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Abstract

We describe the random meeting motion of a finite number of investors in markets with
friction as a Markov pure-jump process with interactions. Using a sequence of these, we
prove a functional law of large numbers relating the large motions with the finite market
of the so-called continuum of agents.
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1. Introduction

To study how asset prices in over-the-counter markets are affected by illiquidity associated
with counterparties search and bargaining, Duffie et al. (2005) developed a model for markets
with friction. They assumed that there was a continuum of interacting agents and derived
a quadratic system of differential equations with constraints for the fractions of investors of
different types. But in the intuitive argument behind their derivation, they reasoned as if, in fact,
such a market was composed of a large finite number of investors performing random meetings.
Here we build the random motion of that large finite set and obtain, as the number of investors
increases, an associated quadratic system of ordinary differential equations (ODEs) through a
functional law of large numbers. (In the applied probability literature this kind of result bears
different names; see, for example, Dawson (1985), Ferland (1994), Perthame and Pulverenti
(1995), Feng (1997), Clark and Katsouros (1999), and McDonald and Reynier (2006).)

One interest for the functional law is that it gives an algorithm to obtain the solution of the
quadratic system of ODEs with constraints. It also shows that, for a large number of agents,
the quadratic system provides a reasonable approximation of the probabilistic behavior of the
agents and can therefore be used as an alternate modeling tool.

2. A functional law of large numbers

2.1. The random motion

We consider a large finite set of agents and model the random encounters using a continuous-
time pure-jump Markov process. For the moment, we do so in a quite abstract setup, where the
state of an agent belongs to a finite set S. We shall show in Section 3 how to apply our result
to the special case of Duffie et al. (2005). We imagine a random motion for the agents which
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is driven by two effects:

1. change of agents states on their own (exogenous effect);

2. change of agents states via binary interactions (endogenous effect).

More precisely, each agent, independently of the others, changes its state according to a
continuous-time Markov chain, on S, whose intensity matrix is denoted by� = (γ (x, y))x,y∈S .
In addition, agents meet each other at rate λ and, when such a meeting occurs, the pair (x, y)
of agent states is replaced by a new pair (u, v) with probability Q(x, y; u, v). We assume that

Q(x, y; u, v) = Q(y, x; v, u)
and ∑

u,v∈S
Q(x, y; u, v) = 1 for all x, y ∈ S.

Let (Zn1 (t), . . . , Z
n
n(t)) be the random vector giving the states of the agents at time t . Then

{Zn(t), t ≥ 0} is an Sn-valued Markov process, which may be described either by its generator
or by its predictable compensator νn:

νn(dt × (z1, . . . , zn)) =
n∑
k=1

1{Znk (t−)�=zk} γ (Z
n
k (t−), zk) dt

+ λ

n

∑
k �=j

1{(Znk (t−),Znj (t−))�=(zk,zj )}Q(Z
n
k (t−), Znj (t−); zk, zj ) dt

(see Last and Brandt (1995, pp. 113–154) for more details).
For x ∈ S and t ≥ 0, we denote by

µnt (x) = 1

n
card{k : Znk (t) = x}

the average number of agents in state x at time t . Since there are binary interactions, the weak
convergence of {µnt (x)}n≥2 does not follow readily from the classical law of large numbers;
but it does occur and, furthermore, can be proved. The identification of the limit is of major
interest, and this can be acheived by showing the weak convergence, as n increases, of the
processes {µnt , t ≥ 0}, where

µnt = 1

n

n∑
k=1

δZnk (t)

is the empirical measure of Zn(t). This is a functional law of large numbers and it relates µnt
to the solution of the following quadratic system of differential equations:

∂µt (x)

∂t
=

∑
y∈S

µt (y)γ (y, x)

+
∑
y∈S

µt (y)

(
2λ

∑
u,v∈S

µt (u)(Q(y, u; x, u)− δ(y,u)(x, v))

)
, x ∈ S,

(1)

with µt ∈ P (S), the set of probability measures on S.
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2.2. Convergence to the master equation

Let 〈·, ·〉 be the natural duality bracket between a probability measure µ ∈ P (S) and a
function ϕ : S → R, that is, 〈µ, ϕ〉 = ∑

z∈S µ(z)ϕ(z). Then writing (1) in integral form, it is
not difficult to show that

〈µt , ϕ〉 = 〈µ0, ϕ〉 +
∫ t

0
〈µs ⊗ µs,�1ϕ〉 ds +

∫ t

0
〈µs, �1ϕ〉 ds, (2)

where

�kϕ(x, y) = λ
∑
u,v∈S

(ϕ(u)+ ϕ(v)− ϕ(x)− ϕ(y))kQ(x, y; u, v),

�kϕ(x) =
∑
v∈S
(ϕ(v)− ϕ(x))kγ (x, v).

Equation (2) is just (1) written as a master equation on P (S) along the ‘test’ functions ϕ. Of
course, we can obtain (1) from (2) by choosing

ϕ(z) =
{

1 if z = x,

0 otherwise,

and taking the derivative on both sides of the resulting equation. To obtain the master equation
from the large finite motion of random matching agents, we shall prove the convergence of the
empirical measure processes. These are random elements in D∞(P (S)), the Skorohod space
of càdlàg functions from [0,∞) to P (S), i.e. those which are right continuous and have left
limits.

Theorem 1. Suppose that the empirical measures {µn0} converge weakly to a probability mea-
sure µ0 ∈ P (S), then the empirical measure processes {µnt , t ≥ 0} converge weakly on
D∞(P (S)) to a deterministic process {µt , t ≥ 0} which is the unique solution of (2).

Proof. We closely follow the proof of Theorem 2.1 of Bezandry et al. (1994).
Step 1. First we show that (2) has at most one solution. Let µ and µ̄ be two solutions with

the same initial value µ0 = µ̄0. For ϕ : S → R, define

‖ϕ‖ := max
z∈S |ϕ(z)|.

We know that
‖µt − µ̄t‖ = sup

‖ϕ‖≤1
|〈µt − µ̄t , ϕ〉|.

Using (2), we may write

|〈µt − µ̄t , ϕ〉| ≤
∫ t

0
|〈µs ⊗ µs − µ̄s ⊗ µ̄s,�1ϕ〉| ds +

∫ t

0
|〈µs − µ̄s, �1ϕ〉| ds. (3)

On the one hand, we have ‖�1ϕ‖ ≤ κ(γ )‖ϕ‖, where κ(γ ) = maxx∈S
∑
y∈S |γ (x, y)|;

therefore, |〈µs − µ̄s, �1ϕ〉| ≤ κ(γ )‖µs − µ̄s‖ whenever ‖ϕ‖ ≤ 1. On the other hand, we
have

|〈µs ⊗ µs − µ̄s ⊗ µ̄s,�1ϕ〉| ≤ |〈µs ⊗ (µs − µ̄s),�1ϕ〉| + |〈(µs − µ̄s)⊗ µ̄s,�1ϕ〉|
= |〈µs − µ̄s, ψs〉| + |〈µs − µ̄s, ψ̄s〉|,
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where
ψs(y) =

∑
x∈S

µs(x)�1ϕ(x, y), ψ̄s(x) =
∑
y∈S

µ̄s(y)�1ϕ(x, y).

Both ‖ψs‖ and ‖ψ̄s‖ are bounded by 4λ‖ϕ‖. Hence, |〈µs− µ̄s, ψs〉| ≤ 4λ‖µs− µ̄s‖ whenever
‖ϕ‖ ≤ 1, with a similar inequality for ψ̄s . Combining all these in (3), we obtain

|〈µt − µ̄t , ϕ〉| ≤ (8λ+ κ(γ ))

∫ t

0
‖µs − µ̄s‖ ds for ‖ϕ‖ ≤ 1.

Taking the supremum over ϕ yields

‖µt − µ̄t‖ ≤ (8λ+ κ(γ ))

∫ t

0
‖µs − µ̄s‖ ds, t ≥ 0,

and the result follows from Gronwall’s lemma.
Step 2. Now we show that the processes {µnt , t ≥ 0} are tight. Since P (S) is compact,

it suffices to prove that the real-valued processes {〈µnt , ϕ〉, t ≥ 0} are tight for any function
ϕ : S → R. We apply a well-known criterion (see Billingsley (1968, Theorem 15.5, p. 127)).
We show that

(i) lim
R↑∞

(
sup
n

Pr
{

sup
t≥0

|〈µnt , ϕ〉| > R
})

= 0;

(ii) for all ε > 0, there exist δ > 0 and n0 ≥ 1 such that

sup
n≥n0

Pr

{
sup
s,t≥0

|t−s|<δ
|〈µnt , ϕ〉 − 〈µns , ϕ〉| ≥ ε

}
≤ ε.

Condition (i) is easy to prove. Since µnt is a probability measure, we find that |〈µnt , ϕ〉| ≤
‖ϕ‖. Therefore, Pr{supt≥0 |〈µnt , ϕ〉| > R} = 0 whenever R > ‖ϕ‖. To prove condition (ii),
we use the modulus V ′′ defined on D∞(R) by

V ′′(f, δ) = sup{|f (t)− f (r)| ∧ |f (r)− f (s)|; 0 ≤ s ≤ r ≤ t, |t − s| < δ}.
It is well known that

sup
s,t≥0

|t−s|<δ
|f (t)− f (s)| ≤ 2V ′′(f, δ)+ sup

t≥0
|f (t)− f (t−)|. (4)

Since {Zn(t), t ≥ 0} is a pure-jump process for which at most two components can change at
the time of a jump, we see that |〈µnt , ϕ〉 − 〈µnt−, ϕ〉| is bounded by 4‖ϕ‖/n. Let us fix ε > 0
and then choose n0 ≥ 1 large enough to have ‖ϕ‖ < nε/8 for all n ≥ n0. For these n, we then
have

Pr

{
sup
t≥0

|〈µnt , ϕ〉 − 〈µnt−, ϕ〉| > ε

2

}
= 0,

and (4) gives

Pr

{
sup
s,t≥0

|t−s|<δ
|〈µnt , ϕ〉 − 〈µns , ϕ〉| > ε

}
≤ Pr

{
V ′′(〈µn, ϕ〉, δ) > ε

4

}
.
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To obtain condition (ii), it remains to prove that

lim
δ↓0

sup
n≥n0

Pr

{
V ′′(〈µn, ϕ〉, δ) > ε

4

}
= 0.

The latter limit is a consequence of the following inequality:

E[(〈µnt , ϕ〉 − 〈µnr , ϕ〉)2(〈µnr , ϕ〉 − 〈µns , ϕ〉)2] ≤ C(t − s)2, (5)

where 0 ≤ s ≤ r ≤ t (see Billingsley (1968, Theorem 15.6, p. 128)). To prove (5), we need
some martingales related to {µnt , t ≥ 0}. Let (F n

t ) be the natural filtration of {Zn(t), t ≥ 0}.
Using the compensator νn, we can show that the processes

Mn
t = 〈µnt , ϕ〉 −

∫ t

0
〈µns ⊗̇µns ,�1ϕ〉 ds −

∫ t

0
〈µns , �1ϕ〉 ds,

Snt = (Mn
t )

2 − 1

n

∫ t

0
〈µns ⊗̇µns ,�2ϕ〉 ds − 1

n

∫ t

0
〈µns , �2ϕ〉 ds,

are (Pr,F n
t )-martingales. In the above we have set

µns ⊗̇µns = 1

n2

∑
i �=j

δZni (t)
⊗ δZnj (t)

.

We use these martingales to obtain an upper bound for E[(〈µnt , ϕ〉 − 〈µnr , ϕ〉)2 | F n
r ]. Given

the definition of Mn
t , the conditional expectation is almost surely bounded by

3 E[(Mn
t )

2 − (Mn
r )

2 | F n
r ] + 3(t − r)E

[∫ t

r

(|〈µns ⊗̇µns ,�1ϕ〉|2 + |〈µns , �1ϕ〉|2) ds | F n
r

]
.

But |〈µns ⊗̇µns ,�1ϕ〉| and |〈µns , �1ϕ〉| are bounded by 4λ‖ϕ‖ and 2κ(γ )‖ϕ‖, respectively.
Therefore, the second expectation in the above sum is bounded by (16λ2 +4κ(γ )2)‖ϕ‖2(t−r).
The first expectation is handled in the same way, using the martingale Snt instead. Indeed, the
martingale property gives

E[(Mn
t )

2 − (Mn
r )

2 | F n
r ] = 1

n
E

[∫ t

r

(〈µns ⊗̇µns ,�2ϕ〉 + 〈µns , �2ϕ〉) ds | F n
r

]
.

This time, 〈µns ⊗̇µns ,�2ϕ〉 and 〈µns , �N2 ϕ〉 are bounded by 16λ‖ϕ‖2 and 4κ(γ )‖ϕ‖2, respec-
tively, so

E[(Mn
t )

2 − (Mn
r )

2 | F n
r ] ≤ 16λ+ 4κ(γ )

n
‖ϕ‖2(t − r). (6)

Combining the two upper bounds yields

E[(〈µnt , ϕ〉 − 〈µnr , ϕ〉)2 | F n
r ] ≤ C1(t − r).

Taking the expectation, we also have

E[(〈µnt , ϕ〉 − 〈µnr , ϕ〉)2] ≤ C1(t − r),
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and, consequently,

E[(〈µnt , ϕ〉 − 〈µnr , ϕ〉)2(〈µnr , ϕ〉 − 〈µns , ϕ〉)2]
= E[(〈µnr , ϕ〉 − 〈µns , ϕ〉)2 E[(〈µnt , ϕ〉 − 〈µnr , ϕ〉)2 | F n

r ]]
≤ C1(t − r)E[(〈µnr , ϕ〉 − 〈µns , ϕ〉)2]
≤ C2

1 (t − r)(r − s)

≤ C(t − s)2.

Step 3. We prove that {µnt , t ≥ 0} converges weakly by characterizing the limiting process
as the unique solution of (2). We denote by Pn the probability measure induced by {µnt , t ≥ 0}
onD∞(P (S)), we denote by En the corresponding expectation, and we denote by {U(t), t ≥ 0}
the canonical projection process onD∞(P (S)). We now show that any limit point P∞ of {Pn}
is concentrated on a specific path in D∞(P (S)), namely the solution of (2).

For ϕ : S → R, we define the following process:

Mt = 〈U(t), ϕ〉 −
∫ t

0
〈U(s)⊗ U(s),�1ϕ〉 ds −

∫ t

0
〈U(s), �1ϕ〉 ds. (7)

Let {Pnk } be a subsequence of {Pn} that converges weakly to P∞. We first prove that, for all t ,

lim
k

Enk [(Mt −M0)
2] = E[(Mt −M0)

2]. (8)

Let g : D∞(P (S)) → R be defined by

g(w) =
∫ t

0
〈w(s)⊗ w(s),�1φ〉 ds.

This function is bounded and measurable. It is also continuous on any w in C∞(P (S)) (the
continuous functions from [0,∞) to P (S)). Indeed, suppose that {wn} converges to w in
D∞(P (S)), then {wn(s)} weakly converges to w(s) for all s (since w is continuous). Hence,
〈wn(s) ⊗ wn(s),�1φ〉 → 〈w(s) ⊗ w(s),�1φ〉, and the continuity of g follows from the
bounded convergence theorem. In addition, the criterion used in step 2 not only shows that
{Pn} is tight but also that P∞(C∞(P (S))) = 1. As a result, the set of discontinuities of g is
a P-null set. The continuous mapping theorem then gives limk Enk [g] = E∞[g]. A similar
argument works for the functions

w �→
∫ t

0
〈w(s), �1φ〉 ds, w �→ 〈w(t), φ〉,

and (8) follows.
Next we prove that

lim
k

Enk [(Mt −M0)
2] = 0. (9)

Let

M
(n)
t = Mt − 1

n

∫ t

0
〈U(s),�1ϕ〉 ds,

where �1ϕ(x) = �1ϕ(x, x). It immediately follows that

Enk [(Mt −M0)
2] ≤ 2 Enk [(M(nk)

t −M
(nk)
0 )2] + 2

nk2 Enk
[(∫ t

0
〈U(s),�ϕ〉 ds

)2]
.
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By (6), the first term on the right-hand side is bounded by (16λ+ 4κ(γ ))‖ϕ‖2t/nk , while the
expectation for the second term is clearly bounded by a constant that depends only on ϕ and t .
Taking the limit on k, we obtain (9).

The equality E∞[(Mt −M0)
2] = 0 means thatMt is equal toM0 almost surely for P∞. But

{Mt, t ≥ 0} is right continuous. Hence, there exists a set 
0 ⊂ D∞(P (S)) with P∞(
0) = 1
and Mt(w) = M0(w) for any t ≥ 0 and w ∈ 
0. Looking at the definition of Mt , it precisely
means that any w ∈ 
0 is a solution of (2). Finally, because µn0 weakly converges to µ, we
find that P∞(U(0) = µ) = 1. By step 1, 
0 ∩ {U(0) = µ} is a singleton {w0}, and P∞ must
be a Dirac measure on w0. All the limit points of {Pn} being the same, {Pn} weakly converges
to P∞. The proof is complete.

3. Dynamic bargaining markets

3.1. Direct bargaining

Duffie et al. (2005) imagined a continuum of agents in which, along time and randomly,
the agents switch their level of interest or meet each other for possible exchange of the asset.
They developed a dynamic asset-pricing model and derived the equilibrium allocation of assets
and the price negotiated. To do so they used a quadratic system of ODEs for the fractions of
investors of different types. We will show here that this system is a particular case of (1) and,
therefore, the intuitive argument for the ODEs stated in an ‘abstract’ continuum setup can be
replaced by a more formal validation. Indeed, according to Theorem 1, when the number of
investors is large, the random fractions µnt of investor’s types is approximately given by the
solution of (1).

To see how the ODE system of Duffie et al. (2005) is a special case of (1) (or (2)), we just
have to specify the appropriate triple (S, �,Q). In their model an investor was characterized by
whether he/she owned the asset or not, and by an intrinsic type that is ‘high’or ‘low’. Therefore,
the full set of investor types is S = {ho, hn, lo, ln}, where the letters ‘h’ and ‘l’ designate the
investor’s intrinsic (liquidity) state, and ‘o’ and ‘n’ respectively indicate whether the investor
owns the asset or not. Duffie et al. (2005) assumed that an investor switched from a low to a
high type with rate λu, and from a high to a low type with rate λd . So � is given by

⎛
⎜⎜⎝

ho hn lo ln

ho −λd 0 λd 0
hn 0 −λd 0 λd
lo λu 0 −λu 0
ln 0 λu 0 −λu

⎞
⎟⎟⎠.

In addition, investors meet each other at rate λ, but an exchange of the asset occurs only if an
investor of type lo (owns the asset but has low interest for it) meets one of type hn (does not
own the asset but has high interest for it). This behavior is properly described by the kernel Q
below:

Q(x, y; u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if (x, y) = (lo, hn) and (u, v) = (ln, ho),

1 if (x, y) = (hn, lo) and (u, v) = (ho, ln),

1 if (x, y) = (u, v) and (x, y) �∈ {(lo, hn), (hn, lo)},
0 otherwise.

For this triple (S, �,Q), (2) becomes quite simple and intuitive. For example, let ϕ be the
indicator function of the state hn. Then it is easy to see that �1ϕ(x, y) is 0 except when
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(x, y) ∈ {(lo, hn), (hn, lo)} and, for the latter case,

�1ϕ(lo, hn) = �1ϕ(hn, lo) = −λ,
so 〈µs ⊗ µs,�1ϕ〉 = −2λµs(hn)µs(lo). Moreover, we have

〈µs, �1ϕ〉 = −λdµs(hn)+ λuµs(ln).

Substituting into (2) and taking the derivative, we obtain

µ̇t (hn) = −2λµs(hn)µs(lo)− λdµs(hn)+ λuµs(ln),

which is Equation (4) of Duffie et al. (2005) (with ρ = 0). Therefore, Theorem 1 applies
to their model when bargaining is done without intermediaries (ρ = 0). When bargaining is
eventually done through an intermediary, it is still possible to prove a law of large numbers.
This is done in the next subsection.

3.2. Market makers

Because searching for counterparties can reduce liquidity, some over-the-counter markets
have intermediaries, the so-called market makers. Duffie et al. (2005) also studied a market
model where asset exchange occurred through market makers, in addition to direct bargaining.
But in their model intermediaries had to be searched too. They assumed a rate ρ for meeting
with a market maker and that exchange occurred provided investors were present. The quadratic
ODE system changes accordingly. For instance, for state hn the new ODE becomes

µ̇t (hn) = −(2λµs(hn)µs(lo)+ ρmin{µs(hn), µs(lo)})− λdµs(hn)+ λuµs(ln),

with a similar modification for the other states. This equation is not a special case of (1), but
we can modify Theorem 1 to cover the situation. We did not do so in Section 2.2 because the
changes to be made are quite specific to their model.

The state space S remains the same. However, the predictable compensator of the Markov
chain Zn is replaced by

νn(dt × (z1, . . . , zn))+ 1{Zn(t−)�=(z1,...,zn)} ρ̂(Zn(t−), (z1, . . . , zn)) dt.

The intensity ρ̂ is 0 except when Zn(t−) and (z1, . . . , zn) are ‘compatible’, in which case

ρ̂(Zn(t−), (z1, . . . , zn)) = nρmin{µnt−(hn), µnt−(lo)}.
The vectors Zn(t−) and (z1, . . . , zn) are said to be compatible if the latter results from the
former via a meeting with a market maker. More precisely, it means that

(a) µnt−(hn) andµnt−(lo) are both nonzero (there are investors of proper types for an exchange
to occur through market makers);

(b) z = (z1, . . . , zn) is obtained from Zn(t−) by replacing the first hn of the latter by ho
and the first lo by ln (that is, z is the market configuration obtained from Zn(t−) after
the asset exchange occurred through the market maker).

With this new kind of transition, the master equation (2) becomes

〈µt , ϕ〉 = 〈µ0, ϕ〉 +
∫ t

0
〈µs ⊗ µs,�1ϕ〉 ds +

∫ t

0
〈µs, �1ϕ〉 ds +

∫ t

0
ρµ̄s�(ϕ) ds, (10)

where µ̄s = min{µs(hn), µs(lo)} and �(ϕ) = ϕ(hn)+ ϕ(lo)− ϕ(ho)− ϕ(ln).
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The proof of Theorem 2.1 can be easily adapted. Uniqueness for (10) (step 1) has been
proved by Duffie et al. (2005). For step 2, we use the martingales

M
n

t = 〈µnt , ϕ〉 −
∫ t

0
〈µns ⊗̇µns ,�1ϕ〉 ds −

∫ t

0
〈µns , �1ϕ〉 ds −

∫ t

0
ρµ̄ns�(ϕ) ds,

S
n

t = (M
n

t )
2 − 1

n

∫ t

0
〈µns ⊗̇µns ,�2ϕ〉 ds − 1

n

∫ t

0
〈µns , �2ϕ〉 ds − 1

n

∫ t

0
ρµ̄ns�(ϕ)

2 ds,

with µ̄ns = min{µns (hn), µns (lo)}. Following the previous computation to obtain (5), we just
have to prove that there exist constants C2, C3 > 0 such that

E

[∫ t

r

|ρµ̄ns�(ϕ)|2 ds

∣∣∣∣ F n
r

]
≤ C2(t − r) (11)

and

E

[
1

n

∫ t

r

ρµ̄ns�(ϕ)
2 ds

∣∣∣∣ F n
r

]
≤ C3

n
(t − r). (12)

This is immediate, since µ̄ns = min{µs(hn), µs(lo)} ≤ 1 and |�(ϕ)| ≤ 4‖ϕ‖. Finally, for
step 3, we use the process

Mt = Mt −
∫ t

0
ρU(s)�(ϕ) ds,

with U(s) = min{U(s, hn), U(s, lo)} and M given by (7). Equality (8) for M is proved as
before because, on C∞(P (S)), the mapping

w �→
∫ t

0
ρw(s)�(ϕ) ds

is continuous. As for equality (9), we use

M
(n)

t = M
(n)
t −

∫ t

0
ρU(s)�(ϕ) ds,

and observe that

Enk [(M(nk)

t −M
(nk)

0 )2] ≤ C4t

nk
,

as a consequence of (11) and (12). All the other arguments of the proof carry on and, therefore,
the result follows.

3.3. Concluding remarks

We have shown a finite-agent limit result even with market makers. We believe this could be
a fruitful line of work connecting probability theory and economics. Of course ODEs are also
important objects in their own right, and from them we obtain, in many cases, some simpler
results.
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