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Abstract. For a lifted nontrivial additive character A' and a multiplicative character
A of the finite field with q2 elements, the "Gauss" sums SA'(trg) over g &SU(2n,q2)
and 2 A(detg)A'(trg) over g e U(2n,q2) are considered. We show that the first sum is a
polynomial in q with coefficients involving averages of "bihyperkloosterman sums" and
that the second one is a polynomial in q with coefficients involving powers of the usual
twisted Kloosterman sums. As a consequence, we can determine certain "generalized
Kloosterman sums over nonsingular Hermitian matrices", which were previously deter-
mined by J. H. Hodges only in the case that one of the two arguments is zero.

1. Introduction. Let A be a nontrivial additive character of the finite field F,,, A' the
lifting of A to Fr/i (cf. (2.3)), x a multiplicative character of F,,2. Then we consider the
exponential sum

2 A'(trg), (1.1)

where SU(2n,q2) is a special unitary group over F,,2 (cf. (2.8)) and trg is the trace of g.
Also, we consider

£ X(detg)\'(trg), (1.2)

where U(2n,q2) is a unitary group over F(/2 (cf. (2.4) and (2.6)) and detg is the
determinant of g.

The purpose of this paper is to find explicit expressions for the sums (1.1) and (1.2).
We will show that (1.1) is a polynomial in q with coefficients involving the averages (over
F*) of certain bihyperkloosterman sums over Fr/: (cf. (4.18) and (4.20)). On the other
hand, (1.2) is a polynomial in q with coefficients involving powers of twisted Kloosterman
sums.

In [2], Hodges expressed certain exponential sums in terms of what we call the
"generalized Kloosterman sum over nonsingular Hermitian matrices" K,/erml(A, B),
where A, B are t X / Hermitian matrices over Fr/: (cf. (7.1)). Some of its general properties
were investigated in [2], and, for A or B zero, it was evaluated in [1]. However, they have
never been explicitly computed for both A and B nonzero. From a corollary to the main
theorem in [2] and Theorem 6.1, we will able to find an explicit expression for
^iicrm.2,i((i2C~\C), where C is a nonsingular Hermitian matrix over F(/: of size 2n and
0*a eF,,.

Similar sums for other classical groups over a finite field have been considered
([3]-[7]) and the results for these sums will appear in various places.
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THEOREM A. The sum 2gesi/(2n.<72)A'(trg) m (1-1) equals

(n-2r + 2/2|

X 2 <72' S fi^^^^AM^-iy-Vjl^

|/i-l/2] r „ "I 2r+]

r=0 L//" + 1 Jf/2 y=,

x'" S'>2]q21 S fi/C^^A'jl^-iy-'a^l^-iy-'a-'e-1:^)
/=! aeF*

w/zere BK,(\'; - ; - ; - ; - : g 2 ) « f/ze bihyperkloosterman sum over ¥qi defined in (4.20),
9 e F,2 is a fixed nonzero element with trFij2/F/0 = 0, and the first and second unspecified
sums are respectively over all integers / , , • • • ,/'/_i satisfying 2/ - 1 ̂ / / - i ^ / / -2 — " " " — j \ —
n - 2r + 1 and over the same set of integers satisfying 2/ - 1 ̂ y'/_i ^ji-i s • • • < / , < n — 2r.

THEOREM B. The sum SSet/(2/,.f;2)Z(detg)A'(trg) i« (1.2) equals

[n-r + 2/2\ /-I

X 2 <72/K(A',;r1;U:<72r-r+2-2/2 I ! to*"""4"-!),

' ,^ ' '~ ' ; 1, l :^2) is the usual twisted Kloosterman sum defined in (4.5), and the
innermost sum is over all integers / , , • • •,/',_, satisfying 21 — 1 ^ji~\ ^ji-2 — " ' ' —j\ —
n-r + 1.

THEOREM C. Let O^a G F,;. Then, for any nonsingular Hermitian matrix over F,;2 of
size In, the following Kloosterman sum over nonsingular Hermitian matrices {cf (7.1)) is
independent of C, and

Kllem2n{a2C'\C)= £ A'(trg),
gel/(2n.</2)

so that it equals the expression in Theorem B above with % trivial, \' = \'a (cf. (2.2) and
(2.3)).

The above Theorem A, B and C are respectively stated as Theorem 5.2, Theorem 6.1
and Theorem 7.1.

2. Preliminaries. In this section, we will fix some notations that will be used
throughout this paper, describe some basic groups and mention the ^-binomial theorem.

Let ¥q and Fqi denote respectively the finite field with q elements, q - p''(p any
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prime, d a positive integer), and the quadratic extension of F(/, and let TIF,^—»F,/2 be the
Frobenius automorphism of F,,2 given by

aT = a". (2.1)

Note that, for a e F,^,

trF</2/Fi/a = a + a \ NF,I2IF^OI = aaT.

Let A be an additive character of F,,. Then A = A,, for a unique a e F,,, where, for
a e F(/,

Ao(a) = expf — (aa + (aa)" + ... + (aa)""")} . (2.2)

I p J

It is nontrivial if a T^O. For such a A, A' denotes the additive character A lifted to Fqi. Thus

A' = A°trF</2/hV (2.3)
Note that A' is nontrivial if A is. Likewise, for a multiplicative character tji of Ff/, the lifting
of that to F(/2 is denoted by i/r'. So ip' = ip ° A'F/2/F/.

Here tr A and det/4 denote respectively the trace and determinant of A for a square
matrix A, *B = '(]8,y) for any matrix B = (/3,y) over F,,2 (cf. (2.1)), where the "t" indicates
the transpose. We will say that B is Hermitian if *B = B.

GL(n, q) is the group of all nonsingular n X n matrices with entries in F,r Then
U(2n, q2) = {ge GL(2n, q2) | *gJg = J}, (2.4)

where

We write g e U(2n, q2) as

8 = [c D J '
where A, B, C, D are of size n. Then (2.4) is given by

U(2n,q2)

B j GL(2n,q2) \*AC+ *CA=0,*AD + *CB = 1,,, *BD + *DB =

1 e GL(2n,q2) | A*B + B*A = 0, A*D + B*C = 1,,, C*D + D*C =

D.

'A B'

.C

(2.6)

P(2n,q2) is the maximal parabolic subgroup of U(2n,q2) defined by
A e(i/*(n.(f-), li is of ~\

(2.7)
nxn over F,,i with •«+«=()-'

SU(2n,q2) = {ge U(2n,q2) | detg = 1}, (2.8)

which is a subgroup of index q + 1 in U(2n, q2).
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For integers n, r with 0 ̂  r < n, we define the ^-binomial coefficients as

["1 =n'(9""y-l)/(9r"y-l). (2-9)

The order of the group GL(n, q) is denoted by

gn(q) = n (9" - <70 = <7<5> f l foy - !)• (2-10)

Then we have:

for integers n, r with 0 s r < n .
For x an indeterminate, n a nonnegative integer,

(x;q),, = (l-x)(l-xq).. . (1-xq"'1). (2.12)

Then the qr-binomial theorem says

_ ) L ^ (2-13)

[y] denotes the greatest integer ̂ y, for a real number y.

3. Bruhat decomposition. In this section, we will discuss the Bruhat decomposition
of U(2n,q2) with respect to the maximal parabolic subgroup P(2n,q2) of U{2n,q2)
(cf. (2.7)).

This decomposition (in fact, its slight variants (3.8) and Cor. 3.3) will play a decisive
role in deriving Theorem 5.2 and Theorem 6.1. The next theorem about the decomposi-
tion can be proved by slightly modifying the corresponding proof in [7]. So we will not
provide a proof for that. We demonstrate, as a simple application of this decomposition,
that it yields the well-known formula for the order of the group U(2n,q2) when combined
with the <7-binomial theorem.

THEOREM 3.1. (a) There is a one-to-one correspondence

P(2n,q2)\U(2n,q2) -> GL(n,q2)\A
given by

where
A = {[C D]\C,D nXn matrices over Fq2,rank[C D] = n, C*D + D*C = 0}.

(b) For given [C D] e A, there exists a unique r (0<r<n), g e GL(n,q2),
p e P(2n, q2) such that

' 1 ,

(c)

8[c ^ Lo o o i,,_J-

U(2n,q2)=\JParP,
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where P = P{2n,q2) and

0 0 1, 0
0 ln_r 0 0
lr 0 0 0
0 0 0 !„_,

eU(2n,q2).

83

(3.1)

Put

Q = Q(2n, q2) = {ge P(2n, q2) \ det g = 1}

= {[Q M°-i][o" f]|/l6CL(/i,9
2

" = Q-(2n, q2) = {ge P(2n, q2) | detg = -1}

Then Q(2n, q2) is a subgroup of index q + 1 in /3(2AJ, g2) and

U(2n,q2)=[jParQ.

(3.2)

(3.3)

(3.4)

Write, for each r (0 < r < n),

Ar = Ar(q
2) = {p e P(2n, ^2) | ^ ^ 7 ' G P(2«, <72)},

Br=Br(q
2) = {p e 6(2", <?2) | cr^tr,"1 e P(2n,q2)}.

(3.5)

(3.6)

Then Br is a subgroup of Ar of index q + 1.
Expressing U(2n,q2) as a disjoint union of right cosets of P(2n,q2), the Bruhat

decomposition in (c) of Theorem 3.1 and the decomposition in (3.4) can be rewritten as
follows.

COROLLARY 3.2.

U(2n,q2)=UPar(Ar\P), (3.7)

U(2n,q2)=\JPar(Br\Q), (3.8)
1=0

w/jere P = P(2n,q2), and a,., Q, A,., B, are respectively as in (3.1), (3.2), (3.5), (3.6).

Observing that det <r,. = (-1)' , we get from (3.8) the following decomposition for
SU(2n,q2).

COROLLARY 3.3.

SU(2n,q2)= \J Q<r,(B,\Q)

/• even

LJ Q~(Tr(

where Q - Q (2n,q2) is as in (3.3).
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Write p eP(2n,q2) as
\A 0 ]nn B

with

U 2 , A22\' YE2X E22V l-*Bl2 B22\'

Here A i { , A [ 2 , A 2 [ , and A 2 2 are respectively of sizes r X r, r X (n — r), (n — r)X r, and
(n — r)X (n — r), and similarly for * A ~ \ B.

Then, by multiplying out, we see that arpa~* E.P{2n,q2) if and only if AUBU —
Al2*B]2 = 0,A]2 = 0, E2]=0ifandonlyifAl2 = 0, B , , = 0 . Hence

\Ar(q
2)\ = gr(q

2)gn-r(q
2)Q"Y2n-3r\ (3.11)

where g,,(q2) is as in (2.10). Also,

\P(2n,q2)\=g,,(q2)q"2. (3.12)

From (2.11), (3.11) and (3.12), we get

(3.13)

This will be used later in Section 5 and 6. Also, from (2.10), (3.12) and (3.13),

qr\ (3.14)
y=i

From (3.7),

\U(2n, q2)\ = 2 \P(2n,q2)\2 \Ar{q2)V>. (3.15)

Applying the ^-binomial theorem (2.12) with x = -q and with q2 instead of q, and from
(3.14) and (3.15), we get the following theorem. We note here that the result in Theorem
3.4 and Proposition 3.5 were mentioned in [1].

THEOREM 3.4.

Proof.

l\W-(-m (3-16)

q'2
j=\ r=0 '

q2"2-"{-q;q2)nY\{q2i-l)
y=i

In
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PROPOSITION 3.5. For each positive integer r, let hr denote the number of all r X r
nonsingular Hermitian matrices over F,/2. Then

hr = q^f\(q< + (-iy). (3.17)

4. Certain Kloosterman sums. For a nontrivial additive character A of F,,, tp a
multiplicative character of Fc/, t X t matrices A, B over Ft/, we define the "twisted"
Kloosterman sum KaLUq)(\, tp;A,B) for GL(t,q) as

KGUlJl)(\,iP;A,B): = £ <A(detg)A(tr(/lg + Bg~1)). (4.1)

Further, if A = al,, B = b\,(a, b e Fv) are scalar matrices, then (4.1) will be simply written
as

g + btrg-x). (4.2)

Also, we define the Kloosterman sum KSmri)(\;A, b) for SL(t,q) as

/ W / > ( A M , S ) : = 2 A(tr(/lg + ^ - 1 ) ) . (4.3)

Again, if A = al,, B = b\, (a, b e Fr/) are scalar matrices, then (4.3) is written simply as

KSUlJI)(\;a,b):= 2 \(a trg + b trg"1). (4.4)
!!BSL(I.<I)

For i// trivial, an explicit expression for (4.2) was obtained in [3]. Also, (4.2) becomes
trivial unless both a and b are not zero, as we note in the following.

REMARKS. (1) If a = b = 0, then KCUlJI){K, ifi; 0, 0) = g,(q) (cf. (2.10)) for ip trivial and
^r;/.«.<,)(A, ift', 0,0) = 0 for \\> nontrivial.

(2) If exactly one of «, b is zero, say a ^ 0 , 6 = 0, then it is
<K«)~' ^yec;m.tl) '/'(detg)A(trg) and equals il/(a)~'q('2)G(ip, A)', where G(ip, A) is the usual
Gauss sum G(ip, A) = S(reF,x lA(Q')A(a)- For this, see [6].

(3) For / = 1, (4.2) is the usual twisted Kloosterman sum which is denoted by

K(\,4,;a,b:q) = KauUq){\,iP;a,b)= 2 <A(«)A(fla + 6a~'). (4.5)
a s F,*

Assume now that ab 5^0. Then, following an argument analogous to that leading up
to (4.16), we get the recursive formula (4.6) in below. For t>2, a,b e F*,

Kr;,.,,.(/,(A, I]J; a, b) = q-'Kcm.-^M, ^ a, b)K(X, foa, b)
2 ul-2jl)(*,il';a,b), (4.6)

where K(\,ip;a,b) = K(A,ip;a,b:q) is the usual twisted Kloosterman sum in (4.5), and
we unders tand that K(!L{(ltl)(\, ip\a,b) = 1.
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As in [3], we can deduce, by induction on t, the following theorem from the recursive
formula (4.6).

THEOREM 4.1. For integers r > l , a, i e FJ, the twisted Kloosterman sum
Kcn,,<,M, "A; a, b) defined by (4.2) is

[, + 2/2]

x2nfo'"~ 2 v - l ) (4-7)
v = l

where K(\, ip;a,b:q) is the usual twisted Kloosterman sum in (4.5) and the inner sum is
over all integers ; , , . . . ,;',_, satisfying 21 - 1 ^;'/_i ^ji-i ^ . . . ^j\ < ; + 1. Here we agree
that the inner sum in (4.7) is 1 for I - 1.

REMARK. The inner sum in (4.7) is equivalently given by

where the sum is over all integers / , , . . . ,;'/_, satisfying 2/ - 3 <y, < f — 1, 2/ - 5 ^ / 2 —
/i — 2,. . . , 1 ^//-i ^7/-2 ~ 2 (with the understanding ;0 = / + 1 for / = 2).

Next, we want to determine the Kloosterman sum Ksi{ui)(\;a,b) for SL(t,q) in
(4.4). If a or b is zero, then it was treated in [6].

REMARKS, (a) If a = b=0, then KSUui)(\;O,O) = \SL(t,q)\ = (l/q-])g,(q) =
q^U'^W-l).

(b) If exactly one of a, b is zero, say a 5^0, b = 0, then /Ci7.(,,r/)(A;a,0) =
^<5>A^,_i(A;a,... ,a;a:q), where, for positive integers r,au...,ar, b E F*, the hyper-
kloosterman sum is defined as

Kr(\.;au... ,ar;b:q)= X Ha^a^ + . . . + arar +ba^]... a'1).

For this, see [6].
Assume, from now on, that ab ^ 0 . In order to determine (4.4), we need to consider a

sum which is slightly more general than that. Namely, for each a e F* (and with fixed
a, b e F£), we will consider

*,(«)= 1 A U P ' - ' V&trff1'- °lg)"'), (4.8)
sesms,) \ L 0 aJ VLO a\ I I

where t > 2.
For t = 1, we agree that

s1(a) = \(aa + ba-i). (4.9)

The decomposition in (4.4) of [3] can be modified to give

SL(t, q) - Q(t - 1,1; q)]jQ(t ~ 1,1; q)<r{C(t, q)\Q(t - 1,1; q)), (4.10)
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where

B
0 (deM)-'

C(t,q) = j«e Q(t - 1,1;

A e GL(t - 1, 9), B is of (r - 1) X 1 over F,, ,

and

O" =

0 0 1

0 1,_2 0

- 1 0 0

One can check that

\C(t,q)\Q(t -l,l;q)\ = q(q'~l - 1)1 {q - 1).

Using the decomposition (4.10), s,{a) in (4.8) can be written as

- i 0"

0 aV6 tr([1'-
\L 0 a

K6C?c-u:</)
t r U o «>°"

Here one should note that, for each q e Q(t ~ 1, \;q),

KBy(r-i.i:,,) V L 0 aJ \L 0 aJ /

S6Od-i.i:,)

(4.11)

(4.12)

Writing g e Q(l - 1,1;</) as g = \ n , , , ._ . , the first sum in (4.12) equals
L 0 (det/l) J

X A [a tr P + b tr

= 9'"'
<•> s F , )

(4.13)
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O n the o the r hand , for the second sum in (4.12) we wri te g e Q(t - 1, \;q) as

' J W l t h
(deM)

\AU A]21J A = LAJ
where A u , A l 2 , A 2 l , A 2 2 a re respectively of sizes l x l , 1 X (t - 2 ) , ( r - 2 ) x 1, (t - 2) X
(f - 2) , similarly for , 4 " ' , and B u B2 a re respectively of sizes 1 X 1, (/ - 2) X 1.

Now, the second sum in (4.12) is

2 A (a UA22 + b t r£2 2)2 A(-(fl + a~lbEu det A)Bt)Z, \(-a~lbE]2B2detA). (4.14)
A «, B2

The subsum over B2 in (4.14) is nonzero if and only if £,2 = 0, in which case it is q'~2.

[ A A 1 F £ ' 0 1
= in that case. So the subsum over B, is

A2] A 2 2 \ L * £ 2 2 J
nonzero if and only if a + a~[bEu det A = a + a~]b detA22 = 0 if and only if det A22 =
—ab~xa, in which case it is q. From these observations, we can conclude that (4.14)
equals

where the sum is over all A22 e GL(t - 2, q) with dety422 = -ab~xa. Thus this can be
written as

q2l-\q-l)s^2{-ab-'a). (4.15)

From (4.11), (4.12), (4.13), and (4.15), we see that, for t>2,

+ba-{8)sl^(8) + q2'-2(q'-'-l)s,.2(-ab-]
a), (4.16)

where, for ̂  e F^, 5,(/3) is as in (4.9) and we agree that

0, otherwise.

This convention is natural, since, for t = 2, (4.14) is

f f 1>>if """ '• (4.17)
/!„.«, 10, o therwise .

For positive integers r and « , , . . . , a r , / J , C , , . .. ,cr,d e F ^ , we define BKr(\;au...,ar;
; C|,. . . , cr; ̂  :<?), called bihyperkloosterman sum over Fq, as

r(hUh,- • • ,ar\b\cu... ,cr;d:q)

•= 2 4tajaj + bt[a]-l + tcja^+dfla\ (4.18)
y=i
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Also, we agree that

fi/C0(A; a,, ...,ar\b\cu...,cr;d:q) = X(b + d).

If fli = . . . = ar = a, c, = . . . = cr = c, then the notation in (4.18) will be abbreviated to

BKr(\;a;b;c;d:q)= £ A(O £ a, + ft f[ "7* + c 2 of1 + d fl a,) . (4.20)
«i « , E F J V / = I y=i y=i ,=i '

Now, it is elementary to see that

2 \(ar+laS~l +cr+la-lS)BKr(\;au... ,ar;bS;cu. .. ,cr;d8~l)
JcFJ

= fl/C,+,(A;a,,... , a r + , ; 6 a ; c , , . . . , c r + 1 ;da~ ' ) . (4.21)
From the recursive relation in (4.16) and using a suitable form of (4.21), the following

theorem can be proved, by induction on t, in exactly the same manner as in the proof of
Theorem 4.3 of [3].

THEOREM 4.2. For integers t ̂  1, and a,a,b e F*, the sum

seSLu.cn

defined in (4.8) and (4.9) is
|r + 2/2|

y """ 2 v - l ) . (4-22)
v = l

where fi/^,(A; a; b;c; d:q) is the bihyperkloosterman sum in (4.20), and the inner sum runs
over all integers / , , . . . , //_| satisfying 2/— 1 £/,_, <y/_2< . . . sy , <f + l vw'rft the
convention that the inner sum in (4.22) is 1 for I = 1.

/•/ere we understand that

(\(a(-ab-])k-]a + ̂ (-.a-'ft^-'o"1), fort = 2k-l odd (cf. (4.19)),

U ( - f l 6 " ' ) * a ) , for ' = 2A: ewe/i (c/. (4.17)).

Setting a = 1 in (4.22), we get the following.

COROLLARY 4.3. For integers f s l , a, b e F*, //ze Kloosterman sum KSUui)(\;a,b)
for SL(t, q), defined in (4.4), is given by

l ' + 2/2]

J 2
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where the inner sum runs over all integers / , , . . . ,/,_, satisfying 21-1 ^ / / - , ^ji-2 ^ . . .
y'i < t + 1. For bihyperkloosterman sums, see (4.18), (4.20) and (4.23).

5. SU(2n,q2) case. In this section, we will consider the sum in (1.1)

2
geSU(2n,qz)

where A' is the nontrivial additive character A of Fq lifted to F(/2. As we will see, it is a
polynomial in q with coefficients involving certain averages (over F*) of bihyperklooster-
man sums (cf. (4.20)).

Using the decomposition in Corollary 3.3, the sum in (1.1) can be written as

^ \'(trgar)+ 2 |flr\0| £ A'(trg^), (5.1)
0=£r==« g e Q 0<r</j g e Q~
reven rodd

where Br = Br(q
2), Q = Q(2n, q2), Q~ = Q~(2n, q2), ar are respectively as in (3.6), (3.2),

(3.3), (3.1). For the second sum in (5.1), one should note that hQ~ = Q~ for each h e Q.
Write g e g as in (3.9) with A,*A~\B as in (3.10). Recall here that det/4 eF,x.

withTheng<rr is |^ ^ J wi

pi, , A,2-\\ Bu 0 ]

Thus, for any r(0 < r < n),

2 2 + tr£22), (5.3)

12 e GL(n,q2) with det/4 e F* and over all
^ 2 1 ^22-1

matrices B -\ over F,2 subject to conditions Bu + *BU = 0, B22 + *B22 - 0.
L-*o,2 B22JFor each fixed A, the subum over B in (5.3) is

( 2 Z uBu)2 V(-trAl2*BJ2), (5.4)

since the summand is independent of B22. The sum over B]2 in (5.4) is nonzero if and only
if/1,2 = 0, in which case it is q2r{"~r). On the other hand, £«„ A ' ( t r ^ n f i n ) ^ 0 if and only
if /Ii, is Hermitian, in which case it equals qr2. To see this, we first need the following
lemma.

LEMMA 5.1. Let A' be the nontrivial additive character A ofFq lifted to Ff/2. Let a e ¥q2.
Then 1 if,rp"

, otherwise,
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where the sum is over all elements b e F.,2 with trF ,/F b = 0.

Proof. Choose a nonzero element £ e Ff/2 with trF 2/F f = 0. Then the sum in (5.5) is

a e F(/

which is nonzero if and only if trF ̂  of = 0 if and only if a e F,r Moreover, in that case it
equals q.

Now, let Au = (a,y), 6n = (/3,y). The condition Bu + *BU =0 is equivalent to

trF,y2/Fcy)3,,=O, f o r l < / < r ,

/3,y + /3;- = O, for 1 <i<j<*r.

Then it is not hard to see that

( ) ( X (5-6)

Hence, in view of Lemma 5.1 and (5.6), the sum over 6 n in (5.4) is nonzero if and only if
a,, e F,, for 1 < / < r and ay, = ajj for 1 < / < / < / • if and only if A n is Hermitian, in which
case it is qr\

So far we have shown that the sum in (5.4) is nonzero if and only if

A = " with /4n nonsingular Hermitian. In addition, in that case it equals
\-A2\ A22J

li,-r)2 + 2r(n-r) + r2 _ n2

For such an A = " , " '2 = " _. . Moreover, since Au is Her-
IA21 A22\ IE2\ E22\ L 0 A22i

mitian, det y4,, e F^ and hence del A e F^ is equivalent to detv422 e F(̂ .
The sum in (5.3) is

where /?,. is the number of r X r nonsingular Hermitian matrices over F(/: and the sum is
over all g e GL(n - r, q2) with det g e F^. Here we agree that hr = \ for r = 0.

Noting that \A,.(q2)\P(2n,q2)\ = \Br(q
2)\Q(2n,q2)\ and from (3.13), (3.17), (5.7), the

first sum in (5.1) equals

nfo> + (-iy)x 2 A'(trg+ *$-•), (5.8)

where g is over all elements in GL(n - r, q2) with det g e F,̂ .
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On the other hand, glancing through the above argument, we see that, for any

2 A'(trgcrr)
see-

is the same as (5.7) except that the sum is now over all geGL(n-r,q2) with
trF ,/F (detg) = 0. Thus the second sum in (5.1) is

r odd

where the sum is over all g e GL(n - r, q2) with trF;2/F((detg) = 0.
Replacing r in (5.8) and (5.9) respectively by 2r and 2r + 1, and from Theorem 4.2,

we get the following main result of this section.

THEOREM 5.2. Let A' be the nontrivial additive character A of¥q lifted to Friz. Then the
Gauss sum over SU(2n, q2)

KsSU(2n,fi2)

is given by

X

X

X

-II,1'
\n-2r+2/2]

/ - I

I=\

4v

- I ) "

a e F(̂

[«-l/2]

r={)

r -i 2

L/r "I" 1 Jf/2 y

where the first and second unspecified sums are respectively over all integers / , , . . . , / , _ ,
satisfying 2 / - 1 <y/_ | < y , _ 2 < . . . < ) , < n - 2r + 1 and over the same set of integers
satisfying 21-1 </,_, </,_2 < . . . < / , < « - 2 r //ere B/C,(A'; - ; - ; - ; - : ^ 2 ) is the
bihyperkloosterman sum over F,y: defined in (4.20), anrf 0 « a fixed nonxero element in F(/2

trF ,/F 9 = 0.

6. U{2n,q2) case. Let ^ be a multiplicative character Ff/2, and let A' be the
nontrivial additive character A of F,, lifted to ¥qi. Then we will consider the sum in (1.2)

and find an explicit expression for this.
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Using the decomposition in (3.8), the sum in (1.2) can be written as

2 \Br\Q\x(-l)r 2 ;t(detg)A'(trgcrr). (6.1)
r=() jef

Write g e P as in (3.9) with A, *A~\ B as in (3.10). Note here that, in contrast to the
SU(2n,q2) case, we don't have any restriction on A. The inner sum in (6.1) is

*fl12). (6.2)
H

As we saw in Section 5, for each fixed A the sum over B in (6.2) is nonzero if and only if

A = \ " with A11 nonsingular Hermitian. In addition, in that case it is a"2. Also,
L42, A22\

det A detv422for such an A, — = - —, since delAu = (de\.AuY. Thus (6.2) equals
(det/4) (det/422)

q ZJ 2J

KSG7.("-r.r/2)

= q"2+2r("-r% 2 X"-\detg)y(tTg + trg-i), (6.3)

where hr denotes the number of r X r nonsingular Hermitian matrices over F(/2 for a
positive integer r and hn = 1.

So, from (6.1) and (6.3), the sum in (1.2) equals

q"1 E \Br\Q\X(-iyq2r('-r)hrKaUn_r.ll2)(y,x"-]; 1, 1) (6.4)
r = O

in the notation of the twisted Kloosterman sum defined by (4.2).
Finally, we obtain the following main theorem of this section from (3.13), (3.17),

(4.7), and (6.4). Recall here that, as we noted in Section 5, \Br\Q\ = \A,\P\.

THEOREM 6.1. Let x be a multiplicative character of F(/2, and let A' be the nontrivial
additive character A of¥q lifted to F(/2. Then the Gauss sum over U(2n,q2)

KsU(2n.<i2)

is given by

\n-r + 2l2\ l-\

X 2 ^(A',/'-';l , l:^)"—2-2 / iri(^4 v-l), (6-5)
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where the innermost sum is over all integers / ) , . . . , ; " / _ , satisfying 2 / - 1 <;',_, <y',_2^
. . . <;', < n - r + 1, and K(\', %''~u, 1, 1 :q2) is the usual twisted Kloosterman sum defined
in (4.5).

Separating terms with even r and those with odd r in (6.5), we get the following
equivalent form of the above theorem.

COROLLARY 6.2. Let x, A' be as in the above theorem. Then the Gauss sum over
U(2n,q2)

get/(2n.</2)

given by

q2n>-«-2

r = 0 LZr_l,;2y=1

x 2 <
/=l

[n-1/2] r -i 2r+l

2 L n
r -i 2r+lr+i)L +1 nw

[/7-2/-+I/2] I-] -I

x 2 ^ ( A ' . r - ; i; i:<72r2(-+|-2/:2 II (^'"4v-i) . (6-6)
1=1 v = l J

/2e / i re / a n d second unspecified sums are respectively over all integers / , , . . . ,/,_,
satisfying 2 / — 1 ^ / / _ i —J1-2 — ••• —j\ — n — 1r + 1 an( / o v e r f/ie s a m e set of integers
satisfying 2/ - 1 <;',_, <;,_2 < . . . < ; , < « - 2r, and /C(A', / ' " ' ; 1,1; <?2) is as in (4.5).

REMARK. Note that AV</2/F(/(detg) = 1 for ge U(2n,q2). So if ^ is a multiplicative
character of F^ lifted from that of F, then #(det q) = 1 for g e (/(2n, <72).

7. Application to Hodges' Kloosterman sum. In [2], the generalized Kloosterman
sum over nonsingular Hermitian matrices is defined as, for t x / Hermitian matrices A,B
over F,,2,

KllermM, B) = 2 A,(tr(/lg + Bg-% (7.1)

where g runs over the set of all nonsingular Hermitian matrices over F,̂  of size /. Here A,
is as in (2.2), and one should note that, for Hermitian matrices C, D over F,y2 of size t,
(tr CD)r = tr*(CD) = tr *D*C = tr DC = tr CD and hence tr CD e F,,.

Now, in Theorem 6 of [2] we take m = t = 2n, A = B=J in (2.5), X = al2n with
0 T4 a e F(/. Then we get the following identity

= Kllerm,2n{a2r\J). (7.2)
Ke£/(2/i,</2)

This is summarized in the following result.
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THEOREM 7.1. For 0¥=a e Ft/, we have the identity:

95

= Kllcrm2l,{a2C-\C), (7.3)

where \a is as in (2.2) and C is any nonsingular Hermitian matrix over Ft/i of size 2n.

REMARK. (1) Here we don't have to assume that q = p'1 is a power of an odd prime.
In fact, the whole discussion in [2] is valid even for p = 2 if the "conjugate" of a in Ff/2
means aT.

(2) The second identity in (7.3) is clear from the definition of Kloosterman sum in
(7.1).

From (7.3) and Theorem 6.1, we have the following theorem.

THEOREM 7.2. Let O^a e F(/, and let C be any nonsingular Hermitian matrix over F(/2
of size 2/7. Then the following generalized Kloosterman sum over nonsingular Hermitian
matrices is the same for any such a C, and

.2,,(«2C-\ C) = q2"2— rifa''+(-iy)
<r i= i

\n-r + 2/2\ /-I
v V r^irtx'-A 1 • • , 2 V' - r + 2 - 2 / Y FTX 2J Q MA,,, J, l.q ) 2J ii 4 " - 1) ,

where the innermost sum is over all integers / | , . . . , y ' / _ i satisfying 21 — 1 ̂ / / - i —ji-2 —
... < / , < n — r + 1, and /C(A,'; 1, 1; q2) is the usual Kloosterman sum given by

K(X;,;l,\;q2)= 2 A > + er').
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