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Abstract. The averaged four-planetary motion theory is constructed up to the third order in
planetary masses. The equations of motion in averaged elements are numerically integrated
for the Solar system’s giant planets for different initial conditions. The comparison of obtained
results with the direct numerical integration of Newtonian equations of motion shows an excellent
agreement with them. It suggests that this motion theory is constructed correctly. So, we can
use this theory to investigate the dynamical evolution of various extrasolar planetary systems
with moderate orbital eccentricities and inclinations.
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The osculating Hamiltonian of the four-planetary problem is written in Jacobi
coordinates. Then it is expanded into the Poisson series in the small parameter
and orbital elements of the second Poincaré system. This algorithm is described in
(Perminov, Kuznetsov (2015)).

The averaged Hamiltonian is constructed by the Hori–Deprit method. The imple-
mentation of the Hori–Deprit algorithm is considered in (Perminov, Kuznetsov (2016)
and Perminov, Kuznetsov (2020)). The first-order terms of the averaged Hamiltonian are
constructed up to 6th degree in eccentric and oblique Poincaré elements, the second-order
and third-order terms are constructed up to 4th and 2nd degrees correspondingly.

The equations of motion in averaged elements are integrated by the Everhart method
of 15th order (Everhart (1974)) with a time step of 1000 years to modeling of the orbital
evolution of the Solar system’s giant planets for different initial conditions (according to
DE 432 ephemeris). Also, the same simulation is performed by Wisdom–Holman inte-
grator with symplectic corrector of 11th order (Rein, Tamayo (2015)) and a time step of
4 days. The Time interval of the integration is 100 Myr for all cases. The limits of the
change of osculating orbital eccentricities (emin, emax) and inclinations (Imin, Imax) in
barycentric frame giving by semi-analytical (SA) motion theory and Wisdom–Holman
(WH) methods are presented in Table 1 for four initial dates of the integration (at the
moment 00h00m00s UTC). The transition from averaged elements to osculating ones is
carried out using the variables change functions of the first order. Table 2 presents the
periods of the change of averaged orbital elements and the MEGNO indicator, which is
computed in the process of the numerical simulation for each initial date.

The differences between periods of the change of orbital inclinations obtained by
numerical methods and semi-analytical motion theory do not exceed 0.2% for all planets
and all initial conditions. These discrepancies between periods of the change of orbital
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Table 1. The range of osculating orbital eccentricities and inclinations.

Date Theory emin emax Imin ,
◦ Imax ,

◦ emin emax Imin ,
◦ Imax ,

◦

Jupiter Saturn

31.01.2016 SA 0.025428 0.061603 1.093929 2.065336 0.012644 0.086018 0.557715 2.600120

WH 0.025074 0.061959 1.093609 2.062945 0.009449 0.087273 0.561106 2.595098

29.02.2016 SA 0.025663 0.061743 1.093711 2.065397 0.012919 0.086132 0.559167 2.597615

WH 0.025252 0.062026 1.095261 2.063808 0.009323 0.087498 0.561043 2.596079

31.01.2020 SA 0.026164 0.061377 1.089352 2.066233 0.012506 0.085095 0.559413 2.599554

WH 0.025670 0.061914 1.094836 2.065492 0.009516 0.087377 0.560680 2.595056

29.02.2020 SA 0.025727 0.061232 1.094927 2.065816 0.012196 0.085157 0.563841 2.595928

WH 0.025180 0.061789 1.094095 2.062955 0.009289 0.087229 0.565407 2.594549

Uranus Neptune

31.01.2016 SA 0.006304 0.071602 0.391638 2.766937 0.003247 0.015126 0.775906 2.376785

WH 0.003386 0.073773 0.378761 2.777150 0.002383 0.016046 0.773544 2.373315

29.02.2016 SA 0.006084 0.071265 0.425230 2.740155 0.003322 0.015133 0.780070 2.374410

WH 0.003572 0.073201 0.427249 2.734788 0.002635 0.015978 0.783357 2.373475

31.01.2020 SA 0.005017 0.070079 0.446119 2.718907 0.003483 0.014972 0.769256 2.390563

WH 0.002174 0.071974 0.444978 2.728521 0.002727 0.015824 0.777828 2.379745

29.02.2020 SA 0.005501 0.070569 0.414775 2.735945 0.003487 0.014914 0.776324 2.380880

WH 0.002735 0.072512 0.430827 2.730216 0.002553 0.015786 0.779464 2.379941

Table 2. The periods of osculating orbital elements and the MEGNO indicator.

Jupiter Saturn Uranus Neptune Jupiter Saturn Uranus Neptune

Date Theory Periods of orbital Periods of orbital MEGNO

eccentricities, years inclinations, years

31.01.2016 SA 54 675 54 675 1 136 375 537 640, 364 967 49 213 49 213 432 905 1 886 811 2.28

WH 54 735 54 735 1 136 375 534 765, 363 640 49 141 49 141 432 905 1 886 811

29.02.2016 SA 53 764 53 764 1 136 375 537 640, 364 967 49 262 49 262 432 905 1 886 811 6.69

WH 54 055 54 055 1 123 607 534 765, 362 323 49 189 49 189 432 905 1 886 811

31.01.2020 SA 51 949 51 949 1 111 122 540 546, 363 640 49 432 49 432 432 905 1 886 811 103.63

WH 51 841 51 841 1 098 912 537 640, 362 323 49 335 49 335 432 905 1 886 811

29.02.2020 SA 54 113 54 113 1 123 607 540 546, 364 967 49 335 49 335 432 905 1 886 811 1.99

WH 53 677 53 677 1 111 122 537 640, 362 323 49 237 49 237 432 905 1 886 811

eccentricities of Jupiter and Saturn are in the range 0.1% – 0.8%. These differences do not
exceed 1.1% and 0.7% correspondingly for Uranus and Neptune. The discrepancies for
minimal and maximum values of the orbital eccentricities and inclinations do not exceed
a few percent, except minimal orbital eccentricities of Saturn, Uranus, and Neptune.

The constructed semi-analytical motion theory can be used to study the orbital evo-
lution and stability of extrasolar planetary systems with moderate orbital eccentricities
and inclinations. The orbital elements of extrasolar systems are known from observations
with highly uncertain, and some elements are not determined due to the specificity of
the observation methods. We can vary unknown and known with errors orbital elements
within allowable limits to determine the set of various initial conditions for modeling the
orbital evolution. The limits of the change of orbital elements can be determined depend-
ing on the specific initial conditions. The assumption about the stability of observed
planetary systems allows us to exclude the initial conditions leading to extreme values of
the orbital eccentricities and inclinations that identify those under which these elements
conserve small or moderate values over the whole modeling interval. Thus, it is possible
to narrow the allowable range of unknown orbital elements and determine their most
probable values in terms of stability.
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