SOME FINITELY GENERATED ANALOGUES OF A GROUP OF A. H. CLIFFORD

JACQUES LEWIN

Introduction. Let n_{1} and n_{2} be two elements of a commutative field Ω of characteristic different from 2 that satisfy: (i) $n_{1} \neq 0$; (ii) $n_{2} \neq 0$; (iii) $n_{1}+n_{2} \neq 0$. We define the "weighted average" $\alpha * \beta$ of two arbitrary elements α and β of Ω as

$$
\alpha * \beta=\frac{n_{1} \alpha+n_{2} \beta}{n_{1}+n_{2}} .
$$

If we are further given a total ordering $>$ on the set of elements of Ω, we associate with the triple (Ω, n_{1}, n_{2}) the group $H\left(\Omega, n_{1}, n_{2}\right)$ generated by symbols [α], one for each element α of Ω, subject to the relations

$$
\begin{equation*}
[\alpha][\beta][\alpha]^{-1}=[\alpha * \beta] \quad \text { if } \alpha>\beta \tag{I}
\end{equation*}
$$

The group $H(\mathfrak{Q}, 1,1)$, where \mathfrak{Q} is the field of rational numbers, provided one of the first examples of an ordinally simple group (1). In this paper, we investigate the groups $H\left(\mathfrak{P}, n_{1}, n_{2}\right)$, where \mathfrak{P} is the Galois field of order the prime p, and $n_{1}, n_{2} \in \mathfrak{P}$ satisfy the above conditions. The required total ordering is obtained by making the usual identification of \mathfrak{P} with the ordered set of integers

$$
S_{p}=\{0,1, \ldots, p-1\} .
$$

Our main theorem states that $H\left(\mathfrak{P}, n_{1}, n_{2}\right)$ is isomorphic to the metacyclic group $M\left(\mathfrak{P}, n_{1}, n_{\imath}\right)$ defined by

$$
M\left(\mathfrak{3}, n_{1}, n_{2}\right)=\operatorname{gp}\left(a, b ; b^{p}=1, a^{-1} b^{n_{2}} a=b^{n_{1}+n_{2}}\right) .
$$

We should like to thank Professor G. Baumslag, who suggested this investigation, and Professor B. H. Neumann, who suggested a generalization of a first draft of this paper.

Preliminaries. For convenience, we write H for $H\left(\mathfrak{P}, n_{1}, n_{2}\right), M$ for $M\left(\mathfrak{P}, n_{1}, n_{2}\right)$ whenever this is unambiguous. Setting $n_{3}=n_{1}+n_{2}$, we define a new operation, denoted by o, on $\mathfrak{ß}$ by

$$
\alpha \circ \beta=\frac{n_{3} \beta-n_{1} \alpha}{n_{2}}, \quad \alpha, \beta \in \mathfrak{\beta} .
$$

Received November 5, 1963. Supported in part by NSF Grant GP-27 and by an office of Naval Research Postdoctoral Associateship.

It is easily verified that

$$
\begin{equation*}
\alpha \circ(\alpha * \beta)=\beta \tag{1}
\end{equation*}
$$

Furthermore, it follows immediately from the relations (I) that, if $\gamma=\alpha * \xi$ for some $\xi<\alpha$,

$$
\begin{equation*}
[\alpha]^{-1}[\gamma][\alpha]=[\alpha \circ \gamma] . \tag{2}
\end{equation*}
$$

Let k be a positive integer, and let $\square$$\in\{*, \circ\}$. We write $\alpha \square^{k} \beta$ for

$$
\overbrace{\alpha \square(\ldots(\alpha \square(\alpha \square \beta)) \ldots) .}^{k \text { terms }}
$$

If g_{1} and g_{2} are elements of a group, we write $\left[g_{1}, g_{2}\right]$ for the commutator $g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$ and $g_{1}{ }^{g_{2}}$ for the conjugate $g_{2} g_{1} g_{2}^{-1}$ of g_{1} by g_{2}.

1. The finiteness of a special factor group of H. In this section, we show that H has a non-trivial centre $\zeta(H)$ and that $H / \zeta(H)$ is finite.

Let $N=N\left(n_{1}, n_{\varepsilon}\right)$ be the smallest positive integer such that $n_{3}{ }^{N}-n_{2}{ }^{N}=0$. (Such an N always exists since $n_{3}{ }^{p-1}=n_{c}^{p-1}=1$.)

Lemma 1. Let $\alpha, \beta \in \mathfrak{F}$ and let k be a positive integer. Then if $\alpha \neq \beta$,

$$
a *^{k} \beta=\beta,
$$

if and only if $k \equiv 0(\bmod N)$.
Proof. It is easy to see by induction on k that

$$
\begin{equation*}
\alpha *^{k} \beta=\frac{\alpha n_{1} \sum_{j=0}^{k-1} n_{3}{ }^{j} n_{2}{ }^{k-j-1}+n_{2}{ }^{k} \beta}{n_{3}{ }^{k}} . \tag{3}
\end{equation*}
$$

Suppose that $\alpha *^{k} \beta=\beta$ for some value of k. We can rewrite (3) as

$$
\begin{equation*}
\left(n_{3}{ }^{k}-n_{2}{ }^{k}\right) \beta=\alpha n_{1} \sum_{j=0}^{k-1} n_{3}{ }^{j} n_{2}^{k-j-1} \tag{4}
\end{equation*}
$$

Two cases arise. If $n_{3}{ }^{k}-n_{2}{ }^{k} \neq 0$, then

$$
\beta=\frac{\alpha n_{1} \sum_{j=0}^{k-1} n_{3}{ }^{j} n_{2}{ }^{k-j-1}}{n_{3}{ }^{k}-n_{2}{ }^{k}}=\frac{\alpha n_{1}}{n_{3}-n_{2}}=\alpha
$$

which contradicts the hypothesis that $\alpha \neq \beta$. This proves the "only if" part of the lemma. If, however, $n_{3}{ }^{k}-n_{2}{ }^{k}=0$, then

$$
0=\frac{n_{3}^{k}-n_{2}^{k}}{n_{3}-n_{2}}=\sum_{j=0}^{k-1} n_{3}{ }^{j} n_{2}^{k-j-1}
$$

and $\alpha *^{k} \beta=n_{2}{ }^{k} \beta / n_{3}{ }^{k}=\beta$, as required.

The equation

$$
[p-1]^{k}[\alpha][p-1]^{-k}=\left[p-1 *^{k} \alpha\right], \quad \alpha \in \mathfrak{P},
$$

now enables us to conclude that $[p-1]^{N}$ belongs to $\zeta(H)$. This fact in turn enables us to prove the following lemma.

Lemma 2. All the generators $[\alpha]$ of H have a common Nth power that lies in the centre of H.

Proof. The equation $[\beta]=[\xi][0][\xi]^{-1}$ always has the solution $[\xi]=\left[n_{3} \beta / n_{1}\right]$. In particular, $[p-1]=\left[-n_{3} / n_{1}\right][0]\left[-n_{3} / n_{1}\right]^{-1}$. Raising both sides to the N th power, conjugating both sides by $\left[-n_{3} / n_{1}\right]^{-1}$, and remembering that $[p-1]^{N} \in \zeta(H)$, we obtain

$$
[p-1]^{N}=\left[-n_{3} / n_{1}\right]^{-1}[p-1]^{N}\left[n_{3} / n_{1}\right]=[0]^{N} .
$$

Now, since $[0]^{N}$ is a central element, and $[\beta]^{N}$ is a conjugate of $[0]^{n},[\beta]^{n}=[0]^{n}$ for all β, and the lemma is proved.

Let Z be the cyclic subgroup of H generated by $[p-1]^{N} . Z$ is normal in H and, by Lemma 2, the factor group $G=H / Z$ is just the group generated by symbols that we again call $[\alpha]$

$$
G=\operatorname{gp}([\alpha] ; \alpha \in \mathfrak{P})
$$

with the relations (I), and the further relations

$$
\begin{equation*}
[\alpha]^{N}=1 \tag{II}
\end{equation*}
$$

We now show that G is finite.
Proposition 3. Any non-trivial element of G can be expressed in the "reduced form"

$$
\begin{equation*}
\left[\alpha_{1}\right]^{k_{1}}\left[\alpha_{2}\right]^{k_{2}} \ldots\left[\alpha_{n}\right]^{k_{n}}, \quad \alpha_{1}<\alpha_{2}<\ldots<\alpha_{n} \tag{5}
\end{equation*}
$$

where the k_{i} 's are positive integers.
Proof. Let a "string"

$$
w=\left[\alpha_{1}\right]\left[\alpha_{2}\right] \ldots\left[\alpha_{n}\right], \quad \alpha_{i} \in \mathfrak{P}
$$

be called an "expanded word." Since all the generators of G are of finite order, every element of G can be expressed as an expanded word. Call the $\left[\alpha_{i}\right]$'s the "letters" of w, n the "length" of w, and α_{n} the "last index" of w. A word in the form (5), which will be called a "reduced word," can then be thought of as an expanded word of length $\sum^{n}{ }_{i=1} k_{i}$. We prove the proposition by proving that every expanded word can be expressed as a reduced word. The proof is by double induction on length and on last index. Thus assume that for positive integers k and n
(i) an expanded word of length n can be reduced, and the resulting word has length at most n;
(ii) an expanded word of length $n+1$ whose last index is greater than k can be reduced to a word of length at most $n+1$.

Let w be an expanded word of length $n+1$ whose last index is k. By assumption (i), we can reduce the leftmost n letters of w. The resulting word is

$$
\tilde{\mathfrak{w}}=\left[\alpha_{1}\right] \ldots\left[\alpha_{m}\right][k]
$$

where $\left[\alpha_{1}\right] \ldots\left[\alpha_{m}\right]$ is reduced and $m \leqslant n$. If $\alpha_{m} \leqslant k$, then \tilde{w} is in reduced form and has length at most $n+1$. We may then assume that $\alpha_{m}>k$. In this case

$$
\left[\alpha_{m}\right][k]=\left[\alpha_{m} * k\right]\left[\alpha_{m}\right]
$$

and hence

$$
\tilde{w}=\left[\alpha_{1}\right] \ldots\left[\alpha_{m} * k\right]\left[\alpha_{m}\right],
$$

which can be reduced by (ii). Thus we have shown that an expanded word of length $n+1$ whose last index is k can be reduced to a word of length at most $n+1$.

To complete the proof of the proposition, we need only prove the initial stage of each induction. That is, we must show that
(iii) a word of length 1 can be reduced;
(iv) under assumption (i), a word of length $n+1$ whose last index is $p-1$ can be reduced, and the resulting word has length at most $n+1$.

Statement (iii) is trivially true. To prove (iv), let w be a word of length $n+1$ whose last index is $p-1$. By (i), we may reduce the leftmost n letters of w. The resulting word is then automatically in reduced form, and has length at most $n+1$.

Since the generators of G all have order N, the exponents k_{i} in (5) can be reduced $(\bmod N)$. There are then at most N^{p} words of the form (5), and so G is finite, as claimed.
2. A symmetric set of relations for H. In this section we show that the relations (I) hold even when $\alpha<\beta$.

Lemma 4. For all α in \mathfrak{B},

$$
[p-2]^{-1}[\alpha][p-2]=[p-2 \circ \alpha] .
$$

Proof. By (I), if $\beta \neq \mathrm{p}-1$,

$$
[p-2][\beta][p-2]^{-1}=[p-2 * \beta]
$$

or, equivalently,

$$
\begin{equation*}
[p-2]^{-1}[p-2 * \beta][p-2]=[\beta], \quad \beta \neq p-1 \tag{6}
\end{equation*}
$$

By (1), $\beta=p-2 \circ(p-2 * \beta)$, so that, setting $\gamma=p-2 * \beta$, equation (6) reads:

$$
[p-2]^{-1}[\gamma][p-2]=[p-2 \circ \gamma], \quad \gamma \neq p-2 * p-1
$$

The proof of the lemma then reduces to the proof of the single relation:
$[p-2]^{-1}[p-2 * p-1][p-2]=[p-2 \circ(p-2 * p-1)]=[p-1]$.
By Lemma 1 ,

$$
\begin{equation*}
(p-2) *^{k} p-1=p-1 \Leftrightarrow k \equiv 0 \quad(\bmod N) \tag{7}
\end{equation*}
$$

Hence, if $k<N$,

$$
p-2 *^{k} p-1=p-2 *^{k-1}(p-2 * p-1)
$$

is strictly less than $p-1$. It then follows that, for $k<N$,

$$
\begin{equation*}
[p-2]^{k-1}[p-2 * p-1][p-2]^{-(k-1)}=\left[p-2 *^{k-1}(p-2 * p-1)\right] \tag{8}
\end{equation*}
$$

and hence, by (7) and (8),

$$
\left.[p-2]^{N-1}[p-2 * p-1][p-2]^{-(N-1)}=[p-1)\right] .
$$

Since $[p-2]^{N} \in \zeta(H)$, this last equation can be written as

$$
[p-2]^{-1}[p-2 * p-1][p-2]=[p-1]
$$

and the lemma is proved.
Let $\alpha, \beta, \gamma \in \mathfrak{P}$. We define $(\alpha * \beta \circ)^{k} \gamma$ recursively by

$$
(\alpha * \beta \circ) \gamma=\alpha *(\beta \circ \gamma) \text { and }(\alpha * \beta \circ)^{k} \gamma=(\alpha * \beta \circ)(\alpha * \beta \circ)^{k-1} \gamma
$$

It then follows from the easily verified formula

$$
\alpha *(\beta \circ \gamma)=\gamma+\left(n_{1} / n_{3}\right)(\alpha-\beta)
$$

that, for any positive integer k,

$$
\begin{equation*}
(\alpha * \beta \circ)^{k} \gamma=\gamma+k\left(n_{1} / n_{3}\right)(\alpha-\beta) \tag{9}
\end{equation*}
$$

We derive from equation (9) two useful corollaries.
Lemma 5. Let $\alpha, \beta, \gamma \in \mathfrak{F}$ with $\alpha \neq \beta$, and let k_{1} and k_{2} be two positive integers. Then $(\alpha * \beta \circ)^{k_{1}} \gamma=(\alpha * \beta \circ)^{k_{2}} \gamma$ only when $k_{1} \equiv k_{2}(\bmod p)$. In particular, $(\alpha * \beta \circ)^{k} \gamma=\gamma$ only when $k \equiv 0(\bmod p)$.

Lemma 6. Let $\alpha, \beta, \gamma_{1}, \gamma_{2} \in \mathfrak{B}$ and let k be a positive integer. Then

$$
(\alpha * \beta \circ)^{k} \gamma_{1}=(\alpha * \beta \circ)^{k} \gamma_{2}
$$

only when $\gamma_{1}=\gamma_{2}$.
Proposition 7. For all $\alpha, \beta \in \mathfrak{F},[\alpha][\beta][\alpha]^{-1}=[\alpha * \beta]$.
Proof. Let $\gamma \in \mathfrak{P}$. It follows from Lemma 4 and the relations (I) that

$$
[p-1][p-2]^{-1}[\gamma][p-2][p-1]^{-1}=[p-1 *(p-2 \circ \gamma)] .
$$

Hence by induction

$$
\begin{equation*}
\left([p-1][p-2]^{-1}\right)^{k}[\gamma]\left([p-1][p-2]^{-1}\right)^{-k}=\left[(p-1 * p-2 o)^{k} \gamma\right] \tag{10}
\end{equation*}
$$

As in Lemma 2, we write $\gamma=\xi * 0$. Equation (10) now reads

$$
\left([p-1][p-2]^{-1}\right)^{k}[\xi * 0]\left([p-1][p-2]^{-1}\right)^{-k}=\left[(p-1 * p-2 o)^{k}(\xi * 0)\right]
$$

or, equivalently,

$$
\begin{align*}
&\left([p-1][p-2]^{-1}\right)^{k}[\xi][0][\xi]^{-1}\left([p-1][p-2]^{-1}\right)^{-k} \tag{11}\\
&=\left[(p-1 * p-2 \circ)^{k}(\xi * 0)\right] .
\end{align*}
$$

Now let α and β be two arbitrary elements of \mathfrak{P}. By Lemma 5 there exists a positive integer k such that $(p-1 * p-2 \circ)^{k} 0=\beta$ and, by Lemma 6, there exists an element ξ of \mathfrak{P} such that $(p-1 * p-2 \circ)^{k} \xi=\alpha$. For this choice of k and ξ, it follows from (10) that

$$
\begin{aligned}
&\left([p-1][p-2]^{-1}\right)^{k}[\xi][0][\xi]^{-1}\left([p-1][p-2]^{-1}\right)^{-k} \\
&=[\xi]^{[[p-1][p-2]-1) k}[0]^{([p-1][p-2]-1)^{k}}\left([\xi]^{-1}\right)^{([p-1][p-2]-1)-k} \\
&=[\alpha][\beta][\alpha]^{-1} .
\end{aligned}
$$

Therefore, by (11), $[\alpha][\beta][\alpha]^{-1}=\left[(p-1 * p-2 \circ)^{k}(\xi * 0)\right]$. It now follows from the easily verified formula

$$
\alpha *(\beta * \gamma)=(\alpha * \beta) *(\alpha * \gamma), \quad \alpha, \beta, \gamma \in \mathfrak{F},
$$

that
$(p-1 * p-2 \circ)^{k}(\xi * 0)=\left((p-1 * p-2 \circ)^{k} \xi\right) *\left((p-1 * p-2)^{k} 0\right)=\alpha * \beta$ and hence that $[\alpha][\beta][\alpha]^{-1}=[\alpha * \beta]$. Since α and β were arbitrary elements of \mathfrak{F}, the proposition is proved.
3. The commutator subgroup of H. We now turn our attention to H^{\prime}, the commutator subgroup of H, and show that it collapses to a cyclic group of order p.

It is clear, since H / H^{\prime} is infinite cyclic, that the set $\left\{\ldots,[p-1]^{-1},[p-1]^{0}\right.$, [$p-1$], ..\} is a set of coset representatives of H^{\prime} in H. A straightforward application of Schreier's technique for finding generators for a subgroup (2, p. 33) shows that $W=\left\{[\gamma][p-1]^{-1} ; \gamma \in \mathfrak{B}\right\}$ is a set of generators for H^{\prime}. As a first approximation, we prove

Lemma 8. H^{\prime} is abelian.
Proof. From (9) it follows that

$$
[\gamma]^{([0][p-1]-1) k}=\left[(0 * p-1 \circ)^{k} \gamma\right]=\left[\gamma+\left(n_{1} / n_{3}\right) k\right]
$$

and that

$$
[\gamma]^{[\alpha][p-1]-1}=[\alpha *(p-1) \circ \gamma]=\left[\gamma+\left(n_{1} / n_{3}\right)(\alpha+1)\right] .
$$

Let $\bar{\xi}$ be the integer in S_{p} that corresponds to the element ξ of \mathfrak{P}. Then we have, for all $\alpha, \gamma \in \mathfrak{P}$,

$$
[\gamma]^{[[0][p-1]-1)^{\bar{\alpha}+1}}=[\gamma]^{[\alpha][p-1]-1}
$$

The elements $\left([0][p-1]^{-1}\right)^{\bar{\alpha}}+1$ and $[\alpha][p-1]^{-1}$ then define the same inner automorphism of H. In other words,

$$
\left([0][p-1]^{-1}\right)^{\bar{\alpha}+1} \equiv[\alpha][p-1]^{-1} \quad(\bmod \zeta(H))
$$

Since $\left\{[\alpha][p-1]^{-1} ; \alpha \in \mathfrak{P}\right\}$ generates H^{\prime}, H^{\prime} is cyclic $\bmod \zeta(H)$ and the lemma is proved.

It is clear that, for any α and β in $\mathfrak{B},[\alpha][\beta]^{-1} \in H^{\prime}$. It then follows from Lemma 8 that, for all $\alpha, \beta, \gamma \in \mathfrak{P}$,

$$
[\gamma][\beta]^{-1}[\alpha][\beta]^{-1}=[\alpha][\beta]^{-1}[\gamma][\beta]^{-1}
$$

or, equivalently,

$$
[\gamma][\beta]^{-1}[\alpha]=[\alpha][\beta]^{-1}[\gamma], \quad \alpha, \beta, \gamma \in \mathfrak{B} .
$$

Thus

$$
[\alpha][\beta]^{-1}=[\gamma][\beta]^{-1}[\alpha][\gamma]^{-1}=[\gamma * \beta]^{-1}[\gamma * \alpha]
$$

for any choice of γ in \mathfrak{F}. If we let $\gamma=\left(n_{3} \beta-n_{2} \alpha\right) / n_{1}$, we find that

$$
[\alpha][\beta]^{-1}=\left[\frac{n_{3} \beta-n_{2} \alpha+n_{2} \beta}{n_{3}}\right]^{-1}[\beta]
$$

and hence

$$
\begin{equation*}
[\alpha][\beta]^{-2}=\left[\frac{\left(n_{3} \beta-n_{2}(\alpha-\beta)\right)}{n_{3}}\right]^{-1} \tag{12}
\end{equation*}
$$

Now,

$$
\begin{equation*}
[\alpha]^{-1}[\beta][\alpha]^{-1}=[\alpha]^{-1}[\beta][\alpha][\alpha]^{-2}=[\alpha \circ \beta][\alpha]^{-2} \tag{13}
\end{equation*}
$$

and applying (12) to the right-hand side of (13), we obtain

$$
\begin{equation*}
[\alpha]^{-1}[\beta][\alpha]^{-1}=[2 \alpha-\beta]^{-1} \tag{14}
\end{equation*}
$$

Suppose now that for some positive integer k and some α in \mathfrak{P}

$$
[\alpha][p-1]^{-1}=\left([0][p-1]^{-1}\right)^{k} .
$$

Then

$$
\begin{aligned}
\left([0][p-1]^{-1}\right)^{k+2} & =[0][p-1]^{-1}\left([0][p-1]^{-1}\right)^{k-1}[0][p-1]^{-1}[0][p-1]^{-1} \\
& =\left([0][p-1]^{-1}[\alpha][p-1]^{-1}[0]\right)[p-1]^{-1} \\
& =[0][p-1]^{-1}[\alpha][p-1]^{-1}[0]=[0][-2-\alpha]^{-1}[0] \\
& =[2+\alpha]
\end{aligned}
$$

by (14). Hence

$$
[\alpha+2][p-1]^{-1}=\left([0][p-1]^{-1}\right)^{k+2}
$$

It follows immediately from these considerations that

$$
\left([0][p-1]^{-1}\right)^{2 k+1}=[2 k][p-1]^{-1} .
$$

Since, by (14),

$$
\left([0][p-1]^{-1}\right)^{2}=[0][p-1]^{-1}[0][p-1]^{-1}=[1][p-1]^{-1}
$$

it also follows that $\left([0][p-1]^{-1}\right)^{2 k}=[2 k-1][p-1]^{-1}$. Finally, we have

$$
\begin{equation*}
[k][p-1]^{-1}=\left([0][p-1]^{-1}\right)^{k+1} \tag{15}
\end{equation*}
$$

We have now essentially proved
Proposition 9. H^{\prime} is cyclic of order p.
Proof. Since the set $\left\{[k][p-1]^{-1} ; k \in \mathfrak{P}\right\}$ generates H^{\prime}, (15) assures that H^{\prime} is cyclic. To see that H^{\prime} has order p, it suffices to note that

$$
\left([0][p-1]^{-1}\right)^{p}=[p-1][p-1]^{-1}
$$

4. The structure of H. We are now in a position to prove the main theorem. We remind the reader that we defined the group M as

$$
M=\operatorname{gp}\left(a, b ; b^{p}=1, a^{-1} b^{n_{2}} a=b^{n_{3}}\right)
$$

The relations (15) assure us that the elements $[p-1]$ and $[0][p-1]^{-1}$ together generate H. Let $c=[p-1]$ and $d=[0][p-1]^{-1}$. Then $d^{p}=1$ and

$$
\begin{aligned}
c^{-1} d^{n_{2}} c & =[p-1]^{-1}\left([0][p-1]^{-1}\right)^{n_{2}}[p-1]=\left(\left[n_{1} / n_{2}\right][p-1]^{-1}\right)^{n_{2}} \\
& =\left([0][p-1]^{-1}\right)^{n_{2}}\left(\left(n_{1} / n_{2}\right)+1\right)=d^{n_{3}}
\end{aligned}
$$

The correspondence $a \rightarrow c, b \rightarrow d$ can then be extended to an epimorphism $\Phi: M \rightarrow H$.

To show that H is an epimorphic image of M, we define for every $\alpha \in S_{\boldsymbol{p}}$ the element $z(\alpha)=b^{\alpha+1} a$ of M. The set $\left\{z(\alpha) ; \alpha \in S_{p}\right\}$ clearly generates M and

$$
(z(\alpha) z(\beta) z(\alpha))^{-1}=b^{\alpha+1} a b^{\beta+1} a a^{-1} b^{-(\alpha+1)}=b^{\alpha+1} a b^{\beta-\alpha} .
$$

Let us again consider n_{2} and n_{3} as elements of \mathfrak{B}. Then $b^{n_{3} / n_{2}}$ is defined and $a b^{k}=b^{\left(n_{3} / n_{2}\right) k} a$. Hence

$$
b^{\alpha+1} a b^{\beta-\alpha}=b^{\alpha+\left((\beta-\alpha) n_{2} / n_{3}\right)+1} a=b^{(\alpha * \beta)+1} a .
$$

Consequently,

$$
z(\alpha) z(\beta)(z(\alpha))^{-1}=z(\alpha * \beta)
$$

and the correspondence $[\alpha] \rightarrow z(\alpha)$ can again be extended to an epimorphism $\Psi: H \rightarrow M$.

It is easy to verify that Φ and Ψ are mutually inverse. Φ is then an isomorphism and the proof is complete.

References

1. A. H. Clifford, A noncommutative ordinally simple linearly ordered group, Proc. Amer. Math. Soc., 2 (1951), 902-903.
2. A. G. Kurosh, The theory of groups, vol. II (New York, 1955).

Courant Institute of Mathematical Sciences,
New York, New York, and
California Institute of Technology, Pasadena, California

