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Abstract

Background. Electroconvulsive therapy (ECT) is effective for treatment-resistant depression
and leads to short-term structural brain changes and decreases in the inflammatory response.
However, little is known about how brain structure and inflammation relate to the heterogen-
eity of treatment response in the months following an index ECT course.
Methods. A naturalistic six-month study following an index ECT course included 20 subjects
with treatment-resistant depression. Upon conclusion of the index ECT course and again after
six months, structural magnetic resonance imaging scans and peripheral inflammation mea-
sures [interleukin-6 (IL-6), IL-8, tumor necrosis factor (TNF-α), and C-reactive protein] were
obtained. Voxel-based morphometry processed with the CAT-12 Toolbox was used to esti-
mate changes in gray matter volume.
Results. Between the end of the index ECT course and the end of follow-up, we found four
clusters of significant decreases in gray matter volume (p < 0.01, FWE) and no regions of
increased volume. Decreased HAM-D scores were significantly related only to reduced IL-8
level. Decreased volume in one cluster, which included the right insula and Brodmann’s
Area 22, was related to increased HAM-D scores over six months. IL-8 levels did not mediate
or moderate the relationship between volumetric change and depression.
Conclusions. Six months after an index ECT course, multiple regions of decreased gray
matter volume were observed in a naturalistic setting. The independent relations between
brain volume and inflammation to depressive symptoms suggest novel explanations of the
heterogeneity of longer-term ECT treatment response.

Introduction

Electroconvulsive therapy (ECT) was established as an effective intervention for depression
over 80 years ago, and with technical refinements to maximize safety (Kaster et al., 2021), it
is associated with response rates of 60–80% (Bauer et al., 2013; Espinoza & Kellner, 2022)
and remission rates over 50% (Bahji, Hawken, Sepehry, Cabrera, & Vazquez, 2019; Dierckx,
Heijnen, van den Broek, & Birkenhager, 2012). ECT is one of the few avenues for
treatment-resistant depression (Bahji et al., 2019), which affects at least 30% of people with
depression (Fava, 2003; Rush et al., 2006; Zhdanava et al., 2021). Although the mechanism
of ECT is not precisely known, it may be associated with both relatively acute changes in
neural plasticity (Gbyl & Videbech, 2018; Joshi et al., 2016; Mulders et al., 2020; Oltedal
et al., 2018) and inflammation (Belge et al., 2020; Yrondi et al., 2018).

Volumetric increases in the hippocampus and amygdala occur after the index ECT
course (Joshi et al., 2016; Qiu et al., 2016; Sartorius et al., 2016), yet few studies have
explored the durability of structural gray matter changes afterward. One study measured
structural changes in 14 subjects six months after the ECT course and found reduced orbi-
tofrontal thickness and decreased hippocampal volume (Gbyl et al., 2019). A second study
followed 12 subjects 10–36 months after an index ECT course and reported decreased hip-
pocampal and thalamic volume (Jehna et al., 2021). Finally, a third study that assessed brain
volume six months after an index ECT course did not report direct comparisons between
volumes at the end of an index ECT course and the six-month follow-up (Brancati et al.,
2021). However, aside from the right amygdala, none of the 97 regions of interest signifi-
cantly differed from pre-treatment volumes, which suggests a widespread volumetric
decrease after six months.
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None of the three previous longitudinal studies reported the
relationship between changes in volume/thickness and changes
in mood six months after the index ECT course. The average
depression scores were roughly equivalent at the end of index
ECT and follow-up in all studies. However, the similarity of
mean depression scores at the end of index ECT and follow-up
does not mean there is no relationship between mood and
brain structure. That is, depressive symptoms and brain structure
may change in subgroups of subjects even though mean depres-
sion measures do not; this hypothesis is the focus of the present
investigation.

The role of inflammation in depression is well-documented
(Haroon et al., 2018; Howren, Lamkin, & Suls, 2009; Leonard,
2018; Osimo et al., 2020; Petralia et al., 2020; Roman & Irwin,
2020) and several studies have suggested that inflammation, as
measured by peripheral cytokine concentrations, may play a
role in ECT mechanisms (Carlier et al., 2019; Stippl, Kirkgoze,
Bajbouj, & Grimm, 2020; Yrondi et al., 2018). For example, higher
IL-6 levels at baseline predict a more favorable response to an
index ECT course (Kruse et al., 2018) and subsequent increases
in IL-8 over the course of ECT treatment predict treatment
response to ECT in females (Kruse et al., 2020). Generally, IL-6
and TNF-α levels appear to decrease after index treatment with
ECT, though the findings are somewhat variable, possibly because
of small sample sizes (Yrondi et al., 2018). A recent study reported
an inverse association between IL-6 and TNF-α levels and hippo-
campal volume after an index ECT course, though neither change
was related to ECT response (Belge et al., 2020). Thus, while there
is a growing body of evidence that inflammation may predict
treatment response to ECT and that ECT provokes inflammatory
changes, little evidence relates inflammation and brain structure
to the heterogeneity of longer-term ECT response.

This six-month study sought to determine the relationship
between brain volume, inflammation, and depressive symptoms
after an index ECT course. We obtained structural magnetic res-
onance imaging (MRI) scans and measures of peripheral inflam-
matory markers from participants after an index ECT course and
again after six months to estimate changes in gray matter volume
and inflammation. Though inflammatory changes have not been
explored six months after index ECT, we anticipated that inflam-
mation would be related to changes in brain volume based on
studies of index ECT. We further hypothesized that decreased
gray matter volume (particularly in temporal and hippocampal
regions) would be related to increased depressive symptoms six
months after ECT.

Methods

Participants

Participants (n = 20; 10 males; 10 females) were recruited from
individuals receiving ECT at the University of California Los
Angeles (UCLA) Resnick Neuropsychiatric Hospital. Demographic
characteristics are provided in Table 1. Participants were a subset
of those described in previous work (Joshi et al., 2016; Kruse
et al., 2018, 2020; Kubicki et al., 2019; Leaver et al., 2019) investigat-
ing changes from pre-ECT baseline to the end of an index ECT
course. The UCLA Institutional Review Board approved this study.

Subjects met DSM-IV TR criteria for a major depressive epi-
sode (MDD: n = 18; bipolar disorder: n = 2), which was confirmed
by psychiatric evaluation and Mini-International Neuropsychiatric
Interview (MINI) (Sheehan et al., 1998). All subjects had at least

two prior major depressive episodes and had to meet the oper-
ational definition of treatment-resistant depression by failing to
respond to a least two antidepressants in the current episode
(Gaynes et al., 2020; Sackeim, 2001; Souery et al., 1999).

Exclusion criteria included comorbid psychiatric disorders,
dementia, first-episode depression, depression onset after 50
years of age, depression related to serious medical illness, or
any neuro-modulation treatment (e.g. vagal nerve stimulation,
repetitive transcranial magnetic stimulation) within six months
of an index ECT course. Participants were excluded if they had
a history of alcohol or substance abuse within the past six months
and/or dependence within the past year, any neurological dis-
order, or contraindication to MRI. Prior treatment with ECT
was not an exclusion criterion.

Procedure

Participants received an index course of ECT per the usual clinical
protocol and were followed for six months. We obtained
structural MRI scans at the end of the index treatment and the
six-month follow-up and, for some participants, measures of
peripheral inflammatory markers. Mood was assessed at both
time points with the 17-item Hamilton Depression Rating Scale
(HAM-D) (Hamilton, 1960).

ECT treatment

The seizure threshold titration method of ECT (5000Q MECTA
Corp.) was used. ECT treatments were administered beginning
with right unilateral d’Elia lead placement, using an ultra-brief pulse-
width (0.3 msec) and a charge at 6 × seizure threshold. If there was
insufficient clinical response after 10 treatments, then placement was
switch to bitemporal with a charge at 2 × seizure threshold, using a
brief pulse-width (0.5msec). For the index course, ECT was admi-
nistered three times a week, for a mean total of 11.1 sessions per
participant (range 6–16 sessions), using a standard protocol
(methohexital and succinylcholine) for anesthesia (Kruse et al.,
2020). Participants resumed pharmacological antidepressants per
clinical guidelines. Because this study was naturalistic, some partici-
pants received maintenance ECT, some antidepressants, and some a
combination as clinically determined. Response to index ECT was
defined as ⩾ 50% reduction in HAM-D score from initiation to
the end of index treatment. During the six-month follow-up, nine
subjects received maintenance ECT.

Table 1. Demographics and clinical characteristics

Mean or n

Age 42.5 (13.7)

Age at onset 27.2 (12.4)

Sex: Male/Female (n) 10/10

HAM-D pre-ECT 26.2 (5.8)

HAM-D at the end of index 12.7 (7.3)

HAM-D at follow-up 11.5 (7.2)

Maintenance ECT (n) 9

Antidepressants after index ECT (n) 4

Maintenance ECT + Antidepressants (n) 3

Note: Standard deviation in parentheses. n = 20.
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Image acquisition

All subjects were scanned on a 3 T Allegra MRI scanner (Siemens
Medical Systems, Erlangen, Germany) with a structural motion-
corrected (Tisdall et al., 2012) multi-echo magnetization prepared
rapid acquisition gradient-echo (MPRAGE) sequence (TEs/TR =
1.74, 3.6, 5.46, 7.32/2530ms, TI = 1260ms, FA = 7°; field of view =
256 × 256mm; matrix = 256 × 192; voxel size = 1.3 × 1 × 1mm3).

MRI data analysis

MRI scans were normalized to the standardized MNI template
within SPM using a 12-parameter affine registration with 1.5 mm
isotropic voxels and then segmented into gray and white matter
using the default ICBM tissue probability map. The segmented
gray matter images were modulated to account for the previous
effects of spatial normalization and smoothed with an 8mm full-
width at half-maximum Gaussian kernel. Longitudinal image pre-
processing was performed within the Computational Anatomy
Toolbox (CAT12 v1450; http://www.neuro.uni-jena.de/cat) using
Statistical Parametric Mapping Software (SPM12 v6906; http://
www.fil.ion.uclac.uk/spm/software/spm12/). CAT12 longitudinal
processing is optimized for detecting brain plasticity with voxel-
based morphometry (VBM) over periods ranging from weeks to
months and has been applied in prior longitudinal studies of
depression (Yuksel et al., 2018). For whole-brain analyses, the
resulting gray matter volumes were analyzed using a general linear
model within SPM12 in which follow-up volume was predicted by
the end of index treatment volume, with total intracranial volume
included as a time-varying covariate. Statistical significance was
set at p < 0.01, using family-wise error (FWE) correction for mul-
tiple comparisons. Mean volumes of the resulting significant clus-
ters were computed for each subject using the mean volume tool
within CAT12 for subsequent analyses. For region-of-interest ana-
lyses (ROI), we computed atlas-based volumes (Maldjian, Laurienti,
Kraft, & Burdette, 2003) and analyzed change as above using
CAT12. Volumes were converted to Talairach space and labels
assigned using the Talairach daemon with WFU PickAtlas.

Inflammatory markers

We obtained measures of peripheral inflammatory markers from a
subset of participants at the end of index treatment and follow-up
(n = 16 for CRP; n = 15 for all others). There were no statistically
significant differences between participants from whom we
obtained follow-up measures of inflammatory markers and those
from whom we did not with respect to age, t(18) = –0.74, p =
0.47, HAM-D at end of index ECT course treatment, t(18) =
0.40, p = 0.70, or HAM-D at follow-up, t(18) = –0.81, p = 0.43.

All blood samples were collected within one week of the last
index ECT treatment, between 8–11 a.m., to avoid diurnal
variation. We used established procedures with a Bio-Plex 200
(Luminex) instrument and a high-sensitivity multiplex immuno-
assay (Performance High Sensitivity Human Cytokine, R&D
Systems, Minneapolis, MN) to assay IL-6, IL-8, and TNF-α.
CRP plasma levels were measured with the Human CRP
Quantikine ELISA (R&D Systems) using the manufacturer’s
protocol and the following modifications: samples were diluted
500-fold, and the standard curve was extended to 0.4 ng/mL to
obtain a lower limit of detection of 0.2 mg/mL, accounting for
sample dilution (Boyle et al., 2020). Samples were measured in
duplicate, and all samples from a subject were tested in the

same batch on the same assay plate. The mean of the samples
was used in analyses.

Statistical analyses

Because cytokine and CRP data were not normally distributed,
measures were logarithmically transformed and corrected for
BMI (Haroon et al., 2016; Kruse et al., 2018, 2020). All follow-up
measures (cytokines, CRP, HAM-D) were adjusted for corre-
sponding values at the end of index treatment to account for ini-
tial differences. ECT maintenance administration was effect coded
for analytic purposes. Univariate linear regression was used to test
relations between cytokines, CRP, and adjusted follow-up
HAM-D score and mean change in cluster volumes over time.
For exploratory purposes, we examined whether clusters of volu-
metric change between end of index ECT course and six-month
follow-up predicted response to index ECT (see online
Supplement). All analyses were performed with Stata/BE v17 for
MacOS. The statistical significance level was set at p < 0.05.

Results

Demographic characteristics of subjects are provided in Table 1.

VBM analyses

Six months after the end the index ECT course, we found wide-
spread decreased gray matter volume relative to the end of the
index ECT course (Fig. 1). Our VBM analysis revealed four statistic-
ally significant clusters of decreased gray matter volume depicted in
Fig. 2, with their peak-level voxel coordinates provided in Table 2.
The first cluster included Brodmann’s Area (BA) 9/32 (prefrontal/
anterior cingulate) and precuneus; the second included right insula
and BA 22 (superior temporal gyrus); the third included the left
insula and caudate; the fourth included the right middle temporal
gyrus (BA 21). There were no statistically significant increases in
gray matter volume between the end of index treatment and
follow-up, nor were there any significant decreases in hippocampal
or amygdala volumes in our whole-brain analyses.

Volumetric changes and mood

To evaluate the relation between the decreases in gray matter vol-
ume in the four clusters and change in HAM-D scores, we per-
formed linear regression analyses controlling for age and found
that decreased volume in Cluster 2 corresponded to increased
HAM-D scores after the follow-up period, t(17) = 2.63, p = 0.02.
The presence of maintenance ECT did not alter the relationship
between Cluster 2 volume changes and HAM-D, t(16) = 2.32,
p = 0.03. No other clusters were significantly related to changes
in HAM-D scores.

To summarize, six months after the index ECT course,
decreased Cluster 2 volume, including the right insula, parietal
lobe, and inferior frontal gyrus, corresponded to worsening
depressive symptoms. This relationship did not vary according
to whether subjects received maintenance ECT.

Responder v. non-responder status

Twelve subjects responded to the index ECT course, defined by
a decrease of at least 50% in HAM-D scores after treatment
(Joshi et al., 2016). Because there was a significant difference in
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HAM-D change over the six-month follow-up period between
responders and non-responders, t(18) = 3.29, p = 0.004, we
checked whether the relationship between volumetric change
and mood varied as a function of the index response to ECT.
To do this, we again performed linear regression analyses predict-
ing HAM-D change scores but included responder status and the
interaction between responder status and change in cluster vol-
ume. The volumetric cluster change and responder status were
not significant for either cluster, with both p’s > 0.50. However,
the relations between HAM-D change scores and volumetric
change remained significant for Cluster 2, t(16) = –2.32, p =
0.03. Thus, the relationship between volumetric change and
mood after six months did not vary according to whether partici-
pants initially responded to the index ECT course.

The lack of interaction between changes in gray matter volume
and responder status is likely attributable to the heterogeneity of
depressive symptoms over the six-month follow-up. As shown
in Fig. 2, roughly half the non-responders improved, whereas
half the responders exhibited worsening depressive symptoms
during follow-up. The bidirectional change in mood for both
responders and non-responders explains why we could detect
individual differences between structural gray matter changes
and HAM-D scores in the absence of mean difference between
the end of index treatment and follow-up scores.

End of index measures as predictors of follow-up HAM-D score

We also checked whether volumetric and inflammatory measures
at the end of the index ECT course predicted depressive symp-
toms at follow-up. We performed regression analyses in which
the follow-up HAM-D score was predicted by the end of index
cluster volume or inflammation measures, controlling for age.
HAM-D score at follow-up was significantly related only to the
end of index volumes of Cluster 3, t(17) = 2.30, p = .03, and
Cluster 4, t(17) = 2.52, p = .02.

Inflammatory measures, volumetric changes, and mood

Mean levels of inflammatory measures at the end of index course
and follow-up are provided in Table 3. In product-moment corre-
lations among the inflammatory measures, decreased IL-8 levels
were significantly related to decreased HAM-D scores, r = 0.65,
p = 0.01. Concerning relations between inflammatory measures
and changes in brain volume, IL-8 levels were inversely correlated
with volumetric changes in Cluster 4, r =−0.52, p = 0.05. Changes
in CRP levels were negatively, though not significantly, correlated
with volumetric changes in Cluster 3, r = −0.47, p = 0.07. No
other correlations between cytokines and changes in cluster
volumes were statistically significant, all p’s > 0.05.

Fig. 1. Four significant clusters of decreased gray matter volume were observed six months after the index course of ECT. Images are thresholded at p < 0.01 (FWE).
There were no regions of significant volumetric increase. Cluster numbers correspond to peak voxel labels provided in Table 3. Numbers next to axial slices for
Clusters 2 and 3 refer to Talairach x-coordinates. (FWE, Family-wise error).
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IL-8 as a mediator or moderator of depression and plasticity
relationship

We next checked the degree to which inflammatory change
mediated or moderated the relationship between changes in brain
volume and depression. We restricted our analyses to Cluster 2,
the only cluster significantly related to HAM-D changes. Because
of the limitations in power imposed by our sample size, we consider
the mediator/moderator analyses to be preliminary.

We tested the hypothesis that IL-8 may have served as a medi-
ator with a standard mediation approach (Baron & Kenny, 1986).
First, we found a significant relationship between volumetric
change in Cluster 2 and HAM-D change, as we described
above. Second, we did not find a statistically significant relation-
ship between Cluster 2 change and IL-8 change, r = 0.17, p =
0.54, which means mediation conditions were not satisfied.

Nevertheless, we performed the third step of the mediation
approach by performing regression analyses in which HAM-D
change was predicted by Cluster 2 change and IL-8 change. The
results of the regression analyses are provided in Table 4. The
inclusion of IL-8 in the regression analysis did not affect the rela-
tionship between Cluster 2 and HAM-D. Thus, because there was
no significant relationship between IL-8 and Cluster 2 change and
IL-8 did not explain the relationship between HAM-D and
Cluster 2 change, we did not find evidence that IL-8 met medi-
ation criteria.

Next, we tested whether IL-8 moderated the relationship between
HAM-D and Cluster 2 change by performing a linear regression
analysis in which HAM-D change was predicted by both IL-8
change and Cluster 2 change. The moderation test in this equation
is the Cluster 2 × IL-8 interaction term, which failed to achieve stat-
istical significance, thus providing no evidence that IL-8 moderated
the relationship between Cluster 2 and HAM-D score.

Discussion

This study provides evidence of mechanisms of heterogeneity of
depressive symptoms six months after the index ECT course.

Table 2. Coordinates of peak-level voxels of significant clusters of gray matter
changes between the end of index course and follow-up

Peak coordinates

Cluster
sizex y z

Follow-up > End of index No significant
differences

Follow-up < End of index

Cluster 1 (R BA 9/32/precuneus) 2 −69 54 5909

Cluster 2 (R insula, BA22) 51 −15 21 5331

Cluster 3 (L Insula & caudate) −44 4 6 4689

Cluster 4 (R BA 21) 70 −32 −2 1267

Note: For all clusters: p < 0.01, FWE-corrected. Cluster size provided in voxels. Coordinates
are in Talairach space. (FWE: Family-wise error).

Fig. 2. Change in HAM-D scores from the end of the index ECT course to six-month follow-up according to whether participants responded to the index ECT course.
Response was defined as a decrease in the HAM-D score of at least 50% from pre-treatment to end of the index ECT course.

Table 3. Mean inflammatory levels at the end of index course and follow-up

Measure End of index course Six-month follow-up

IL-6 (pg/mL) 2.1 (2.1) 1.7 (1.3)

IL-8 (pg/mL) 3.8 (1.9) 3.2 (3.2)

TNF-α (pg/mL) 6.9 (3.5) 6.9 (3.5)

CRP (mg/L) 3.3 (5.6) 3.4 (3.6)

CRP (n = 16); IL-6, IL-8, & TNF-α (n = 15).
Standard deviation in parentheses.
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Decreased volume in one cluster, including the insula and caud-
ate, was related to increased depressive symptoms after six
months. Additionally, IL-8 levels inversely correlated with volu-
metric change and correlated with decreased depressive symp-
toms over the same period but did not mediate the relationship
between brain volume and depression. Thus, after the index
ECT course, brain plasticity and inflammation were independ-
ently related to depressive symptoms.

Our results extend previous findings by providing evidence of
widespread volumetric decreases six months after the index ECT
course. We demonstrated that volumetric decrease in the insula,
parietal cortex, and inferior frontal gyrus was related to changes
in depressive symptoms. Our findings of volume decrease in the
temporal cortex, insula, and caudate volume six months after
the index ECT course support results from a previous study
(Gbyl et al., 2019). Although the governing factors of volumetric
changes six months after index ECT are unclear, our finding of
relationships to depressive symptoms suggests that the neural
changes were not arbitrary.

Structural brain changes are associated with recovery from
depressive episodes in both bipolar (Brooks et al., 2009; Brooks,
Foland-Ross, Thompson, & Altshuler, 2011; Wise et al., 2017)
and major depressive disorders (Wise et al., 2017; Yuksel et al.,
2018). There are widespread increases in brain volume after index
ECT (Ousdal et al., 2020) and notable increases in hippocampal
and amygdala volume (Brancati et al., 2021; Camilleri et al.,
2020; Joshi et al., 2016; Oltedal et al., 2018; Ousdal et al., 2021;
Sartorius et al., 2016). Hippocampal volume increases are not
consistently related to clinical improvement (Oltedal et al., 2018;
Sartorius et al., 2016, 2019) though there is evidence that structural
and functional connectivity of hippocampal circuits as measured by
diffusion and functional MRI is related to ECT response (Kubicki
et al., 2019; Leaver et al., 2019; Leaver et al., 2021).

Unlike previous work, we did not find evidence of decreased
hippocampal volume six months after the index ECT course.
Two studies reported hippocampal volume decreases after 6–36
months (Jehna et al., 2021; Nordanskog, Larsson, Larsson, &
Johanson, 2014) and one did not (Brancati et al., 2021), though
none reported relationships with depression outcome. While we
did not find evidence of hippocampal volume decreases, there
are several potential explanations for the variable findings.
Previous studies used different methodologies, though ours was
designed to maximize sensitivity to detect longitudinal volumetric
change (Gaser, Dahnke, Kurth, Luders, & Initiative, 2021). Our
sample was somewhat larger those in previous studies, so our
study would likely be slightly more sensitive to detect hippocam-
pal change. Under relaxed statistical significance criteria, there
was a trend toward a reduction in hippocampal volume in our
sample. Regardless, the evidence of relations between depression
and structural changes highlights the potential significance of
structural changes.

We found that increased levels of IL-8 corresponded to
increased depression six months after the end of the index ECT
course. This finding contrasts with our previous work, in which
increased IL-8 levels after index ECT were associated with better
response in females (Kruse et al., 2021). Further, we found that
higher levels of IL-8 mitigated the risk of depressed mood in
response to an inflammatory challenge (Kruse et al., 2022), and
higher levels of IL-8 predicted a reduced risk of incident major
depressive (Irwin, Olmstead, Kruse, Breen, & Haque, 2022). In
a subsequent comparison in this study, we observed that the
relationship between IL-8 levels and depressive symptoms was
stronger in males than in females, though our sample size did
not allow for statistical inference.

Our study focused on IL-8 levels six months after the index
ECT series, but it is interesting that immediately after the index
series, others reported increased IL-8 CSF levels (Mindt,
Neumaier, Hoyer, Sartorius, & Kranaster, 2020). We cannot
determine the reason for such differences from our data, though
index ECT, with frequent, repeated seizures, may stimulate IL-8 to
provide neuroprotective properties. Subsequently, in the absence
of repeated seizure activity, a pattern closer to that observed in
animal models may prevail in which increased IL-8 levels are
associated with decreased gray matter volume (Thirumangalakudi,
Yin, Rao, & Grammas, 2007). In essence, index ECT may lead to
inflammatory neurotrophic effects that are subsequently down-
regulated (Cavaleri & Bartoli, 2022). A greater understanding of
the relationship between inflammation and depressive symptoms
after the index ECT course requires a larger sample and more
detailed analyses, which we are exploring in future studies.

Although mean depression scores did not change between the
end of index ECT course and follow-up, there was substantial
individual variability. The individual variations in volume and
inflammation were related to changes in depressive symptoms.
Our sample size does not permit us to characterize subgroups
of patients, but our findings of individual differences in the rela-
tionships between depressive symptoms, brain volume, and
inflammation suggest that subgroups exist. The independent rela-
tionships between individual differences in depressive symptoms
and brain plasticity and inflammation highlight the importance
of individual differences in detecting underlying depressive
mechanisms. Our longitudinal findings suggest that the perturba-
tions of depressive mechanisms after the index ECT course may
dissipate over six months.

Conclusions and limitations

Our study has several limitations that affect generalizability. The
absence of a control group means we cannot conclude that the
observed changes in gray matter volume were not attributable to
extraneous factors. Although we cannot exclude time-related
changes as a contributor to decreases in gray matter volume,

Table 4. Analyses of inflammation as a meditator of the relationship change in HAM-D scores and change in regional brain volume HAM-D change as dependent
variable

Without IL-8 With IL-8

Predictors Coeff t p Coeff t p

Cluster 2 volume change 134.2 2.63 0.02 113.3 2.55 0.03

IL-8 change – – – 15.7 3.17 0.01

All variables were corrected as described in the main text. Interaction terms were not significant and removed from the final regression equation.
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previous studies did not observe changes in gray matter volume or
thickness in healthy controls subjects scanned twice during a per-
iod comparable to the index ECT course (Jehna et al., 2021; Joshi
et al., 2016; Pirnia et al., 2016). We had sufficient power to detect
effects for several inflammatory markers, but our sample size may
not have allowed us to detect differences or sex-related interactions
in measures. Because our study was naturalistic, some participants
resumed treatment with antidepressants as clinically indicated fol-
lowing ECT (Espinoza & Kellner, 2022; Gill & Kellner, 2019), and
almost half had some maintenance ECT (Espinoza & Kellner,
2022). We cannot exclude the possibility that these treatments
influenced our findings, even though some findings were reason-
ably robust. Finally, because this study was conducted in a clinical
setting, ECT subjects were not randomly assigned to treatment,
which may have induced selection bias.

Our findings highlight the complex nature of the relationship
between structural brain plasticity and mood changes following
the index ECT course. This study is the first to report the longi-
tudinal relationships among mood, volumetric brain changes, and
inflammation after the index ECT course. Specifically, we found
that six months after the index ECT course, volumetric changes
in a cluster of brain regions, including the insula, were related
to worsening mood and increased levels of serum IL-8.
Volumetric and inflammatory measures were independently
related to changes in mood, which suggests potential avenues of
exploration for enhancing longer-term ECT efficacy.
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