’u Koy *+ * ) = Za f;,,,,,,,X”(lcl, Koy * ) )

which completes the proof.

Let M be a finite dimensional irreducible polynomial GL,-module
corresponding to a partition 2 of size r and consider the sub-vector
space [M] of M defined by

feM and D(tl’ ] tr) =f(tl e tr)f’
[M] := {f |for all diagonal matrices D(¢, ---,t,)

whose main diagonal entries are ¢, - -, ¢,
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Then identifying the symmetric group S, with the permutation matrices
in GL,, [M] is an S,-module. The following proposition will be used
later:

Proposirion 2.2 ([G], §6). With notation as above, [M] is a finite
dimensional irreducible S,-module corresponding to the partition A.

We can regard a non-negative integer k as a partition of length 1
(denoted by (k)). For two partitions 2= (A, 4, ---) and g = (u, t, - - +),
let K; , denote the number of Young tableaux of shape 4 and weight px.
Then it follows easily from the Littlewood-Richardson rule that LR}, .....
=K, .

§3. Universal induced characters

Let D(r) denote the subgroup of GL, consisting of diagonal matrices

and let D(t, ---,t,) denote the diagonal matrix whose main diagonal
entries are ¢, ---,t,. Let M be an Nr'-graded polynomial GL,-module
over C and suppose that, for each d =(d,, ---,d,) e N", the C-vector

space M, is finite dimensional and is given by

D@y, -, t)f=t8 . t2f, f 1
M4={feMl( f =t i ora}_

D(t,, -+, t,) e D(r)

Then, for each d € N, the C-vector space M, spanned by all homogeneous
elements of total degree d is a finite dimensional GL-representation space
and its character X(M,) is equal to > dim, M,t%, where the sum is over
ald=(d, - --,d)eN" with |d|=d and #¢ =t ... t&.

The character X(M) of M is defined to be

X(M) = ZdeN X(Md)
= D genr dimg Mt
= H(M,?t).

The character of M is an element of the ring of formal power series
ZTt, -+, t,] and equal to the Hilbert series of M.

Let V be an n-dimensional complex vector space, G a linearly reduc-
tive subgroup of GL, (= GL(V)) and (G, p, W) a finite dimensional com-
plex representation of G on a vector space W. From now on, for each
reN, we denote by p1§* the C vector space C[®" V, W]¢ of simulta-
neous polynomial concomitants f: V@ --- @ V(r copies of V) — W.
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We have seen that p1§*~(r) is an N7-graded, GL,-module and the
character of it is equal to the Hilbert series of p 1 §**(r). It is clear that
X(p 1 §¥(r)) is a symmetric function in ¢, -- -, ¢,.

Let ¢, - -+, ¢, be commuting indeterminates and consider the ring of
formal power series Z[t, ---,t.] with Z-coefficients. Let 4, denote the
subring of Z[t, ---,t,] of symmetric functions in ¢, ---,¢,. 4, is an N’-
graded ring whose grading is inherited from Z[4, ---,¢,]. Suppose that
r>s. Then

"ot = {t” L=rss
0, s+1<ir

defines a degree preserving surjection
Tpet Ay —> A .

The system {4,, r € N} satisfies the compatibility condition of a pro-
jective system in the category of commutative rings. We set

4= 1_1_11.1 Ar ’
and call it the ring of symmetric formal power series in infinitely many
variables ¢, ¢, - - -.
If r > s, then

(o 1 Gy - -5 t) = Mo T E ()t - -+, 8 s

and hence there is a well-defined element Z(p 1 ¢*") of A such that the
canonical projection r,: 4 — A, carry X(p 1 §*) to X(p 1 §*(r)) for all re N.
We call X(p 1 §*) the universal induced character of the representation
(G, p, W). Notice that p 1 4 (n) is the (usual) induced representation of
(G, p, W) and X(p 1 §*»(n)) is the induced character.

Since the Schur functions are Z-linear basis of /4, there are integers
¢, such that

Yot &) = 2. a8,
where 1 varies over all partitions. For each 1, the integer c; is called
the multiplicity of 2 in X(p 1 §*») and will be denoted by m(p 1 §~, 7). For
a partition 2 with 4(1) < n, let 11 ¢~ denote the restriction of the irre-
ducible representation of GL, corresponding to 2.
3.1. The Frobenius reciprocity theorem

In this section, we prove the following
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TaeEOREM 3.1 (The Frobenius reciprocity theorem for the universal
induced characters). Let (G, p, W) be a finite dimensional irreducible rep-
resentation of a compact subgroup G of GL,. Then, for each partition 2,

m@|ép), iftAD<n,
0, otherwise ,

m(o 1§, 1) = {

where m(2 |, §*, o) denotes the multiplicity of p in 2] §*. In other words,

x(p T gLn) = Zl rn’('2 gLn’ ‘0)33 ’
where the sum is over all partitions of length < n.

Proof. Let x = (x,, %5, --+) and y = (¥, ¥, - - -) be two finite or infi-
nite sequences of independent variables. Then, by Cauchy’s formula,

l—['l,j - xtyj)_l = D usix)si(y),

where the sum is over all partitions. Let T be a maximal torus of G.
Then we may assume that T has of the form

T= {(ualy ) uan) € D(n)} ’
where
ut =gt .- &, with (ails Tty a’ir) eZ ’

r =rank of G, for 1 <i < n.
Let r be a non-negative integer and set

4, 1<j<r

ut, 1<i<n
X; = .
0, r<j.

0, n<i and ;= {
Then we obtain

Mo, —wit) =2 s 1< i< n)sidy, -+, t,).
On the other hand,

X(l l« gL")(Eh Tty En) ) 1f Z(X) é n

sx(uzlglén)={0, if £2) > n

and, if 4(2) < n,

1

,W,L 22| M u(o(8))'d 2 = m(2 | §, o).

Hence, by the Molien-Weyl formula, we have

https://doi.org/10.1017/50027763000001847 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001847

UNIVERSAL INDUCED CHARACTERS 187

ooy 1 Tr (o(g))*
1o 1 & (r)) [W| Jr [licicr det (1, — 8t) a4

- 1 [ Tr (p(g))™ do
|Wy Jr ﬁlsi;n - u‘“h)
1<j<r
= Z‘(R)Sn rn’('2 ‘l‘ (G}Ln, (o)sl(tla ) tr) ’

which completes the proof.

If r = n, the theorem above gives the usual Frobenius reciprocity
theorem for the induced representation of (G, p, W) in GL,. By Weyl’s
unitarian trick, the theorem is true for complex semi-simple groups. The
following proposition follows from Theorem 3.1.

ProrosiTioN 3.1. Let (G, p, W) be a finite dimensional irreducible
representation of a compact subgroup G of GL..

(1) The multiplicity m(p 1 §*~(r), 2) of an irreducible representation 2
of GL(r) in p 1 §*(r) does not depend on r.

(2) The irreducible decomposition of p 1 §*(r) contains no irreducible
components corresponding to partitions of length > n.

3.2. Basic properties of universal induced characters

In this section, we will prove some properties of universal induced
characters. We use the notation GL(n) instead of GL,.

ProposiTiON 3.2.
(1) Let 2 be a partition of length < n. Then

U2t EER) = s
(2) Let HcC G be compact subgroups of GL(n). Let (H, p) be a finite
dimensional irreducible representation of H. Then

Wt ™) =1p 1D 1),

where p 1§ denotes the (usual) induced representation.

Proof. (1) By the Frobenius reciprocity and Weyl’s unitary restric-
tion, we have

XA TEER) = D M1 EEE, 18,
= Zz(#)Sn m([l l gf%, Z)S#

= 8;.

(2) By the Frobenius reciprocity,
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Yot #™) = 2iw<a MQA | F®, p)s;
and

where the sum is over all equivalence classes of irreducible representa-
tions 7 of G and m(r | &, p) denotes the multiplicity of p in 7 | % By (1),
we have

W1 81 E®) = 2arm(r | & o)m(2] &, 7)s; .
Since
mA | G, p) = 2 m(r | & m(2 ] G*™.T),
we obtain the desired result.

Proposition 3.3. Let Gy, ---, G, be compact subgroups of GL(n,), - - -,
GL(n,), respectively. We consider the product group G, X --- X G, as a
subgroup of GL(n, + --- + n,) by

A‘. 0
(Ab"',Ar)—) ‘ s AieGi, lgiér.
0 A,
Let p,, -+, p, be finite dimensional representations of G, ---, G,, respec-

tively. Then
Wor ® -+ - ®p, T E5MEE™) = Aoy T EX™) - - X(p 1 GF) .
Proof. For me N, we apply the Molien-Weyl formula. Then

Tr (0(g)™)
@ [licjemdet (1,, — gtj)

dﬂz ’

= nlsisr

where dpy, is the normalized Haar measure on G,
= [licicr Xo: T G2 M), -+ -, tn) s
which completes the proof.

ProposITION 3.4. We consider the product group GL(n) X --- X
GL(n,) as a subgroup of GL(n, + --- + n,). let 1, ---,1, be partitions
with 4(A) < ny, -+ -, 4(A,) < n,, respectively. Then
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X(Z, - 2r T g’i%))'x +><GL(n-r)) =8 " 5, = Zx LRxl, iy S

Proof. This follows from the previous two propositions.
Let 2 be a partition of length < >, ;c, n;. Then by the Frobenius
reciprocity theorem, we obtain

rn('2 lo gf%ﬁi;i"+>%)l‘(nf) ’ /21 ® trt ® '27) = LR;I ,,,,, Ar s
and hence
A l gligﬂfx xaum) = Zzu- LRh eoydr LAQ& - ® 4, ’

where the sum is over all partitions 4, ---,4, with 4(1,) < n, ---, 4(4,)
< n,, respectively.

In particular, putting n, = n, = --- = n, = 1, we obtain a well known
formula:

= Z# Klv#m

Consider the representation GL(n,) X --- X GL{(n,) = GL(n, - - - n,) de-
fined by (4,, ---,A,) > AR ---®A, A eGLn;), 1<i<r. Then we
can consider

V(nl ct nr) = V(n1)® ce ® V(nr)>
Vin) :=C™, 1<i<r
as a GL(n,) X --- X GL(n,)-module.
ProposiTiON 3.5. Let 2, ---,2, be partitions of length < n,, -+ -, iy,

respectively and consider the representation (GL(n,) X --- X GL(n,), 4 ®
- ®1,). Then

(Zl ® 2 T GL(’IL])X XGL(nr))
_ [Suxsyx e xs,, if |4]= - =1|2],
0, otherwise .

Proof. This follows from Proposition 2.2 and the Molien-Weyl for-
mula.

Let (G, p, W) be a finite dimensional representation of a linearly re-
ductive subgroup G of GL(V), dimg V = n. Recall that p 1 3*™(r), re N,
is an N-graded module. We denote by [p 1 2*™(r)] the subspace with degree
1, ---,1) e N, that is,

lo 1 &*(r)] = Homg (V®, W).
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The symmetric group S, acts on V®™ by permuting positions:
0'(v1 - ® Ur) = Us-1(1 K- Us—1(ry -
On the other hnad, G acts on V®' by

E® - - ®v)=(gu)® --- ®(gv,).

Since these two actions of S, and G on V®™ commute each other,
o1 8™(r) is an S,-module. Let 2 be a partition with |1] = r and denote
by m([p 1 & (r)], [2]) the multiplicity of [2] in [p 1 §*™(r)].

THEOREM 3.2. Let G be a linearly reductive subgroup of GL(n) and p
a finite dimensional representation of G. For a positive integer r, let 2
be a partition with || = r. Then, m(p 1 §*™(r), 2) = m([p 1 §*™(r)], [A]).

Proof. This follows from Proposition 2.2.
We introduce a multiplication ® on 4 by

S, %8,, if (2] =
s;®8”={z u 2] [ ]

0, otherwise .

ProrositioN 3.6. Let Gy, Gy, - - -, G, be compact subgroups of GL(n,),
GL(ny), - - -, GL(n,), respectively. We consider the group G, X G, X --- X G,
as a subgroup of GL(nn, --- n,):

(A, 4, -, A)— A QAR - ® A,
with A,eG,, 1<i<r.

Let py, 0, - -+, pr be finite dimensional rational representations of G,
G, - -+, G,, respectively. Then

Wi @ p, @ -+ @ p, 1 Gl )
= X(o, 1 ™) @0 1 GE™)® - - - ®X(p, T EF™) .

Proof. This follows from Proposition 3.5.
Consider the adjoint representation Ad: SL(n) — GL(n*) of SL(n). It
follows from Proposition 2.1, that

Mese @ = ee7't) ™ = 20, (5.®8.)(D)s,()s.(c7Y

for infinite variables ¢ = (¢, &, -+ -), € = (&, &, - *)-
By the Molien-Weyl formula, we obtain:

TueoreM 3.5. Let 2 be a partition of length < n. Then
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XA GG = 2w Lisu % 8.)

where the sum is over all partitions p and v of length < n. In particular
we have

(11 gf%)) = D uwy<a S2 % Sy,

Let C[@®™ M, (C)]¢*™ be the ring of matrix invariants by the simul-
taneous adjoint action of GL(n) on the vector space of r n X n complex
matrices @” M,(C). Since

11 W) = ClP M (C)]5 ™,
we obtain a result of E. Formanek:

TueoreM 3.6 (E. Formanek [F], Theorem 17). The Hilbert series of
Cl@®" M (C)]?*™ is equal to

Z Sx(tls Tty tr) * sl(tb Y tr) ’
where the sum is over all partitions of length < n.

By Theorem 3.5, and Theorem 3.2, we have
L&M= ®f§f)=srn (AI® D).
On the other hand,

[11$262(N] = (R M (C))F*™
= the C-vector space of multi-linear

matrix invariants of degree r.

We denote by I(2) the minimal two-sided ideal of the group ring
C[S,] corresponding to a partition 2 of size r. Moreover we put

I(n,r) = @{IQ) [|2] = r, 42) < n}.

Then, as is well known, as S,-modules, I(1) = [1] ® [1]]. Hence we obtain
a fundamental result on matrix invariants due to Procesi-Razymslov:

THEOREM 3.7 (Procesi [P] Theorem 4.3. Razmyslov [R] p. 755).
(®" M (C)¢*™ = I(n,r), as S,-modules .

In particular, if r=n, we obtain Schur’s commutator theorem
Ends oy (V®*) = C[S,], where V = C", because I(n,n) = C[S,] and
EndGL(n) (V8" = (Q" M,(C))F*™.
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§4. Representations of the symplectic group and the orthogonal

group

In this section we shall review some fundamental results on finite
dimensional irreducible representations of classical groups Sp(2n),
SO(2n + 1) and SO(2n). For details see [W-2].

In general let G be a connected semi-simple complex Lie group, K
a maximal compact subgroup of G and

T= {(51’ ""er)l(eh "'aer)ecr,leil = 1} r = rank of T,

a maximal torus of K. For each i, 1 <i<r, let ¢, denote the map ¢:
T—C, tfe, - +,&) =¢&. Let Mod{(G) denote the Grothendick ring of
finite dimensional holomorphic representations of G. By the Cartan-Weyl
theory, Mod (G) is determined by the domainant integral weights.

Case 1, G = Sp(2n). The symplectic group Sp(2n) consists of all linear
transformations leaving invariant the non-degenerate skew-symmetric
bilinear form

[x, 5] = (031 — 21y) + -+« + (%297 — %1.Y2)
for
x=(x\>"'sxmx(s"'sx;) and y::'(yhvymy(s’y:t)
We take as 7T the set of all diagonal matrices
(Q,"'yemsl_l}"',s;l) Wlth 15t1=1’ 1Si—<_n°

If M is a finite dimensional irreducible Sp(2n)-module, the associated
dominant integral weight has the form o = At 4+ + Auln, A= @y, -+ -,
2,) is a partition. Therefore the equivalence classes of finite dimensional
irreducible Sp(2n)-modules correspond bijectively to the set of all parti-
tions of length <n. If M is a finite dimensional irreducible Sp(2n)-

module corresponding to a partition 1 of length < n, we shall write it by
PSp(Zn)O)-

Case 2, G = SO@2n + 1). The orthogonal group SO(2n + 1) consists
of all special linear transformations leaving invariant the non-degenerate
symmetric bilinear form

(% 3) = %) + (Xuy1 + ®y) + -+ A+ (XD + X0

for

/ 7/
X=X, %1, + 5 Xy %4, -, %) ADAd Yy = (Yo, Yi» " > Y V1> " *» V) -
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We take as T the set of all diagonal matrices
Qe -y emer, -, with |g|=1, 1<i<n.

If M is a finite dimensional irreducible SO(2n + 1)-module, the associated
dominant integral weight has the form

Mty 4+ oo+ A, W22 220 =22,20
with 2, ---,2,€Z.
Therefore the equivalence classes of finite dimensional irreducible
SO(@2n + 1)-modules correspond bijectively to the set of all partitions 2
of length<n. If M is a finite dimensional irreducible SO(2n + 1)-
module corresponding to a partition 1 of length < n, we shall write it by
Ps0(zn+1)(2)o

Case 3, G = SO(2n). The orthogonal group SO(2n) consists of all
special linear transformations leaving invariant the non-degenerate sym-
metric bilinear form

(%, ) = (ay1 + xy) + -+ 4 (®Yn + X))
for
=2 <y g Xy, o0, %) @nd Yy =y 0, Y I Ya) -
Take as T the set of all diagonal matrices
(er, s mer’, o, with | =1, 1<i<n.

If M is a finite dimensional irreducible SO(2n)-module, the associated
dominant weight has the form

thl+"'+2ntn’ 212222"'21:—12[27&' With {11,“',2,‘}62.

In this case, 1, can be negative and irreducible SO(2n)-modules corre-
spond bijectively to the sequences 2= (4, ---, 4,) of integers satisfying
the condition

2&2222 _>_2n—12|2n|

For such a sequence A, we denote by (p;, V;) the corresponding irreduci-
ble representation of SO(2n) and by (4, V) the representation of SO(2n)
on V, defined by g, = p;-w, with o = the involutive outer automorphism
of SO(2n).
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For a partition 2 of length < n, define the representation gy (2) of
S0(2n) by

O lf2n=0,

w(2) =
osoan() {,ox@pz i£2,>0.

Then psoeq(4) is the representation obtained by an irreducible representa-
tion of the orthogonal group O(2n).

§5. The universal induced characters for the classical groups

Let G be a classical group of type B,, C, or D,. For a partition 1
of length < n, let pg(2) be the representation of G defined in the previous
section. H. Weyl calculated the universal induced character for p4(1) in
1926. More recently D.E. Littlewood, R.C. King and K. Koike-I. Terada
had shown the restriction formula for (x| ), v = 2n if G = Sp(2n) or
S0@n) v=2n+ 1 if G = SO@n + 1). In this section we shall rewrite
Weyl’s formula for the universal induced character and obtain an ex-
pression for the universal induced character as an infinite linear combi-
nation of Schur functions. By the Frobenius reciprocity theorem, this
gives the restriction formula (see [K-1]).

Now we refer to the following theorem.

TueoreM 5.1 (H. Weyl [W-1]). Let 2 be a partition of length < n and
r (> n) an integer. Then we have

1) Xospen(D) T §58,(T))
_ Itr-1+11, tr—2+12, cee tr—n-&-zn, tr—n—l, tr-n-? + tr—n, S 1 + tz('r—-n-—l)
nlsiSjsr (1 - titj)ltr-l> tr—2, Tty t; ll
(@) XPsoensn(A) 1 §6%5in(r))
_ Itr—1+11, tr-2+lz, el tr-n+1,,’ tr-'n-! + tr—n, cee 1 + tZ(r—n)—l

[Ticicizr a- tztj)ltr_ly AR A
(3) Xosoan () 1 §6%8,(T))

]tr-—l+11 tr—2+12 Ve tr—n-l-l,, tr—n—-l _ t’r—n+1 cee 1 — t2(r—n)l
—_— b 2 2 b »

nlsisjg'r (1 - titj)ltr_l, t’r—Z’ Tty t’ 1]

Here in general, for given polynomials fi(¥), - - -, f.(®), |/i(®), /@), - - -,
[-(®)| stands for the polynomial in r variables ¢, %, - - -, ¢, defined by

LA@), f(D), -~ -, O] = ZVGSr sgn (U)fau)(tl)fa(Z)(tz) o fon(t)
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The following identities are called Littlewood’s identities. For the
proof, see [M, p. 45].

LEMmMmA 5.1. We have the following identities in the ring of symmetric
functions in infinitely many variables ¢, t,, - - -

@ s = I—IiSj 1-— titj)‘l s
where the sum is over all even partitions 2.

2 > s = Hi<j 1 - titj)_ly

where the sum is over all partitions A such that ‘1 are even partitions.

For a Young diagram p, we mean by a skew-hook & of g a con-
nected part of the rim of g which can be removed to leave a Young
diagram. Let A be a skew-hook of a Young diagram p and remove A
out of . Then we denote by x — A the resulting Young diagram. The
skew-hook length of & is defined as the number of nodes in 2 and the
leg length w(h) of A is defined by

o(h) = max {j | G, j) e h} — min {j | G, j) e h}.
For a sequence (f,, f;, -+ -, f,) of r integers, we set

{flafZ’ s '9fr} = ‘t‘la th, ) tlrl 3
where 4, = f, +r — i, for 1 <i<r. Then we obtain easily the rule:

(*) {"'9fk’fk+1, }= —{"',fk-n - 1,fk+ 1, }'

In particular if f,,; = f, + 1 for some &, then {f,,f,, ---,f;} = 0.
We begin with a combinatorial

LemMma 5.2. Letf= (f,f: -+, [:) be a sequence of non-negative integers
and f(B) = (fi,fo, -+, f), B<r, a subsequence of f. Suppose that f(k) is
a partition (G.e. fi>f> - > fo).

(1) If there is a partition g = (g, &, - - -, &x+1) Of length k + 1 satis-
fyving the following two conditions (a) and (b):

(a) g has a skew-hook h of skew-length f, ., through the node (k+1,1),

() f(k) =g — h, then

{fla fZ’ o "fr} = (_l)m("){gl’ 82 * 5 k1 flo+2’ o 'sf'r} .

(2) If there is no partition g of length k + 1 satisfying the two con-
ditions (a) and (b), then

{fl}fZ, o ',fr} =0.
Proof. By the rule (x), we obtain, for any 1 < j <k,
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(**) {ﬂ,"',fk9fk+l,""fr}
= (_ l)j{fhf% o ”fk-—jafku —j’fk—j+l + 1, v ',fk + 1,fk+2, . ',fr}-

The conditions (a) and (b) mean that the sequence
(fn ce '!fk—m(h), fk+1 - a)(h), fk—w(h)+l + 1, 7flc + 1)

is a partition and equal to g = (g, &, * -+, €x+1)- Then (1) follows from
The assumption of (2) means that
fomn —Ji=fe-y+ 1, for some j < k.
But then again by (x) and (%), we obtain {f,,f,, -+, f,} = 0.
ExamMPLE. f= (4,2,2,5) and f(8) = (4, 2,2). In this case

X

X
=(4,3,8,3) =
g=( ) %

&
has a skew-hook % of length 5 through the node (4,1). Therefore {4, 2,
2,5} =1{4,3,3,3}
We now describe the universal induced character for the representa-
tion pg(2) of each classical group G.

X

® X X X
PR X

«— skew-hook of length 5

Case 1, G = Sp(2n). In this case the set of irreducible representa-
tions of G is parametrized by the set of all partitions of length < n. For
a partition 2 of length < n and a partition g, we define an integer x(y, 1)
e{—1,0,1} as follows: we divide into two cases,

Case (a), ¢(p) < n + 1.

1, if p=2,
0, otherwise .

K(p, 2) 1= {

Case (b), 4(p) > n + 1.

In this case we set e := ¢(y) — n — 1. If 4 has no skew-hook of length
2e through the node (4(p), 1), (g, 2) is defined to be zero. If y has a skew-
hook h of length 2e through the node (4(y), 1), we set

k(p, A) 1= (— 1)*®x(p — h, 2) .

If ¢4(p — h) > n + 1, we continue this process.
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ExampPLE. G = Sp(8),

X
’ 2=(3>3,2)=X
X

X X

r=0@3222222=

® X X X X X X X
MR®R®®RQY X X X
X X X

There is a skew-hook of length 6 through the node (8,1), and hence
Ky, ) = x((3,3,2,1,1,1,1), ). The Young diagram

X

X
#=321111)=QR
®
®
®

has a skew-hook of length 4 through the node (7,1), and hence &(¢/, %)
= — 1. Thus (g, 2) = — 1L

THEOREM 5.2. Let 1 be a partition of length < n. Then
X(pSp(Zn)(z) gf{(’zﬂn) = Zv.y,p’ LR;,,M’ Ic(ﬂ’ Z)’gu ’

where v and p range over all partitions of length < 2n and ' ranges over
all partitions of length < 2n such that ‘Y is an even partition (i.e., with
all parts of even numbers).

Proof. By (1) of Theorem 5.1, we have, for any r > n,

(%) [Ticicicr 1 — tttj)x(pSp(zn)(Z) 1t §oimy(r)

_ |t1-1+11’ tr-2+1a’ ceey tr—n+1,.’ tr-n-l’ t“‘, taq, el ta,—-,...;!
ltr—l’ t'"z, ceet, 1| ’
where the sum is over all sequences (ay, s, - -+, @,_,_;) of non negative
integers such that ey =r—n—i—1orr—n+i—1for all 1<i<

r—n—1
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Let E be the set of all sequences @ = (a,, a5, - -+, @r_,.;) of non-negative
integers such that a, =0 or 2i for all 1<i<r—n—1. Then we can
rewrite (x) as follows:

[Ticicicn 1 — titj)x(pSp(hz)(z) L7 00) ] A AR
= ZaeE {21) 229 ) 2, 09 Qy, Qgy * - 0, ar—n—l} .

Let g = (s, pos -+, 1), r>n + 1, be a partition and suppose that
k(e 2) # 0 and 4(x) > n + 1. Then p has a skew-hook A of length 2(4(y)
— n — 1) through the node (4(w), 1). Set p — h = (4, 14, - - -, towy-1)- Then
this sequence g — h is a partition and it follows from (1) of Lemma 5.2
that

('— l)m(h){ﬂb Moy =" 0y ﬂr} = {ﬂ;; ﬂ;’ Ty #Z(p)-l’ 0> tt 0} .

Applying this process many times if necessarily, we find that

(**) IC(‘U, 2){,ub Moy **°y ,u'r} = {219 Z2’ Y Xm 07 Ay Qgy ** ar—n—l}

for some (a;, @y, * *+, @r_pn_y) € E.

Conversely take a sequence a¢ = (@, @y, -+, ,_,_;) € E and suppose
that {A,2, -+, 2,,0,0,, 0, -+, Cr_pa}=0. If @ #£0, let a, be the first
non zero number in the sequence (a,, @, -, @,_,_;). Then by (2) of
Lemma 5.2, there is a partition g = (g, g, - --) of length n + m + 1 such
that g has a skew-hook % of length 2m through the node (n + m + 1, 1)
satisfying (4, 2, - -+, 4,) = & — h. Then by (1) of Lemma 5.2, we see that

{Zla 22’ Tty zn’ 0) Ay, Qgy * * ar—n—l}

= ('_ 1)"’('”{&, 82 "y Bnamaty Amity Qmyas ** ) ar—n—l} .

Repeating this process, we can construct a partition g satisfying the
equation (xx) with &(y, 1) #+ 0. Therefore we obtain

nlsi<jsn (1 - titj)x(psz)@'n)(l) T ggf;n)(r)) = Zz(;:)g K(F‘» Z)S,u(tl’ Sty tr) .

Using Littlewood’s formula ((2) of Lemma 5.1) and Proposition 3.1, this
yields the desired result.

ProposiTION 5.1 (The restriction rule from GL,, to Sp(2n)).
Let v be a partition of length < 2n and 2 a partition of length < n.
Then

m(v T gle;gfn): PSp(Zn)(z)) = ZM' ’C(/"’ Z)LR;’”« ’
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where p and y' range over all partitions of length < 2n such that 'y is
an even partition.

Proof. This is an immediate consequence from the Frobenius reci-
procity and Theorem 5.2.

Case 2, G = SO(2n + 1). In this case the set of irreducible repre-
sentations of G is parametrized by the set of all partitions of length < n.
For a partition 2 of length < n and a partition p, we define an integer
k(y, He{—1,0,1} as follows: we divide into two cases,

Case (a), ¢(1r) < n. In this case

1, if pu=2,
0, otherwise .

w(y, A) 1= {

Case (b), 4(¢) > n. In this case we set e:= 4(g) — n. If 4 has no
skew-hook of length 2e — 1 through the node (4(p), 1), #(g, 2) is defined
to be zero. If 4 has a skew-hook A of length 2e¢ — 1 through the node
(U(w), 1), we set

k(g 2) = (— 1)*®g(y — h, 2).
If 4(p — h) > n, we repeat this process.
ExampLE. G = SO(7),

p=1(54,33332) =

® X X X X X X
R ® X X X X X
QX R®®® X X

and

X X X X X
1=00,4,1)=X X X X
X

In this case px has a skew-hook of length 7 through the node (7,1) and
hence #(y, ) = r(¢/, 2), where
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X X X X X
X X X X
X ®
y = X ®
K ®
&
Since y# has a skew-hook of length 5 through the node (6,1), we
have (¢, 2) = — (¢, 2), where
X X X X X
, X X X %
7 x
X

The Young diagram p” has a skew-hook of length 1 through the node
(4, 1), and hence (¢, 2) = 1. Thus s(g, ) = — 1.

THEOREM 5.3. Let 4 be a partition of length < n. Then

X(Psoann)(l) 1 gf)’%ﬁh) = Zv,p’,p LR;',,"C(F‘, s, ,
where v and p range over all partitions of length < 2n and (' ranges over
all partitions of length < 2n such that p is an even partition.

Proof. By (2) of Theorem 5.1, we have, for any r > n,

( * ) HlsiSjsr a-— ttti)x(,ahs'o(znu)'2 1 gf)’%‘a&'n(r»
Z ltr—lﬂh, tT—2+la’ cee tr—n+21.’ tal’ taz’ cee tar..nl

'tr—l’ tr—Z’ cee, t, 1'

H

where the sum is over all sequences (&, ay, - - -, @,.,) of non-negative in-

tegers such that ey, =r—n—iorr—n4+i—1forall1<i<r—n.
Let E be the set of all sequences a = (a,, a, - - -, @,_,) of non-negative

integers such that @, =0 or 2i — 1, for all 1 <i < r — n. Then we have

[Tigizizr (U — £ )Xosoen (D) T &8N, 772, -+, 1]
= ZGGE {211 229 DR '2, Qyy Qgy =0 0, ar-n} .

One may proceed in a fashion analogous to the case of the sym-
plectic group Sp(2n) and obtain the equation

nlsistn (1 - titj)X(PSO(Zn +1)(Z) T gg“zg;:l)(r)) = Zl(y)sr IC(‘U, l)s,u(tl’ R tr) .
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Using Littlewood’s formula ((1) of Lemma 5.1) and Proposition 3.1, we
obtain the desired result.

By the Frobenius reciprocity theorem, we have the following

ProprosiTiON 5.2 (The restriction rule from GL,,,; to SO@2n + 1)).
Let v be a partition of length < 2n + 1 and 2 a partition of length
<n. Then

m(v 1 §6%54, Psoesn(A) = 2, . 6(u, LR, .,

where p ranges over all partitions of length < 2n + 1 and p/ ranges over
all even partitions of length < 2n + 1.

Case 3, G = SO(2n). In this case the set of representations of G
obtained from the restriction of irreducible representations of O(2n) is
parametrized by the set of all partitions of length < n. For a partition
A of length < n and a partition g, we define an integer #(g, ) e {— 1,0, 1}
as follows:

Case (), 4(¢) < n. In this case we set
1, if p=2,

0, otherwise .

’C(F" ’2) = {

Case (b), 4(z) > n. In this case we set e:= 4(¢) — n. If g has no
skew-hook of length 2e¢ through the node (4(p), 1), we set #(g, ) = 0. If
has a skew-hook A of length 2e through the node (4(y), 1), we set

£y, A) 1= (— 1)*P* (g — h, 2).
If x(x — h) > n, we repeat this process.

ExampPLE. G = SO(6),

ﬂ=(574,3’ 3’ 3,2)= and 2’-:(5,4, 1).

® X X X X X
®® X X X X
R ® X X

The Young diagram g has a skew-hook of length 6 through the node
(6,1). Hence (g, ) = &(¢/, 2), where
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® ® X X

The Young diagram g’ has a skew-hook of length 4 through the node
(5, 1), and hence we have x(¢/, 1) = — k(2,2) = — 1. Thus x(g, ) = — 1.

THEOREM 5.4. Let 1 be a partition of length < n. Then

X(pSO(Zn)(R) T gga(%n)) - Zv,p,;z’ LR:',p’C(fla X)Su 1)

where v and p range over all partitions of length < 2n and p ranges over
all partitions of length < 2n such that p is an even partition.

Proof. By (3) of Theorem 5.1, for any r > n,

[Nici<j<r a- titj)x(pSO(Zn)(z) ) gf?z"n)(r))

_ |tr—l+11’ t'r—2+22’ ceey tr—'n,+l,,’ eltal’ Egtaz, . er—ntar—”l
b
|tr—1’ tr—z, ceey, t, 1]
where the sum is over all sequences (ay, ay, - - -, ,_,) of non-negative in-

tegers such that ¢, =r—n—torr—n-+i, forall 1<i<r—n, and
1, fa,=r—n—1,
g, =
‘ -1, fo,=r—n-—i.
Then the rest of the proof goes in the same way as Theorem 5.2.

By the Frobenius reciprocity theorem, we obtain

ProposiTiON 5.3 (The restriction rule from GL,, to SO(2n)).
Let v be a partition of length < 2n and 2 a partition of length < n.
Then

m(” J, gé?i‘n), Psocm)(l)) - Zy,p’ ’C(#, Z)LR;', ’'E

where p ranges over all partitions of length < 2n and p/ ranges over all
even partitions of length < 2n.

For a pratition 2 = (4, 4, - - -, 4,) with 2, > 0, consider the irreducible
representations (p;, V;) and (6, V;) of SO(2n), (see §4). The following
result is obtained by the method similar to that used in the proof of
Theorem 5.1, (cf. [W-2], p. 229).
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ProrosiTiOoN 5.4. If r > n, we have

D) Xo: 1 §6%w (1) = é{x(()som)(l) 1 €6150(r) + Wosoan() 1§65},

2 X(6; gé?é’n) (r) = —;—- {X(Psoan)(z) 1 gg‘é'n)(r)) - X(Psoan)(z) ) gé??n)(r ))} s

where
1(ps0am@) T §65(r))
. Itr—lwh’ tr—2+13, ceey tr—n+1,,, tr—n—l + tr—n+1’ cee, 1 + tZ(r—n)I
nlsiS]‘sr (1 - titj)‘tr—la tr_z’ tt t) 1[
We set

72(AO»S'O(%,)('D T ggz(gn)) = llrl_l X(PSO(M)(R) T g‘@"&‘n)(r» .
Then we obtain the following theorem.

THEOREM 5.5. Let 1= (A, A, - -, A,), 4. > 0, be a partition of length
n. Then

2(4080(270(1) T géﬂ(gn)) = Zv,p,[l' LRL,#/IC(,U, 2)Su B

where v and p range over all partitions of length < 2n and 4 ranges over
all even partitions of length < 2n. Here the integer x(u, 1) is defined as
follows: If ¢(u) < n, (g, 2) is 1 or 0, according as p=2 or p+ A If
) >n, let e:=4(p) —n, If p has no skew-hook of length 2e through
the node (4(w), 1), then x(u, 2) is zero. If p has a skew-hook of length 2e
through the node (4(p), 1), then

’i(ﬂ’ A= (— I)W(h)x(/-t —h, 2.

The universal induced characters for the representations p; and §,
are obtained from the equations below.

1 )’
X(Pz T gtL)zé'n)) = E {X(Psoan)(z) T gff&'n)) + X(Psmzn)(l) gfi%’n))}
and

. 1 .
X(Px t gg‘&'n)) = E {X(pSO(%n)(R) 1 g{)‘%gn)) — X(PSO(M)('D 1 g](%'n))} .

We give a version of the Frobenius reciprocity theorem.
Let G be a complex semi-simple subgroup of GL, and consider the
character function Xg(p)(t, %, -+, ¢,), r = rank of G, as a polynomial in
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Lt ot 5t Let R=Clt, 7Y - -+, ¢, t;'] be the Laurent polynomial
ring in the variables &, &, - - -, ¢, and R[z, 2, - - -] the formal power series
ring of infinite independent variables z,, 2,, - - - over R.

ProrpositioN 5.5. In the formal power series ring R[z, z, ---], the
following formulas fold:

ZP XG(P)(tl’ tZ’ tt tr)x((o T gLn)(zl’ gy )
= ZA X('2 l« gLn)(tb t2a Tty tr)sl(zb 2oyt ) )

where p ranges over all equivalence classes of finite dimensional holomor-
phic representations of G and 1 ranges over all partitions of length < n.

Proof. This follows from the Frobenius reciprocity theorem and the
orthogonal relation of irreducible characters.

Putting z,,, = 2,,, = -+- = 0, consider the formal power series ring
Rz, 2, - - -, 2,] over the ring R.

ProrosiTioN 5.6 (Littlewood’s formulas, cf. [L] or [K-T], p. 486). In
the ring Rz, 2, - - -, 2,], the following formulas hold:

@ > Xspan (OspenR))(t, by, - -+, £)Sx(21, 20, - -+, 2Zn)
HISisjsn a- titj)
= Zi sz(tn DY tm tl—l’ Tty tgl)sl(zb 2y 0y Z,,) .
) Zl xSO(Zn+1)(pSO(2n+l)(2))(t1’ by -y t)Si(21, 28 -0, 20)
nlsiSan - titj)
= Zl 31(1, tl, Y tn, tl_l, DY tzl)sl(zh 2oy "t vy Z’n) .
(3) Zl XSO(Zn)(pSO&n)(’D)(th by <oy )21, 20yt 0y Z)
Hlsis;‘gz a- titj)
= Zl sl(tl, Tty tm tl_ly Tty t;1)81(213 2oy vy Z,,) .

Here 2 ranges over all partitions of length < n.

Proof. This follows from Proposition 5.5 and Weyl’s formulas (Theo-
rem 5.1).
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