SOME FINITELY GENERATED ANALOGUES OF A GROUP OF A. H. CLIFFORD

JACQUES LEWIN

Introduction. Let n_1 and n_2 be two elements of a commutative field \Re of characteristic different from 2 that satisfy: (i) $n_1 \neq 0$; (ii) $n_2 \neq 0$; (iii) $n_1 + n_2 \neq 0$. We define the "weighted average" $\alpha * \beta$ of two arbitrary elements α and β of \Re as

$$\alpha * \beta = \frac{n_1 \alpha + n_2 \beta}{n_1 + n_2}.$$

If we are further given a total ordering > on the set of elements of \Re , we associate with the triple (\Re, n_1, n_2) the group $H(\Re, n_1, n_2)$ generated by symbols $[\alpha]$, one for each element α of \Re , subject to the relations

(I)
$$[\alpha][\beta][\alpha]^{-1} = [\alpha * \beta]$$
 if $\alpha > \beta$.

The group $H(\mathfrak{Q}, 1, 1)$, where \mathfrak{Q} is the field of rational numbers, provided one of the first examples of an ordinally simple group (1). In this paper, we investigate the groups $H(\mathfrak{P}, n_1, n_2)$, where \mathfrak{P} is the Galois field of order the prime p, and $n_1, n_2 \in \mathfrak{P}$ satisfy the above conditions. The required total ordering is obtained by making the usual identification of \mathfrak{P} with the ordered set of integers

$$S_p = \{0, 1, \ldots, p-1\}.$$

Our main theorem states that $H(\mathfrak{P}, n_1, n_2)$ is isomorphic to the metacyclic group $M(\mathfrak{P}, n_1, n_2)$ defined by

$$M(\mathfrak{P}, n_1, n_2) = \operatorname{gp}(a, b; b^p = 1, a^{-1} b^{n_2} a = b^{n_1+n_2})$$

We should like to thank Professor G. Baumslag, who suggested this investigation, and Professor B. H. Neumann, who suggested a generalization of a first draft of this paper.

Preliminaries. For convenience, we write H for $H(\mathfrak{P}, n_1, n_2)$, M for $M(\mathfrak{P}, n_1, n_2)$ whenever this is unambiguous. Setting $n_3 = n_1 + n_2$, we define a new operation, denoted by 0, on \mathfrak{P} by

$$lpha \circ eta = rac{n_3 \ eta - n_1 \ lpha}{n_2}, \qquad lpha, \ eta \in \mathfrak{P}.$$

Received November 5, 1963. Supported in part by NSF Grant GP-27 and by an office of Naval Research Postdoctoral Associateship.

It is easily verified that

(1)
$$\alpha \circ (\alpha * \beta) = \beta.$$

Furthermore, it follows immediately from the relations (I) that, if $\gamma = \alpha * \xi$ for some $\xi < \alpha$,

(2)
$$[\alpha]^{-1}[\gamma][\alpha] = [\alpha \circ \gamma].$$

/

Let k be a positive integer, and let $\Box \in \{*, 0\}$. We write $\alpha \Box^k \beta$ for

$$\frac{k \text{ terms}}{\alpha \Box (\dots (\alpha \Box (\alpha \Box \beta)) \dots)}.$$

If g_1 and g_2 are elements of a group, we write $[g_1, g_2]$ for the commutator $g_1 g_2 g_1^{-1} g_2^{-1}$ and $g_1^{g_2}$ for the conjugate $g_2 g_1 g_2^{-1}$ of g_1 by g_2 .

1. The finiteness of a special factor group of H. In this section, we show that H has a non-trivial centre $\zeta(H)$ and that $H/\zeta(H)$ is finite.

Let $N = N(n_1, n_2)$ be the smallest positive integer such that $n_3^N - n_2^N = 0$. (Such an N always exists since $n_3^{p-1} = n_2^{p-1} = 1$.)

LEMMA 1. Let $\alpha, \beta \in \mathfrak{P}$ and let k be a positive integer. Then if $\alpha \neq \beta$,

$$a *^k \beta = \beta$$

if and only if $k \equiv 0 \pmod{N}$.

Proof. It is easy to see by induction on k that

(3)
$$\alpha *^{k} \beta = \frac{\alpha n_{1} \sum_{j=0}^{k-1} n_{3}^{j} n_{2}^{k-j-1} + n_{2}^{k} \beta}{n_{3}^{k}}$$

Suppose that $\alpha *^k \beta = \beta$ for some value of k. We can rewrite (3) as

(4)
$$(n_3^k - n_2^k)\beta = \alpha n_1 \sum_{j=0}^{k-1} n_3^j n_2^{k-j-1}.$$

Two cases arise. If $n_3^k - n_2^k \neq 0$, then

$$\beta = \frac{\alpha n_1 \sum_{j=0}^{k-1} n_3^{j} n_2^{k-j-1}}{n_3^{k} - n_2^{k}} = \frac{\alpha n_1}{n_3 - n_2} = \alpha,$$

which contradicts the hypothesis that $\alpha \neq \beta$. This proves the "only if" part of the lemma. If, however, $n_3^k - n_2^k = 0$, then

$$0 = \frac{n_3^k - n_2^k}{n_3 - n_2} = \sum_{j=0}^{k-1} n_3^j n_2^{k-j-1}$$

and $\alpha *^k \beta = n_2^k \beta / n_3^k = \beta$, as required.

The equation

$$[p-1]^k[\alpha][p-1]^{-k} = [p-1*^k\alpha], \quad \alpha \in \mathfrak{P},$$

now enables us to conclude that $[p-1]^N$ belongs to $\zeta(H)$. This fact in turn enables us to prove the following lemma.

LEMMA 2. All the generators $[\alpha]$ of H have a common Nth power that lies in the centre of H.

Proof. The equation $[\beta] = [\xi][0][\xi]^{-1}$ always has the solution $[\xi] = [n_3 \beta/n_1]$. In particular, $[p-1] = [-n_3/n_1][0][-n_3/n_1]^{-1}$. Raising both sides to the Nth power, conjugating both sides by $[-n_3/n_1]^{-1}$, and remembering that $[p-1]^N \in \zeta(H)$, we obtain

$$[p-1]^N = [-n_3/n_1]^{-1} [p-1]^N [n_3/n_1] = [0]^N$$

Now, since $[0]^N$ is a central element, and $[\beta]^N$ is a conjugate of $[0]^n$, $[\beta]^n = [0]^n$ for all β , and the lemma is proved.

Let Z be the cyclic subgroup of H generated by $[p-1]^N$. Z is normal in H and, by Lemma 2, the factor group G = H/Z is just the group generated by symbols that we again call $[\alpha]$

$$G = \operatorname{gp}([\alpha]; \alpha \in \mathfrak{P})$$

with the relations (I), and the further relations

(II) $[\alpha]^N = 1.$

We now show that G is finite.

PROPOSITION 3. Any non-trivial element of G can be expressed in the "reduced form"

(5)
$$[\alpha_1]^{k_1} [\alpha_2]^{k_2} \dots [\alpha_n]^{k_n}, \qquad \alpha_1 < \alpha_2 < \dots < \alpha_n,$$

where the k_i 's are positive integers.

Proof. Let a "string"

$$w = [\alpha_1][\alpha_2] \dots [\alpha_n], \qquad \alpha_i \in \mathfrak{P},$$

be called an "expanded word." Since all the generators of *G* are of finite order, every element of *G* can be expressed as an expanded word. Call the $[\alpha_i]$'s the "letters" of w, n the "length" of w, and α_n the "last index" of w. A word in the form (5), which will be called a "reduced word," can then be thought of as an expanded word of length $\sum_{i=1}^{n} k_i$. We prove the proposition by proving that every expanded word can be expressed as a reduced word. The proof is by double induction on length and on last index. Thus assume that for positive integers k and n

(i) an expanded word of length n can be reduced, and the resulting word has length at most n;

20

(ii) an expanded word of length n + 1 whose last index is greater than k can be reduced to a word of length at most n + 1.

Let w be an expanded word of length n + 1 whose last index is k. By assumption (i), we can reduce the leftmost n letters of w. The resulting word is

$$\widetilde{w} = [\alpha_1] \dots [\alpha_m][k],$$

where $[\alpha_1] \ldots [\alpha_m]$ is reduced and $m \leq n$. If $\alpha_m \leq k$, then \tilde{w} is in reduced form and has length at most n + 1. We may then assume that $\alpha_m > k$. In this case

$$[\alpha_m][k] = [\alpha_m * k][\alpha_m]$$

and hence

$$\tilde{w} = [\alpha_1] \dots [\alpha_m * k][\alpha_m],$$

which can be reduced by (ii). Thus we have shown that an expanded word of length n + 1 whose last index is k can be reduced to a word of length at most n + 1.

To complete the proof of the proposition, we need only prove the initial stage of each induction. That is, we must show that

(iii) a word of length 1 can be reduced;

(iv) under assumption (i), a word of length n + 1 whose last index is p - 1 can be reduced, and the resulting word has length at most n + 1.

Statement (iii) is trivially true. To prove (iv), let w be a word of length n + 1 whose last index is p - 1. By (i), we may reduce the leftmost n letters of w. The resulting word is then automatically in reduced form, and has length at most n + 1.

Since the generators of G all have order N, the exponents k_i in (5) can be reduced (mod N). There are then at most N^p words of the form (5), and so G is finite, as claimed.

2. A symmetric set of relations for *H*. In this section we show that the relations (I) hold even when $\alpha < \beta$.

LEMMA 4. For all α in \mathfrak{P} ,

$$[p-2]^{-1}[\alpha][p-2] = [p-2 \circ \alpha].$$

Proof. By (I), if $\beta \neq p - 1$,

$$[p-2][\beta][p-2]^{-1} = [p-2*\beta]$$

or, equivalently,

(6)
$$[p-2]^{-1}[p-2*\beta][p-2] = [\beta], \quad \beta \neq p-1.$$

By (1), $\beta = p - 2 \circ (p - 2 * \beta)$, so that, setting $\gamma = p - 2 * \beta$, equation (6) reads:

$$[p-2]^{-1}[\gamma][p-2] = [p-2\circ\gamma], \quad \gamma \neq p-2*p-1.$$

The proof of the lemma then reduces to the proof of the single relation:

 $[p-2]^{-1}[p-2*p-1][p-2] = [p-2\circ(p-2*p-1)] = [p-1].$ By Lemma 1,

(7) $(p-2) *^k p - 1 = p - 1 \Leftrightarrow k \equiv 0 \pmod{N}.$ Hence, if k < N,

$$p - 2 *^{k} p - 1 = p - 2 *^{k-1} (p - 2 * p - 1)$$

is strictly less than p - 1. It then follows that, for k < N,

(8) $[p-2]^{k-1}[p-2*p-1][p-2]^{-(k-1)} = [p-2*^{k-1}(p-2*p-1)]$ and hence, by (7) and (8),

$$[p-2]^{N-1} [p-2*p-1][p-2]^{-(N-1)} = [p-1)].$$

Since $[p-2]^N \in \zeta(H)$, this last equation can be written as

$$[p-2]^{-1}[p-2*p-1][p-2] = [p-1]$$

and the lemma is proved.

Let $\alpha, \beta, \gamma \in \mathfrak{P}$. We define $(\alpha * \beta \circ)^k \gamma$ recursively by

$$(\alpha * \beta \circ) \gamma = \alpha * (\beta \circ \gamma)$$
 and $(\alpha * \beta \circ)^k \gamma = (\alpha * \beta \circ) (\alpha * \beta \circ)^{k-1} \gamma$.

It then follows from the easily verified formula

$$\alpha * (\beta \circ \gamma) = \gamma + (n_1/n_3)(\alpha - \beta)$$

that, for any positive integer k,

(9)
$$(\alpha * \beta \circ)^k \gamma = \gamma + k(n_1/n_3)(\alpha - \beta).$$

We derive from equation (9) two useful corollaries.

LEMMA 5. Let α , β , $\gamma \in \mathfrak{P}$ with $\alpha \neq \beta$, and let k_1 and k_2 be two positive integers. Then $(\alpha * \beta \circ)^{k_1} \gamma = (\alpha * \beta \circ)^{k_2} \gamma$ only when $k_1 \equiv k_2 \pmod{p}$. In particular, $(\alpha * \beta \circ)^k \gamma = \gamma$ only when $k \equiv 0 \pmod{p}$.

LEMMA 6. Let α , β , γ_1 , $\gamma_2 \in \mathfrak{P}$ and let k be a positive integer. Then

$$(\alpha * \beta \circ)^k \gamma_1 = (\alpha * \beta \circ)^k \gamma_2$$

only when $\gamma_1 = \gamma_2$.

PROPOSITION 7. For all $\alpha, \beta \in \mathfrak{P}$, $[\alpha][\beta][\alpha]^{-1} = [\alpha * \beta]$.

Proof. Let $\gamma \in \mathfrak{P}$. It follows from Lemma 4 and the relations (I) that

$$[p-1][p-2]^{-1}[\gamma][p-2][p-1]^{-1} = [p-1*(p-2\circ\gamma)].$$

Hence by induction

(10)
$$([p-1][p-2]^{-1})^{k}[\gamma]([p-1][p-2]^{-1})^{-k} = [(p-1*p-2\circ)^{k}\gamma].$$

22

As in Lemma 2, we write $\gamma = \xi * 0$. Equation (10) now reads

$$([p-1][p-2]^{-1})^{k}[\xi * 0]([p-1][p-2]^{-1})^{-k} = [(p-1*p-2\circ)^{k}(\xi * 0)]$$

or, equivalently,

(11)
$$([p-1][p-2]^{-1})^{k}[\xi][0][\xi]^{-1}([p-1][p-2]^{-1})^{-k} = [(p-1*p-2\circ)^{k}(\xi*0)].$$

Now let α and β be two arbitrary elements of \mathfrak{P} . By Lemma 5 there exists a positive integer k such that $(p - 1 * p - 2 \circ)^k 0 = \beta$ and, by Lemma 6, there exists an element ξ of \mathfrak{P} such that $(p - 1 * p - 2 \circ)^k \xi = \alpha$. For this choice of k and ξ , it follows from (10) that

$$\begin{aligned} ([p-1][p-2]^{-1})^{k}[\xi][0][\xi]^{-1}([p-1][p-2]^{-1})^{-k} \\ &= [\xi]^{([p-1][p-2]^{-1})^{k}}[0]^{([p-1][p-2]^{-1})^{k}}([\xi]^{-1})^{([p-1][p-2]^{-1})^{-k}} \\ &= [\alpha][\beta][\alpha]^{-1}. \end{aligned}$$

Therefore, by (11), $[\alpha][\beta][\alpha]^{-1} = [(p - 1 * p - 2 \circ)^k (\xi * 0)]$. It now follows from the easily verified formula

 $\alpha * (\beta * \gamma) = (\alpha * \beta) * (\alpha * \gamma), \qquad \alpha, \beta, \gamma \in \mathfrak{P},$

that

$$(p - 1 * p - 2 \circ)^{k}(\xi * 0) = ((p - 1 * p - 2 \circ)^{k}\xi) * ((p - 1 * p - 2)^{k}0) = \alpha * \beta$$

and hence that $[\alpha][\beta][\alpha]^{-1} = [\alpha * \beta]$. Since α and β were arbitrary elements of \mathfrak{P} , the proposition is proved.

3. The commutator subgroup of H. We now turn our attention to H', the commutator subgroup of H, and show that it collapses to a cyclic group of order p.

It is clear, since H/H' is infinite cyclic, that the set $\{\ldots, [p-1]^{-1}, [p-1]^{0}, [p-1], \ldots\}$ is a set of coset representatives of H' in H. A straightforward application of Schreier's technique for finding generators for a subgroup (2, p. 33) shows that $W = \{[\gamma][p-1]^{-1}; \gamma \in \mathfrak{P}\}$ is a set of generators for H'. As a first approximation, we prove

LEMMA 8. H' is abelian.

Proof. From (9) it follows that

$$[\gamma]^{([0][p-1]^{-1})^{k}} = [(0 * p - 1 \circ)^{k} \gamma] = [\gamma + (n_{1}/n_{3})k]$$

and that

$$[\gamma]^{[\alpha][p-1]^{-1}} = [\alpha * (p-1) \circ \gamma] = [\gamma + (n_1/n_3)(\alpha + 1)]$$

Let $\overline{\xi}$ be the integer in S_p that corresponds to the element ξ of \mathfrak{P} . Then we have, for all $\alpha, \gamma \in \mathfrak{P}$,

$$[\gamma]^{([0][p-1]^{-1})\overline{\alpha}+1} = [\gamma]^{[\alpha][p-1]^{-1}}.$$

The elements $([0][p-1]^{-1})^{\overline{\alpha}+1}$ and $[\alpha][p-1]^{-1}$ then define the same inner automorphism of H. In other words,

$$([0][p-1]^{-1})^{\overline{\alpha}+1} \equiv [\alpha][p-1]^{-1} \pmod{\zeta(H)}.$$

Since $\{[\alpha][p-1]^{-1}; \alpha \in \mathfrak{P}\}$ generates H', H' is cyclic mod $\zeta(H)$ and the lemma is proved.

It is clear that, for any α and β in \mathfrak{P} , $[\alpha][\beta]^{-1} \in H'$. It then follows from Lemma 8 that, for all $\alpha, \beta, \gamma \in \mathfrak{P}$,

$$[\gamma][\beta]^{-1}[\alpha][\beta]^{-1} = [\alpha][\beta]^{-1}[\gamma][\beta]^{-1}$$

or, equivalently,

$$[\gamma][\beta]^{-1}[\alpha] = [\alpha][\beta]^{-1}[\gamma], \qquad \alpha, \beta, \gamma \in \mathfrak{P}.$$

Thus

$$[\alpha][\beta]^{-1} = [\gamma][\beta]^{-1}[\alpha][\gamma]^{-1} = [\gamma * \beta]^{-1}[\gamma * \alpha]$$

for any choice of γ in \mathfrak{P} . If we let $\gamma = (n_3\beta - n_2\alpha)/n_1$, we find that

$$[\alpha][\beta]^{-1} = \left[\frac{n_3 \beta - n_2 \alpha + n_2 \beta}{n_3}\right]^{-1}[\beta],$$

and hence

(12)
$$[\alpha][\beta]^{-2} = \left[\frac{(n_3 \beta - n_2(\alpha - \beta))}{n_3}\right]^{-1}.$$

Now,

(13)
$$[\alpha]^{-1}[\beta][\alpha]^{-1} = [\alpha]^{-1}[\beta][\alpha][\alpha]^{-2} = [\alpha \circ \beta][\alpha]^{-2}$$

and applying (12) to the right-hand side of (13), we obtain

(14)
$$[\alpha]^{-1}[\beta][\alpha]^{-1} = [2\alpha - \beta]^{-1}$$

Suppose now that for some positive integer k and some α in \mathfrak{P}

$$[\alpha][p-1]^{-1} = ([0][p-1]^{-1})^k$$

Then

$$\begin{aligned} ([0][p-1]^{-1})^{k+2} &= [0][p-1]^{-1}([0][p-1]^{-1})^{k-1}[0][p-1]^{-1}[0][p-1]^{-1} \\ &= ([0][p-1]^{-1}[\alpha][p-1]^{-1}[0])[p-1]^{-1} \\ &= [0][p-1]^{-1}[\alpha][p-1]^{-1}[0] = [0][-2-\alpha]^{-1}[0] \\ &= [2+\alpha] \end{aligned}$$

by (14). Hence

$$[\alpha + 2][p - 1]^{-1} = ([0][p - 1]^{-1})^{k+2}$$

It follows immediately from these considerations that

$$([0][p-1]^{-1})^{2k+1} = [2k][p-1]^{-1}.$$

 $\mathbf{24}$

Since, by (14),

$$([0][p-1]^{-1})^2 = [0][p-1]^{-1}[0][p-1]^{-1} = [1][p-1]^{-1}$$

it also follows that $([0][p-1]^{-1})^{2k} = [2k-1][p-1]^{-1}$. Finally, we have

(15)
$$[k][p-1]^{-1} = ([0][p-1]^{-1})^{k+1}.$$

We have now essentially proved

PROPOSITION 9. H' is cyclic of order p.

Proof. Since the set $\{[k][p-1]^{-1}; k \in \mathfrak{P}\}$ generates H', (15) assures that H' is cyclic. To see that H' has order p, it suffices to note that

$$([0][p-1]^{-1})^p = [p-1][p-1]^{-1}.$$

4. The structure of H. We are now in a position to prove the main theorem. We remind the reader that we defined the group M as

$$M = gp(a, b; b^{p} = 1, a^{-1} b^{n_{2}} a = b^{n_{3}}).$$

The relations (15) assure us that the elements [p-1] and $[0][p-1]^{-1}$ together generate H. Let c = [p-1] and $d = [0][p-1]^{-1}$. Then $d^p = 1$ and

$$c^{-1} d^{n_2} c = [p - 1]^{-1} ([0][p - 1]^{-1})^{n_2} [p - 1] = ([n_1/n_2][p - 1]^{-1})^{n_2}$$
$$= ([0][p - 1]^{-1})^{n_2} ((n_1/n_2) + 1) = d^{n_3}.$$

The correspondence $a \to c$, $b \to d$ can then be extended to an epimorphism $\Phi: M \to H$.

To show that H is an epimorphic image of M, we define for every $\alpha \in S_p$ the element $z(\alpha) = b^{\alpha+1}a$ of M. The set $\{z(\alpha); \alpha \in S_p\}$ clearly generates M and

$$(z(\alpha)z(\beta)z(\alpha))^{-1} = b^{\alpha+1}ab^{\beta+1}aa^{-1}b^{-(\alpha+1)} = b^{\alpha+1}ab^{\beta-\alpha}.$$

Let us again consider n_2 and n_3 as elements of \mathfrak{P} . Then b^{n_3/n_2} is defined and $ab^k = b^{(n_3/n_2)k}a$. Hence

$$b^{\alpha+1}ab^{\beta-\alpha} = b^{\alpha+((\beta-\alpha)n_2/n_3)+1}a = b^{(\alpha*\beta)+1}a.$$

Consequently,

$$\mathbf{z}(\alpha)\mathbf{z}(\beta)(\mathbf{z}(\alpha))^{-1} = \mathbf{z}(\alpha * \beta)$$

and the correspondence $[\alpha] \to z(\alpha)$ can again be extended to an epimorphism $\Psi: H \to M$.

It is easy to verify that Φ and Ψ are mutually inverse. Φ is then an isomorphism and the proof is complete.

References

- A. H. Clifford, A noncommutative ordinally simple linearly ordered group, Proc. Amer. Math. Soc., 2 (1951), 902-903.
- 2. A. G. Kurosh, The theory of groups, vol. II (New York, 1955).

Courant Institute of Mathematical Sciences, New York, New York, and California Institute of Technology, Pasadena, California