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On Types for Unramified p-Adic
Unitary Groups

Kazutoshi Kariyama

Abstract. Let F be a non-archimedean local field of residue characteristic neither 2 nor 3 equipped with
a galois involution with fixed field Fy, and let G be a symplectic group over F or an unramified unitary
group over Fy. Following the methods of Bushnell-Kutzko for GL(N, F), we define an analogue of a
simple type attached to a certain skew simple stratum, and realize a type in G. In particular, we obtain
an irreducible supercuspidal representation of G like GL(N, F).

Introduction

Let N be an integer > 2, and V an N-dimensional vector space over a non-archime-
dean local field F. Put A = End(V) and G = Autp(V) ~ GL(N, F).

From Bushnell-Kutzko [5], in which a complete classification of the irreducible
smooth representations of G is given, we obtain the following results: a stratum in A is
a4-tuple [U, n, 0, 5] which consists of a hereditary og-order 2 in A, an integer n > 0,
and an element § € P~", where o is the maximal order of F, and P is the Jacobson
radical of 2A. We define a compact open subgroup J = J(,q) of G and its normal
subgroups H' (3, ), J'(3,N) [5, (3.1)], associated with a simple stratum [, n, 0, 3]
(5, (1.5)]. Let @ be a simple character which is an abelian character of H' = H'(;3, )
[5, (3.2)]. Then there is a unique irreducible representation 7 of J! = J'(3, %) such
that n|H' contains 6 [5, (5.1)], and is an irreducible representation & of J, called a 3-
extension of 1), which is an extension of 7 and has the G-intertwining JB* J [5, (5.2)],
where B* is the G-centralizer of 3.

Suppose that A is principal. The group J/J' is isomorphic to a Levi subgroup
of GL(R, kg), where R = dimg(V') and kg denotes the residue class field of E. A
certain irreducible cuspidal representation of J/J' is chosen and is inflated to the
representation o of J. Then an irreducible representation A of J is defined by A =
k®o, which is called a simple type (of positive level) [5, (5.5)]. If ANB* is a maximal
compact subgroup of B*, then the representation (J, \) is a [G, 7]s-type in G, for
some irreducible supercuspidal representation 7 of G [5, (6.2)], [6]. Such a simple
type (J, A) is called maximal.

Associated with a simple stratum [, n, 0, 3], there is a choice of a parabolic sub-
group P = MN of G with a Levi component M [5, (7.1)]. From a simple type (], A),
we can define a certain pair of a compact open subgroups Jp of G and an irreducible
representation Ap of Jp [5, (7.2)]. Then there is an irreducible supercuspidal repre-
sentation 7 of M such that (JpNM, Ap|JpNM) isan [M, 7]y -type in M [5, (7.2)], [6],
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and (Jp, A\p) is a G-cover of (Jp N M, Ap|Jp N M) [5, (7.3)], [6]. Hence (Jp, Ap) is an
[M, 7]s-type in G [6, (8.3)]. Moreover, the Hecke algebra of (Jp, Ap) is isomorphic
to an affine Hecke algebra [5, (5.6)].

Let F be a non-archimedean local field of residual characteristic not 2 equipped
with a galois involution with fixed field F;, and V' a finite dimensional F-vector space
equipped with a non-degenerate hermitian form h. Let G be the unitary group of
(V, h) over Fy. Put A = Endp(V) and G = Autg(V) here. From Stevens [28-30],
we obtain the following results. A skew semi-simple stratum [, 7,0, 3] in A is de-
fined, and we obtain the subgroups H!(3, ), J'(3,%) and J(3,A) of G as above.
Restricting them to G, we obtain the subgroups H. = H' (3, %), JL = JL (3, N),
and J_ = J_(83,) of G, respectively. A skew semi-simple character §_ of H! is
defined as well, and we can similarly give a unique irreducible representation 7_ of
J' such that n_ |H ! contains 6_. In particular, if the A-centralizer of 3 is a maximal
commutative semisimple algebra of A, there is an irreducible representation x_ of J_
such that x_|J' = 5_, which is a 3-extension of 77_ in a sense. The representation
(J—, k—) induces an irreducible supercuspidal representation of G, and so it is a type
in G [2,17,32]. In general, it is very difficult to prove the existence of a 3-extension
of 7)_ even for a skew simple stratum [, n, 0, 5] in A.

Now suppose that 4 is a non-degenerate alternating form on a 2n-demensional F-
vector space V. Then G is a symplectic group Sp,,(F). Recently, the following results
for G = Sp,.(F) were obtained [3]. Let m be a self-contragradient supercuspidal
irreducible representation of GL(n, F) [1, 14], and (Jo, Ag) a maximal simple type
in GL(n, F) for the inertial class [GL(#n, F), T]grm,r). We can take a special simple
stratum [A, 1,0, 3] in A = Endp(V) such that the associated parabolic subgroup
P = MN of GL(2#n, F) satisfies M ~ GL(n,F) x GL(n,F) and leads to a Siegel
parabolic subgroup Py = MyNj of G with My ~ GL(n, F). Then there is a simple
type (J, A) in GL(2#n, F) attached to [, n,0,3] such that JA M ~ J; X J, and
A(JNM) =~ Ao ® A\g. Thus we can construct an irreducible representation (Jp, Ap) in
GL(2n, F) from (], \) as above, and restrict ( Jp, Ap) to G so as to obtain an [My, 7]g-
type in G as a G-cover of (Jy, Ag). The methods of [3] construct a type in G without
using a simple type for G.

Recently, the problem of constructing (simple) types for GL(N, D), with D a cen-
tral division F-algebra, was solved by Sécherre [23-25].

In this paper, let F be a non-archimedean local field of residual characteristic nei-
ther 2 nor 3 equipped with a galois involution with fixed field Fy. We assume that
F/F, is an unramified field extension, and let h be a non-degenerate F/F-skew-
hermitian form on a vector space V' of dimension 2n over F such that the anisotropic
part is zero. Put G = U(V, h). Following the methods of Bushnell-Kutzko [5], we
define a simple type for G attached to a certain skew simple stratum in A = Endp(V),
which is called good (see Definition 2.1), and realize a type in G. A simple type in
Span(F), attached to a good skew simple stratum [, #, 0, 3] with U principal and
with e(B|ogg) = 2, gives the one constructed in Blondel [3], where e(B|op;3) de-
notes the g -period of the lattice chain in V' defining the A-centralizer B of 3.

The contents of this paper are as follows: In Sections 1 and 2, from [5, 29], we
recall the definitions of the skew simple stratum [, 1, 0, 3], the compact open sub-
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groups H' (3, ), J'(3,A) of G, for t = 0,1, and the skew simple character §_ €
C_(U,0,5). We define a good skew simple stratum [, 1, 0, 3], which implies that
there are hereditary op-orders A, C A C Ay in A = Endp(V) such that U(B,,) =
A, N BN G is an Iwahori subgroup of BN G and U (By) = Ay N BN Gis a special
(good) maximal compact subgroup of BN G, where B is the A-centralizer of 3. This
property is used to prove the existence of a 3-extension.

In Section 3, let [, 1,0, 5] be a good skew simple stratum in A. From [30], there
is a unique irreducible representation 7_ of J! (3, ) associated with a skew simple
character 6_. Modulo some claim, we can prove that there is a 3-extension x_ of 7_,
which is by definition a representation of J_ = J_(3, ) satisfying (i) k_|J- = n_,
(ii) the G-intertwining of x_ contains J_.BN G.J_.

In Section 4, we have a parabolic subgroup P = MN,, of G, with Levi component
M and unipotent radical N,,, associated with a good skew simple stratum [, #, 0, ]
in A. We see that H (3,), J' (3,),t = 0, 1, have Iwahori decompositions relative
to P = MN,, and prove the claim in Section 3.

In Section 5, let [U, n, 0, 3] be a good skew simple stratum in A with U principal.
We choose a certain irreducible cuspidal representation o_ of J_(3,)/JL (3, N).
From this o_, together with a $-extension «_, we define an irreducible representa-
tion A_ = k_ ® o_ of J_(3, ), that is an analogue of a simple type of positive
level for GL(N, F) of [5, (5.5.10)]. Let W be an affine Weyl group of B N G with
BNG=U(B,)WU (8,,),and put W(B) = {w € W | w normalizes A N M N B}.
We prove that the G-intertwining of the simple type (J_,A_) is contained in
J-W (B)J]_. It follows that if A N B is a maximal compact subgroup of G N B,
(J—, A_) induces an irreducible supercuspidal representation of G. Moreover, we
construct an irreducible representation (Jp—, Ap_ ), in the same way as [5], such that
(Jo—NM, Ap_|Jp—NM) isan [M, 7] p-type in M, for some irreducible supercuspidal
representation 7 of M.

In Section 6, we study the Hecke algebra (G, Ap_) of (Jp—, Ap_), and then we
prove that (Jp_, Ap_) is an [M, 7]g-type in G, and so is (J_, A_).

1 Preliminaries
1.1 Unramified Unitary Groups

Let F be a non-archimedean local field equipped with a galois involution ~, with
the fixed field Fy. Let o and pr be its maximal order and the maximal ideal of of,
respectively, and kr = 0p/pr the residue class field. Let wr be a uniformizer of F.
We assume that the residual characteristic p is not 2 and that F/F, is unramified
(possibly F = Fy).

Let N be an integer > 4. Let V be an N-dimensional vector space over F, and
put A = Endp(V) ~ M(N, F). Let h be a non-degenerate anti-hermitian form on
V over F/Fy. We furthermore assume that the anisotropic part of V is zero. Then N
must be even. Let ~ be the adjoint (anti-)involution on A defined by the form h. Put
G = Autp(V) ~ GL(N, F), and define v to be the involution x +— % ~! on G. Put

I'={1,~}.
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We put
G=G"={geG|h(gv,gw) = h(v,w), forallv,w € V}.

By the assumption, G is a symplectic group over F if F = F, and is an unramified
unitary group over Fy if F # Fy. We write G = U(V, h). We also put

G={acA|a+a=0}.

This is isomorphic to Lie G.

Let Z and C denote the ring of rational integers and the field of complex numbers,
respectively. For a ring R, let R* denote the multiplicative group of invertible ele-
ments in R. For a finite field extension E/F, we denote by o, pg, kg the objects for E
analogous to those above for F.

1.2 Filtrations

We recall the notation in [5, 19].
For an op-lattice in V, we define the dual lattice L* by

LI*={veV|hL)C o}

(19, 1.1]. An op-lattice chainin V isaset L = {L; | i € Z} of op-lattices in V which
satisfies

* L DLy, forallie?,

* there is a positive integer e such that L;,, = pgL;, forall i € 7Z.

This integer e = e(L) is unique and is called the op-period of L.

A op-lattice chain £ in V is called self-dual (with respect to the form h) if L € £
implies L* € L. If L is self-dual, from [19, Proposition 1.4], there is a unique slice of
the form:

L2 2L 5L2 2L dDwill,,
for some integer r > 1, where possibly Lj = Ly and/or L,_; = wrL?_|. This slice is
called a self-dual slice of L.
Associated with an og-lattice chain £ in V, a filtration on A is given by

P"={x €A | xL; C Liyy, foralli € 7},

for n € 7. In particular, A = A(L) = B is a hereditary op-order in A, and P is its
Jacobson radical. An og-lattice chain £ in V determines a valuation map vy : A — 7
by
vy(x) = max{n € Z | x € B"}, forx € A,

with vy (0) = oc. _

We obtain a family of compact open subgroups A N G = A* and 1 + P* for
integers n > 1, of G. If L is self-dual, A* and 1 + P", n > 1, are fixed by 7. So we
obtain a family of compact open subgroups of G

UQ)=@@)"=ANG, UM =01+$")" =1 +P")NG,
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for integers n > 1. Then {U"(A) | n > 1} is a filtration on G by normal subgroups
of U().
For an op-order A = A(L) in A, we put

KA ={xeG|xLel, forallLe L}

Then we have R(A) = {x € G | xAx~! = A}.

1.3 An E-anti-hermitian Form

Suppose that 3 is an element in the Lie algebra ® such that the algebra E = F[(] is
a subfield of A. Then the involution ~ on A fixes E. Put Ey = {x € E | X = x}. We
choose an F-linear form ¢y: E; — F which satisfies

€o(0g,) = 0F,, Lo(Pg,') = Pp,|
asin [3, 2.3]. We define an F-linear form ¢: E — F as follows: if F = Fy, put
{= 60 o trE/En .

Otherwise, we extend ¢, to E linearly. In fact, since F/F, is unramified and the resid-
ual characteristic p of F is not 2, there is an element £ € oy such that F = Fy[£],
E = Ey[€], and £ € F,. We note that E/E, is also unramified. Thus we have
Op = Df, + Dpog, D = Dg, + 0E0€. Hence /: E — Fis given by

(1.1) Ux+ y€) = Lo(x) + Lo(y)§

forall x, y € Ey. Hereafter we fix this F-linear form ¢: E — F.
From the F-linear form ¢ on E = F[3] and the form k on V, we can define an
E-anti-hermitian form kg on V by

(1.2) h(av, w) = ((ahs(v,w))

forallv,w € V and all a € E [26]. Then ﬁg is non-degenerate. Let B = Bj be the
A-centralizer of 8. Then we may identify B with Endg(V).
By definition, we have

(13) EO_I(DFU) = Df,.

Proposition 1.1 The form hg is a non-degenerate E/Ey-anti-hermitian form on V,
and there is a canonical isomorphism

B*N G={x€ B |v(x) =x} ~ UV, hy).

Proof In the case of F = F, this follows easily [3, 2.3]. Suppose that F # F;. By the
assumption, E/E, is unramified, as was noted above. It follows from the definition
of the F-linear form ¢ above that £(z) = ¢(z) for z € E, whence this shows that hg,
defined by (1.2), is a non-degenerate E-anti-hermitian form. ]
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Lemma 1.2 ‘/\/e have
— 1—e(E|E
f 1(DF) — pE el | 0)7

where e(E | Ey) denotes the ramification index of E/Ej.

Proof We again note that if G is an unramified unitary group over F, (with F # F,),
E/E, must be unramified.

Write ey = e(E | Ey). Since p # 2, E/E, is tamely ramified. Thus, by [33, VIII, §1,
Proposition 4], we have

1—ep

(1.4) trg/lEO(DEO) = pp

Suppose first that ey = 1, i.e., E/Ey is unramified. If F = F, the assertion follows
directly from (1.3) and (1.4). Suppose that F # Fy. Then og C ¢~!(of) follows
immediately. Conversely, let z = x + y£ € £7'(0g), for x, y € Eo. Then from (1.1),
Uz) = ly(x) + Lo(y)E € op, and so £y(x), £o(y) € op,. Hence from (1.3) x, y € og,,
thatis,z = x + y£ € vg.

Suppose that ey = 2, i.e., E/E, is ramified. Then we must have F = F,. For, since
F/F, is assumed to be unramified, it follows from (1.4) that trg/lEO(oEn) - pEﬂ. Thus
from (1.3),

trbf/lEU ([al(oF)) = trbf/lEU(DEO) = pbjl - P};eo- |

1.4 Self-dual Lattice Chains

Suppose that [ is an element in the Lie algebra ® such that the algebra E = F[3] is a
subfield of A, as in Section 1.3. Let L be an og-lattice in V. Then L is also an vg-lattice
in V. We define the og-dual L? of L, with respect to hg, by

I'={veV| %(v,L) C og}.
There is a close relationship between L* and L? as follows.

Proposition 1.3 For an og-lattice L in V, we have

IF = e

where wg is a uniformizer of E.

Proof From (1.2), we have an equivalence: v € L* < or D h(v,L) = K(zﬂ(v, L)).
From Lemma 1.2, the latter is equivalent to

ep—1

Pl S hy(v, L) <= 05 D hy(w® v, L) < v € w) L,

where ey = e(E | Ep). [ |
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Let £ be an op-lattice chain in V such that EX C (), with A = A(L). Then it
follows from [5, (1.2.1)] that L is also an og-lattice chain in V, which is denoted by
Ly,. Thus, as in Section 1.2, £ has a unique self-dual slice of the form

(1.5) L, 2---2L>L2 2L Dwel’ |

r—1 =
for some integer r > 1, with respect to the form Eg
Proposition 1.4 Let L be a self-dual vg-lattice chain in V with respect to Zd Then it is

also a self-dual og-lattice chain in V with respect to h. Moreover, we have the following.

(i)  Suppose that E/E, is unramified. If the self-dual slice of L of the form (1.5) satisfies
L} = Ly, then L, = Ly as an op-lattice.

(ii) Suppose that E/Ey is ramified. If the self-dual slice of L satisfies wELE_1 =Ly,
then it contains an vg-lattice M in V such that M* = M as an og-lattice.

Proof The first assertion and (i) follow immediately from Proposition 1.3. We show
(ii). Write e = e(L,,) for the og-period of L. From Lemma 1.2, it follows that
M = w; 'L, is the desired lattice. For we have

(wEilerl)# = (Lfe-*—rfl)# = wEithfeJrrfl

= (wELfe+r71)h = LE—I = wEilerb n

2 Skew Simple Strata
2.1 Skew Simple Strata

We recall the definition of a skew simple stratum in [5,29], and define a good skew
simple stratum in A.

A stratum in A is a 4-tuple [U, n, r, b], which consists of a hereditary og-order U
in A, integers n > r, and an element b € A such that vy (b) > —n.

Definition 2.1 ([29, (1.7)]) A stratum [, n,7,b] in A is called skew if the lattice
chain L, with A = A(L), is self-dual and b € ® ~ Lie(G).

Definition 2.2 ([5, (1.5.5)]) A stratum [, n,r, 3] in A is pure if

(i) thealgebra E = F[f] is a field,
(i) E* C |,
(iii) vy(B) = —n.

For a pure stratum [, n, r, 5] in A, the integer ko (5, ) of [5, (1.4.5)] is defined.

Definition 2.3 ([5, (1.5.5)]) A pure stratum [, n,7, 3] in A is simple if it satisfies
r < —ko(3, ).

Let [U,n, 7, 3] be a pure stratum in A. Then the rings H(3, ), J(G,A) of
[5, (3.1)] are defined. We define

H(3,%) = H(B, W)™, J(B,N) =J(B, W)~
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subgroups of G, and for an integer m > 1,

H"(5,%) = 9(6,W N (1+PB7),  J"(B,A) =36, W) N (1+P")

normal subgroups of H(3,U) and J(G,A), respectively. A simple character set
C(AU, m, B), for an integer m > 0, of [5, (3.2)] is defined. An element of C(U, m, 5)
is a certain abelian character of the group H™*!(3, ).

Let [, n,0, 5] be a skew simple stratum in A, with r = —ko(3, A). Then H(5,A)
and J(3, ) are fixed by I'. For 0 < m < r — 1, the subset C'' (U, m, 3) of C(A, m, 3)
is defined in [28, 3.2] by CT(A, m, B) = {# € C(A,m,B) | 7 = 0}, where 67 (x) =
0(y(x)), for x € H™1(3,A).

We define two families of compact open subgroups of G as follows:

H™(3,%) = H"(3,0)" = H"(3,A) NG,
(B, = J"(B,W" = J"(B,MWNG,

for integers m > 0. From [28, (2.1)], there is a correspondence g, which is called
Glauberman’s correspondence, between the set of equivalence classes of irreducible
representations of H™*1(3, ) fixed by I" and the set of equivalence classes of irre-
ducible representations of H™*!(3, ). In particular, for € G (U, m, 3), we have
g(0) = O[H""1(3,20). We put €_ (2, m, 3) = {g(0) | 0 € €T, m, §)}.

An element of C_ (U, m, B) is called a skew simple character.

2.2 Good Skew Simple Strata

Suppose that [, 1, 0, 3] is a skew simple stratum in A, with W = A(L). Let E = F[[]
and B = Bj the A-centralizer of 3. Let E, be the fixed field of E under the involution
~ on A. From Proposition 1.3, L is a self-dual og-lattice chain in V' with respect to
the form E@. Thus L, has a self-dual slice of the form (1.5).

Definition 2.4 A skew simple stratum [, n, 0, 3] in A, with A = A(L), is called
good if it satisfies

(i) E/E, is unramified;
(ii) R = dimg(V) is even;
(iii) the self-dual slice of L, of the form (1.5) contains the L, satisfying Lg = L.

Proposition 2.5 If the conditions (i), (ii) and (iii) in Definition 2.4 are satisfied, the
anisotropic part of (V, h) is zero.

Proof A proofis found in [3, 2.3]. |

If [U, 1,0, 5] is a good skew simple stratum in A, from [5, (5.5.2), (7.1.2)(ii)], we
have an E-decomposition of V' subordinated to L,,, with e = e(L,,):

(2.1) V=@V
i=1

such that
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() Ly =1, Lj, where L, = Ly N Vi, for 1 <i <e, k€ Z

(H) L1+me Li+me+l == L;+(m+1)e—1 # L§+(m+l)e’ for 1 < i < e me Z.
Lemma 2.6 Let [U,n,0,3] be a good skew simple stratum in A, with A = A(L),
E = F[B] and e = e(L,,). For the self-dual slice of L, of the form (1.5), there is a Witt
basis for Ly,

(22) V: {Vl,Vz,...,VR},
such that Ly = ogv; @ 0gv, @ -+ @ 0gvg, and each pair {v;,vg_js1} generates a
hyperbolic E-subspace of V relative to hg. Write Ly = 0g(V). For the E-decomposition

(2.1) of V. Each V' is spanned by V' = VOV’ = {vj,_ 11,v,_42,..., v} } over E, and
Ly = [1; > 0 < k < [e/2], satisfies

L - op(V)  fori <e—k,
ke pe(V) fori>e—k+1,

where jo, j1,. .., je are integers with 0 = jo < j; < -+ < j. = R and for a real
number r, [r] denotes the largest integer < r.

Proof This follows directly from Proposition 1.1 and [19, Proposition 1.7]. ]

Proposition 2.7 Suppose that [0, n,0, 3] is a good skew simple stratum in A with
= W(L). Let E = F[B] and B = By the A-centralizer of 3, and e = e(L,,).
Putt = [(e+ 1)/2]. Then the E-vector space V is decomposed into an orthogonal

decomposition V.= L!_ 1Vis hﬁ =10 1h such that for 1 < i < [e/2], (Vl,h Yisa
hyperbolic space, where V' and V°~"*! are totally isotropic subspaces of V;.

Proof From (2.1), for 1 < i < [e/2], putV; = Vi @ Veitl E = E3|V,', and if
t = (e + 1)/2 is an integer, put V; = V*, hy = hg|V;. Then the assertion follows
directly from [19, Propositions 1.7, 1.12]. |

Let U, E = F[(3] be as above, and B = Bj be the A-centralizer of 3. Put B = BN,
We define a compact open subgroup of G by U (B) = AN B* N G, and a family of
normal subgroups of U(B) by U"(B) = (1 +P")NB* NG = (1+2Q") NG, for
integers m > 1, where Q = P N B.
Proposition 2.8 Suppose that [U,n,0, 3] is a good skew simple stratum in A with

= WA(L). Let E = F[B], B = Bg the A-centralizer of 8, and e = e(L,,). Put
t = [(e+ 1)/2]. Suppose moreover that the lattice chain L, has self-dual slice of the
form (1.5). Then there is a canonical isomorphism

He/ 2 AutkE(V ) if e is even,

1 ~
U(%)/U (%) - {H (e=1)/2 AutkE(V ) X U(Vh h ) ife is Odd,

where V' = Li_i/Li, for 1 < i < [e/2], andift = (e+1)/2 isan znteger, V, =
Ly /wELt , and h; is a non-degenerate form, induced naturally from hq Moreover,
(Vi, hy) is a kg / kg, -anti-hermitian space whose anisotropic part is zero.

Proof This follows at once from Proposition 2.7 and [19, 1.10 and Proposition 1.12].
In particular, the last assertion follows from Proposition 2.5 and [19, 1.10]. [ |
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3 Beta Extensions
3.1 Heisenberg Representations

Following the methods of [5,30], we prove the existence of a beta extension for our
classical group G. Hereafter, we assume that the residual characteristic p of F is nei-
ther 2 nor 3.

If p is a representation of a compact open subgroup K of G, and g € G, we write
I (p) = Homgsng(p, p%), where K& = ¢ 'Kgand p?(x) = p(gxg™"), forx € KENK.

Proposition 3.1 ([5, (5.1.1)]) Let [U,n,0,3] be a skew simple stratum in A, and
0_ € C_(A,0,0). Then there is a unique irreducible representation n— = n(6_) of
JL (B, ) such that n_|H (8, ) contains §_. We have

dim(n_) = (JL.(3,2) : H' (3,))?,

and for g € G,
. 1 ifge JL(B*NGJL,
dim(I,(n_)) =
im(ly(n-)) {0 otherwise.
Proof This is a special case of [30, (3.29) and (3.31)]. [ |

Proposition 3.2 ([5, (5‘.1.2)]) Fori=1,2, suppose that [W;, n;, 0, 3] is a skew simple
stratum in A, and let 0. € C_ (91,:, 0,0). Let " be the unique irreducible representa-
tion of J* (8, ;) which contains 6" . Then we have

dim(nL)(U(B,) : U'(By) = dim(n2)(JL(5, W) = JL(5, W),

where B; denotes the U-centralizer of B, fori =1, 2.

Proof Using the exact sequence of [30, (3.17)] and the Cayley map C(x) =
(1+ %x)(l - %x)_l, we can prove the assertion in the same way as the proof of
[5, (5.1.2)] (see [3, 4.2]). [ |

Suppose that [U, n,0, 3] is a good skew simple stratum in A, with A = A(L).
Let E = F[f], and B = Bg be the A-centralizer of 3. Then L = L,, is a self-dual
og-lattice chain in V, with e = e(L,,). From Definition 2.4, its self-dual slice of the
form (1.5) contains the pg-lattice Ly in V' such that Lg = Ly. Thus we can put

This is a self-dual og-lattice chain in V satisfying L), C £, and the og-period of
Ly is equal to one. We can choose a (maximal) self-dual og-lattice chain L, in V
satisfying L C L, with og-period equal to R = dimg(V). From L, and £, we

obtain og-orders By, and B, in B = Bg as follows:

By = EndgE(LM) ={x€B|xLCL, forallL € Ly}
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and similarly B,, = EndgE(Lm). Then By, (resp. B,,) is a maximal (resp. minimal)
hereditary og-order of B. Moreover, B = B N U satisfies B,, C B C By, From
Proposition 1.3, £, and L, are also self-dual op-lattice chains in V.. Write

Ay = End), (Lrr), Ay, = Endy, (L)

Then we have By, = Ay, N B, B,, = A, N B.
We denote by vg(3) the normalized valuation of 3 in E. Then, since we have
v, (B) = —ve(B) and vy, (B) = —ve(B)R, strata

[QIM>_I/E(6)7O76] and [9’[?117_VE(/6)R7076]

in A are both (good) skew simple. From [30, (3.26)], there is a transfer

71, 90,30 - C— (W, 0, 8) — C_(Uypy, 0, 3),

(see [5, (3.6.2)]). Similarly, there is a transfer Ty, 9 50.
Let Oy — € C_(Up1,0,0), 0 € C_(U,,0,5),and 6_ € C_(A, 0, 3). Assume
that these characters are related as follows:

Om,— = 7o, 0y,600m—), O =7, 9800m—),

asin [5, (5.1.13)].

For an integer t > 1, write simply J* = J_(3,), J;, _ = JL(B, W), Jyr— =
T (8, Apy), - = J_(B,N), and so on, with similar conventions for the groupr H_.
Let n_ (resp. 1, —, resp. M) be the unique irreducible representation in Proposition
3.1 which contains 6_ (resp. 0,, —, resp. 0, —). Analogous results for GL(N, F) in
[5, Propositions (5.1.14)—(5.1.19)] can be proved for G in a quite similar way.

Proposition 3.3 ([5, (5.1.14)—(5.1.18)])  Let notation and assumptions be as above.
(i)  Thereis a unique irreducible representation My, — ofUl(%m)]j{%_ such that

(a) ﬁM,—Uz{/[,— =NM,—>
(b) the representations My, — and 1, — induce equivalent irreducible representa-

tions of U (U,).
(ii) There is a unique irreducible representation 1_ ofUl(%m)]l_ such that
(@ 7-|JL =n-;
(b) the representations 11— and 0y, — induce equivalent irreducible representations
of UY(,,).

(iii) There is a unique irreducible representation iy, — ofUl(%)]I{,L_ such that
(@) fim,— Ui/[,f =NMm,—
(b) the representations fj,— and n_ induce equivalent irreducible representations
of U' ().
If p is a representation of a compact open subgroup K of G, put

I(p) = {g € G [ Li(p) # (0)}.

We say that an element g of G intertwines p, if g € I(p).
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Proposition 3.4 ([5, (5.1.19)]) Let notation and assumptions be as in Proposition
3.3. Then we have

Ie(m—) = Ty B NGy, Isn-)=J-(B*NG)JL.

Proof By using [29, Theorem 2.2], we can prove the assertion in the same way as the
proof of [5, (5.1.19)]. [ |

3.2 Beta Extensions

Let [U, 1,0, 5] be a skew simple stratum in A, and _ € C_(2,0, 3). Let E = F[{]
and B = Bg be the A-centralizer of 3. Let n)_ be the unique irreducible representation
of J1 (3, ) which contains 6_.

Definition 3.5 ([5,(5.2.1)]) A representation x_ of J_(3, ) is called a 3-extension
of n_, ifit satisfies k_|JL (3, A) =n_ and BX NG C Ig(K_).

We show that if a skew simple stratum [, #,0, 3] in A is good, there is a [3-
extension of 7_.

Lemma 3.6 Let U,V be subgroups of G fixed by T'. Suppose that U normalizes V,
and that U NV is a pro p-group. Then we have (UV)' = UV,

Proof The groups UV,U NV are both I'-sets. Then we obtain a short sequence

1—UNV-2UxV UV —1,

where 6(x) = (x,x), forx € UNV,and w(x,y) = xy~ ', forx € U,y € V. This is
an exact sequence of I'-sets. For we have

6(y(x)) = (v(x), y(x)) = ~(x, %),
T(7(x),7(7) = 7))~ =y~ = (7 (x, ),
forx € U,y € V. From [22, Proposition 3.6], we thus obtain an exact sequence
1 —UnV)! — wuxv)i —@wv) —HT,UNV) — H(',U x V).

Since U NV is pro p-group and p is not 2, we hence have H!(I', U N V') = 1, whence
vt =utvt. |

Proposition 3.7 ([5, (5.2.4)]) Let [U,n,0, 3] be a good skew simple stratum in A,
and Mp,— the representation of Ul(%M)]M_, as in Proposition 3.3. Then there is a
representation Kyy— of Ju,— such that kyy— |U1(%m)]]{43_ =M,

Proof Following the methods of the proof of [5, (5.2.4)], we prove the assertion. We
sketch the proof.
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Putr = —ko(3, ). From Lemma 3.6 and [30, (3.12)], we get

T = U @) B,%), v = UBu) Ty

From the case where e = e(L,,) = 1 in Proposition 2.8, we have
Ju /Ty = U(By) /U (By) = UV, ),

where V = Lo/ng for Ly € L,, in (1.5) and hisa non-degenerate kg /kg, -anti-
hermitian form, which is naturally induced from the form Ea. It follows from Propo-
sition 2.8 that § = U(V, h) is a unitary group over kg, of type A3_,. The canonical
image of U'(B,,) /U (B)y) into G is the unipotent radical N of a Borel subgroup of
G. Thus Ul(%m)]ﬁf is a Sylow pro p-subgroup of Jy; . Since, from [30, (3.31)],
Jm,— normalizes 1y, —, we obtain a projective representation of Jy; — which is an
extension of 7y, _. We can adjust this projective representation to be a linear repre-
sentation A of Jy; . Then we have

AU (Bw) Iy =Tin— @ ¢,

where ¢ is a character of U!(%B,,) which is trivial on U (B,;). This ¢ is a character
of N which is intertwined by all the elements of G. Let ® be a root system of § and A
the set of simple roots in @, associated with N. We denote by U, the root subgroup
of G associated with a € ®, and by [N, N] the commutator group of N. Let ht be
the height function on ® with respect to the basis A. Then, under the assumption
p # 2,3, by using the commutator relations in the twisted group G of GL(R, kg), we
can easily see that [N, N] = [[, U,, where a runs through roots in ® with ht(a) > 2,
(see [27,811], [11, §13]) and see that there is a canonical isomorphism

N/[N,N] =~ [] U..
acA

As in [11, 8.1], this fact holds for any finite group of Lie type. Thus ¢ is trivial on N
and can be extended to a character ¢’ of G, as in the proof of [5, (5.2.4)] for GL(N, F).
We regard ¢’ as a character of J;, and put Ky — = A ® ¢’ . It easily seen that the
representation s, — is the desired one. |

Proposition 3.8 ([5, (5.2.5)]) Let ky,— be the representation as in Proposition 3.7.
Then there is a representation k_ of J_ which is uniquely determined by the following
properties:

@) k_[JL=n_;

(ii) k— and Ky —|U(B) ]y, _ induce equivalent irreducible representations of U (N);
(iii) Ind(k_ : J_,U(BYUYN)) is equivalent to

Ind(kpr— [U(B) iy - U(B) Ty, UBU' Q).

Proof Using Proposition 3.2, we can prove the assertion in the same way as the proof
of [5, (5.2.5)]. [ |
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We show that the representation «_ in Proposition 3.8 is a 3-extension.

Proposition 3.9 ([5, (5.2.7)]) Let k_ be the representation of J_ constructed as in
Proposition 3.8. Then we have

Ig(ko)=]-(B*NG)J-=J.(B*NG)J..

Proof The proof of [5, (5.2.7)] for GL(N, F) remains valid for our classical G, as
well. We also sketch the proof.

Using the Witt basis V of (2.2), we express elements of B* N G in matrix form,
that is, B* N G is embedded in GL(R, E) where R = dimg(V'). Moreover, U (By)
is embedded in GL(R, og), and it is a special maximal compact subgroup of B* N G.
Thus B* N G has a Cartan decomposition relative to U (B).

From [30, (3.13)], I(k—) C Ig(n-) = J-(B* N G)J]_. So it is enough to prove
that any element y of BX N G intertwines x_. Moreover, by Proposition 3.8(ii),
it is enough to treat the case where L = Ly and k— = ky,—. Since U(By) C
J— N B* N G, we can choose y in a (U(By), U(By))-double coset, and reduce
it to a diagonal element Diag(wy', ..., wy, @ ..., wg '), where r = R/2 and
ny, My, ..., n, are integers with n; > n, > --- > n,. Here we recall that E/E, is
unramified. As in the proof of [5, (5.2.7)], we can choose a self-dual og-lattice chain
L"in V, with e(L; ) = e, for some integer ¢’ > 1, which satisfies the following
properties:

(P1) the self-dual slice of L of the form (1.5) satisfies LE) = Lo,

(P2) this lattice L, is the same as that of /L,

(P3) for the E-decomposition V = @;_, V' subordinated to L', the element y has
a diagonal block form (y;), and each y; in Endg(V') is central, for 1 <i < ¢’.

From Proposition 1.4, L is also a self-dual op-lattice chain in V. Put 8’ =
EndgF(L’) N B. From (P2), elements of B’ are written in the following block form:
(xjk), 1 < j,k < €', such that coefficients of the n; X ng-matrix xji are all in o if
j < k, and all in pg otherwise, where R = n; + 1 + - - - + n,/ is the partition of R
associated with £’. Put fﬁ?(%’) = {(xjt) € B’ | xjx = 0,forall j # k}. Then it
follows from Proposition 2.7 that the involution ~ fixes ‘J}E(?B’ ). Thus we have

M(B)* = (DB = MB') NG.
From the proof of [5, (5.2.7)], we have
y centralizes MB') and By N B, C prBu + (B N (B')),
where L = y~!Ly. We denote by ‘B’ the transpose of B’. Then we also have
y~! centralizes M(B’) and Ba N By C peBar + (B N ('B)),
where 7L = yLy~".

If B" = By, clearly y = 1. We note that this fact never occurs for the case of
GL(N, F). Thus y = 1 trivially intertwines ks, _.
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From [5, p. 173] together with Lemma 3.6, we obtain
(BT (B Jhg) 0 BT B T}y
=MB) U (B) ]y N U (B)]y))
in G. It follows from Lemma 3.6 and [5, (5.2.11)] that the element y intertwines
kim,— U (B) Ty with ky _[U(B") ]y @ ¢, where ¢ is an abelian character of
M(B)* /(M(B")*NU'(B') ]} ). For the lattice chain L’ in V, we can choose the
minimal self-dual og-lattice chain £j, = Ly, given in Section 3.1, and a maximal
self-dual og-lattice chain £/, in V, such that L/, C L’ C L},. Then we can see that
¢ is factored through the determinant in a suitable sense [5, p. 173]. Let x_ be the
representation of J_(3,U’) given by Proposition 3.8, where A’ = EndgF(L’ ). We

can form the representation x_ ® ¢, and by using Propositions 3.8 and 3.1, we can
prove that y intertwines x_ with k_ ® ¢.

Claim 3.10 There is an extension p_ of _ intertwined by y.

We shall prove the claim in Section 4.2 below. We now assume that the claim is
true. We also apply H = JL, N = M(B’)*, g =y, p = n_ to [5, (5.2.11)]. Then
these satisfy those hypotheses. In particular, we apply x_ to p there. We now apply
p— to p’ [5,(5.2.11)(a)] so that y intertwines p— with 1 ® ¢. Thus the uniqueness
of ¢ shows that ¢ is trivial. Hence we have seen that y intertwines r — [U(8') ]}, _.

From the proof of [5, (5.2.7)] and Lemma 3.6, we obtain '

Ju- Ny = (U (By) NUB))UB) L 0 (UB),)).
Similarly,
(U (Bu) NU(BN)") C (UBu) NU(By))UB)NU(B'Y).

Hence we can prove that y intertwines sy, — in the same way as the proof of
[5, (5.2.7)]. This completes the proof modulo the claim. [ |

Theorem 3.11 Let [U, n,0, 3] be a good skew simple stratum in A, and
0_e€C_(AU,0,0).

Let )_ be the unique irreducible representation of J* (8, 0) which contains 0_. Then
there is a (3-extension of 1_.

Proof The assertion follows directly from Propositions 3.8 and 3.9 (modulo the
claim). [ |

To prove the claim, the following lemma will be used in the next section.

Lemma 3.12  Let L' be the self-dual og-lattice chain in V associated with y € B*N G
in the proof of Proposition 3.9. Let A = EndgF(L’) and n’ = —uvy(B). Then
[, n’,0, 8] is a good skew simple stratum in A.

Proof Straightforward. ]
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4 Iwahori Decompositions
4.1 Iwahori Decompositions

We prove the claim in the proof of Proposition 3.9.

Suppose that [U, 1,0, 3] is a skew simple stratum in A, with A = A(L). Let
E = F[p], and B = Bg be the A-centralizer of 3. Put e = e(L,,). For the E-decom-
position V = €P;_, V' of (2.1) subordinated to £,, put

Al = Homp(V/, V'), A" = A" for1 <i,j<e.

We define subgroups of G as follows:

ﬁ:ém( 1T Aif) M:ém(HAlj

1<i<j<e 1<i<e

N, = H AT N, =1+N, Ny = H AT Ny =1+N,.
1<i<j<e 1<j<i<e

Each og-lattice Ly in £,, has a decomposition Ly = [[,;, L};, with L}'< =L NV
for k € 7. From [5, (7.1.12)], there is a canonical isomorphism

H'(6,9) N M =~ [ H (8,99,
i=1

where A" = End), ({L; | k€ Z}),for1 <i <e.

Proposition 4.1 ([5, (7.1.19)]) Let [U,n,0, 3] be a simple stratum in A, with A =
A(L) and e = e(Lp(p)), and § € (U, 0, B). Then 0 is trivial on

H'(B, %) N Homp(V7, V7,
fori # j. Under the identification H'(8,%) (1M = [T, H'(8, "), we have
9|(H1(5,91) 01\71) =V x...0 9(6)7

where 0 € C(UM, 0, B) and 07 = Ty g 50(6), for 1 < i <ee.

Suppose that a skew simple stratum [, #n,0, 5] in A is good. Let A = A(L),
E =F[fB],e =e(L,,),and B = Bp be the A-centralizer of . Putt = [(e+ 1)/2]. For

the orthogonal decomposition (V, Eg) =1, Ei) in Proposition 2.7, we define

hi = £ o h;,
for 1 < i < t, where /: E — F is the F-linear form defined in Section 1.3. Then
for 1 < i < [e/2], (V;, h;) is a hyperbolic F-space such that V, Ve~/*! are totally
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isotropic F-subspaces of V;, and if + = (e + 1)/2 is an integer, then V; = V' and
h; = h|V,. Moreover, we have an orthogonal F-decomposition of V:

V=1_Vi, h=L1_h,

Thus the involution ~ on A defined by A, induces involutions Al — AT AT
Asithe=i+ for 1 < i, j, < e, where if i = j (mod e), we set i = j. We denote
by x — % the induced involution A" — A°~**!, Hence the involution ~ on A fixes
[1. A",N, and Ny, respectively, whence the involution  on G fixes the subgroups P,
1\71, NM and Ng. Let § be one of these subgroups. Put § = §F = §m G. ThenP = MN,,
is a parabolic subgroup of G, with Levi component M and unipotent radical N,,. We
also have the opposite parabolic subgroup Py = MN, with respect to M. We say
that the parabolic subgroup P = MN,, is associated with a good skew simple stratum
(U, n,0,0].

Lemma 4.2 Let [U,n,0, 3] be a good skew simple stratum in A, and P = MN, a
parabolic subgroup of G associated with [U, 1,0, 5]. Let W = (L), E = F[S], and
e =e(Ly,). LetV = @le V' be the E-decomposition of (2.1) subordinated to L.,.
Then there is a canonical isomorphism

112 Autp(VY) if e is even,

(T1, " Aute(Vi)) x U(Viyhy)  if eis odd,

wheret = (e+1)/2.

Proof The assertion follows easily from the above argument (see Proposition 2.8).
|

We write simply H” = H"(3,q) and J* = J"(3,), for m = 0,1. From
[5, (7.1.14), (7.1.16)—(7.1.18)], we obtain Iwahori decompositions of H”, J™, for
m = 0, 1, as follows.

Proposition 4.3 ([5, (7.1.14)]) Let G_ denote any of the groups H”, ], for m =
0, 1. Then we have the Iwahori decomposition:

§- =(5-NNy-(G-NM)-(5- NNy,
S-NP=(5-NM)-(5- NN,

Putt = [(e + 1)/2]. According to the decomposition of M in Lemma 4.2, for
m = 0, 1, we have

78,20 1 M ~ ] J"(5,a9),

i=1
whereift = (e+1)/2is an integer, we understand J” (3, A") = J" (3, AV). Likewise
for H™ (3, N), for m = 0, 1. Moreover, we have

(J_NM)H" = (H'. nN)(J_ " M)(HL NN,),
(J-NP)H. = (H. nN)(J- N M)(JL NN,).
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4.2 The Proof of Claim 3.10

We are ready to prove Claim 3.10.

Proposition 4.4 Let [U, n,0, 8] be a good skew simple stratum in A, with A = A(L)
ande = e(L,,), and0_ € C_(U,0,3). Let P = MN,, be a parabolic subgroup of G as-
sociated with [, n, 0, 3]. Putt = [(e+1)/2]. Then 6_ is trivial on both H- (3, 20)N N,
and H (3,%) N N,.. After the identification H- (3, %) N M = [[,_, H'(3, A7), we
have

O_|H- (B, W)NM) =6V - 20",

where 0 € @AY 0,283), for 1 < i < [e/2], and ift = (e + 1)/2 is an integer,
we understand 6 = Q(f) and G(‘)I(’)? 0,3) = C_(AW, 0, B). Further, 0¥ is a simple
character of H'(23,A") = H' (B3, AD) for 1 < i < [e/2].

Proof The first assertion follows directly from Proposition 4.1. As in Section 2.1,
we have 6_ = g(0)) = 0|H. (3, ), for some 6§ € C(A, 0, 3) with 7 = 0. From
Proposition 4.1, 8| (H' (6, A N M) = #1’ @ - .- © ). We restrict this character to
GN (Af x A1) for 1 < i < [e/2] and so have

(GN (A" x A = {(x,x ) | x € (A)* = Autp(V?)},

where x — X is the involution A" — A*~"*! defined in Section 4.1. Since 8((x, 1)) =
67 ((x,1)), for x € H' (3, AD), we have 0 (x) = D/ (x =1). Thus 6_ restricted
to the factor H'(3, A?) is equal to (§)")2. Denote this character by 8. Then 6
belongs to C(AD 0,20). Since it follows from [3, §4.3, Lemma 1] that H' (23, A?V) =
HY(3,AD), §% is a simple character of H'(3,A") as in the assertion. Moreover, if
t = (e+ 1)/2 is an integer, clearly ) = 0Y e L (AN 0, ). [ |

Suppose that [UA,n,0,5],60_ € C_(A,0,0), and P = MN, is as in Proposi-
tion 4.4. From [5, (5.1.1)] and Proposition 3.1, we obtain the unique irreducible rep-
resentation 77_ (resp. n®), resp. 1) of JL.(3, ) (resp. J* (8, AD), resp. JL (3, AM))
which contains 6_ (resp. 6, resp. 6"). We define a subgroup of J_ by

Jp— = (JL(B, M) N P)HL(B,%W).

Proposition 4.5 Let notation and assumptions be as above. Then there is an irre-
ducible representation np_ of J_ which satisfies the following conditions:

0 e |J-BWNM) >V @ @,
(i) np—|HL(B,N) is a multiple of 6_,

(iii) np—|(JL(B,A) N N,) is the trivial character,
(iv) n- =Ind(np— : Jp—,J-),

where in (i), ift = (e + 1)/2 € Z, we understand ') = n(_t).

Proof By using Proposition 4.4, we can prove the proposition in the same way as the
proofs of [5, (7.2.3), (7.2.4)]. [ |
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Let y be the element in the proof Proposition 3.9. From Lemma 3.12, we may re-
place [, #n’,0, 8] in that proposition by [, 1, 0, 3] in this subsection. From Lemma
4.2, we can write y in the form y = (y1, ..., y:), whereift = (e+1)/2 € Z, y, = 1.

Lemma 4.6 Let notation and assumptions be as above. For 1 < i < [e/2], thereis an
irreducible representation ') of J(3, AV which is intertwined by y; and is an exten-
sion of N\, Moreover, ift = (e+1)/2 is an integer, there is an irreducible representation
1 = 1 of J_(8,AD) which is an extension of n®.

Proof Incasel <i < [e/2], theassertion isjust [5,(7.2.10)]. Incaset = (e+1)/2 €
Z, since y, = 1, the assertion follows from Proposition 3.8. ]

The following proposition is nothing but Claim 3.10.

Proposition 4.7 There is an irreducible representation p of J_ (3, ) which is inter-
twined by y and such that u|J- = n_.

Proof Forn in Lemma4.6,putny, — = n'V®- - -@n®, whereift = (e+1)/2 € 7,
we understand J'(8,A®) = J1 (3, A®), 0 =y, From Lemma 4.6, we obtain an
irreducible representation of J_(3, ) "M =[], J(53, AD) by

e = 1V ® - o,

Then y = (y;) clearly intertwines jiy, —. From the Iwahori decomposition in Sec-
tion 4.1, we can inflate py, — to a representation up_ of (J_ (3, ) N P)H™ (3, A) by
putting

pp—(hmj) = pn, —(m), forh e H' NN,mecJ_nNM,je ] NN,.

So put p— = Ind(up— : (J- N P)HL,J_). From Proposition 4.5, 7p_ induces
n_. Hence, from the Mackey restriction formula, we get u_|J1 = 7_, and from
[5, (4.1.5)], we can at once see that y intertwines yi_. [ |

The proposition completes the proof of Proposition 3.9, and hence that of Theo-
rem 3.11.

5 Simple Types
5.1 Affine Weyl Groups

In this section, we define an analogue of a simple type for GL(N, F) defined by
[5, (5.5.10)].

Suppose that [U, n,0, 3] is a good skew simple stratum in A = Endp(V). Let
E = F[f], and B = By the A-centralizer of 5. Put R = dimg(V). Let A = A(L),
B =ANB,and pute = e(Ly,).

From Proposition 1.1, B* N G is the unramified unitary group of the non-degene-
rated E-anti-hermitian space (V, Ea), and from Proposition 2.5, it is of type C in the
sense of [8, (10.1.2)]. In this paragraph, we recall the structure of the affine Weyl
group of B* N G by [8, 10.1] and [31]. Denote by GG; the algebraic group defined
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over Ej such that the group of Ej-rational points in G, denoted by G; = G (Ey), is
equal to B* N G.

In order to quote [8, 10.1] and [31], we rewrite the Witt basis V of (2.2) for (V, Eg)
as follows: let r = R/2and I = {£1,...,+r}. PutV = {¢| i € I} withe_, =
Vi,€—ry1 = V2y...,€61 = V€] = Vitly-..,6 = Vor = VR.

We express elements of G in the matrix form by this basis V. Let S be the maximal
Ey-split torus of G defined by

S(E)) = {Diag(d_r, ey d_l, d], Ce ,d,)‘ d; € Eyandd_;d; =1(i € I)}
Let Z be the centralizer of S, and IN the normalizer of S. Then we have

Z(E,) = {Diag(d_,,...,d_\,d,,...,d,)|di € Eandd_;d; =1 (i € )}.
Write H = Z(E,) for simplicity. Then H has the maximal compact open subgroup

Hy = {Diag(d_,,...,d_y,d\,...,d,)| d; € o) andd_;d; =1 (i € I)},
which coincides with Z, in the notation of [31, 1.2]. Let Wy, = N (E;)/H and W =
N (Ey)/Ho.
For i, j € I, denote by J; ; the Kronecker delta. Then the group IV (E) consists of

all matrices of the form n = n(o;d_,,...,d;) = (g;) with gi; = J; »(j)d;, where (i)
o is a permutation of I which preserves the partition of I in pairs (—i,1), (ii) d; € E

such that d_;d; = 1, and (iii) det(n) = = [,.,d; = 1.
For an integer i, 1 < i < r, we define a character a;: S — GL, by

ai(Diag(dfrv cee adr)) = d*ia

where G L, denotes the multiplicative group defined over E;. Then (a;)i<i<, is a
Z-basis of the character group X* = Homg (S, GL,). Puta_; = —a;, a;; = a; + a;
in X*. Then ® = {a;;| i, j € I,i # +j} U {2a;] i € I} is the root system of (G, S).
Let U, be the root subgroup of G; associated with a root a € ®. Associated with
a;; and 2a;, we define elements u;;(c) (¢ € E) and u;(0,d) (d € Ep) of G, = G(E)
respectively as follows: u;;(c) = 1+ (gr) withg_;; = ¢, g_;; = —cand all other
gk = 0, and u;(0,d) = 1 + (gx) with g_;; = d and all other gi, = 0 [8, (10.2.1)],
where we recall that 2 € Ey is invertible. Then U, (Ey) = {u;;(c)| ¢ € E} and
U, (Eg) = {u;(0,d) | d € Ey}. Further, we define elements m(u;;(c)) (c € EX) and
m(u;(0,d)) (d € Eg') of N(E) by

m(u;j(c)) = u_j _i(—c Dujj(Qu_j_i(—c") = n(osd_,, ..., d),

where o = (i,—j)(j,—i),d_i = c',d_j = —(©)"',d; = —¢, d; = ¢ and all other
dry = 1,and

m(u;(0,d)) = u_;j(0, —d Hu; (0, )u_;j(0, —d~ ") = n(o3d_,, ..., d,),
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where 0 = (i,—i),d_; = —d~', d; = d and all other d; = 1. For each integer i,
1 < i < r, we define an element h; of Hy by h; = Diag(d_,,...,d,) withd_,,;_; =
d._;;1 = —1 and all other d; = 1. Put

ng,

m@u_—iy i (D)l (1 <i<r—1),
| mu—y (0, 1)k, (i=r).

Then it follows from [8, (10.1.2), (10.1.6)] that n,,,n,_,,...,n, € IN(Ep) corre-
spond to the roots 2a_;,a; 5, - -, a,_1,_,, respectively, which form a basis A of .
The root 2a_, is the highest root with respect to A. Associated with this 2a_,, put
ny, = n(osd_,,...,d,) whereo = (—nr),d_, = —wgl, d, = wg and all other
d; = 0.

We now denote by Ny the subgroup of IN(E,) generated by {ns,,...,n}, and
by N, the subgroup of IN(E,) generated by Ny and Hy. Then N, consists of all
n(osd_,,...,d,) € N(Ey) with d; € o, and IN(E,) is generated by N, and H =
Z (Ey). We define a subgroup D of H by

D = {Diag(wg",...,wg" g ™, ..., g ) | my, ..., m, €7}
Then, since EX = w% X Dg, we have semi-direct products H = D - Hy and
N(Ey)) = D x N,.

Since the derived subgroup of G is semi-simple and simply-connected, W =
N (Ey)/H, is an affine Weyl group [31, 1.13]. Since E/E, is unramified, it follows
from [31, 1.6, 1.8] that

Sop ={aij+qli,jeli#+j,yeZ}U{2a+y|icl,yel}

(see [31,1.15]). Theset {2a_y,ay 5, - ,ar—1,—y, 2a,+ 1} is a basis of ®,s. For each
i,0 < i <r, denotebys; € W the image of n,, € IN(Ej) under the canonical map
N(E)) — W = N(Ey)/Hy. Then it follows that s,,s,_1,...,s1, sy are the affine
reflections associated with 2a_y,ay _5,-- -, a,_1 _,, 24, + 1}, respectively.

Proposition 5.1 Let notation and assumptions be as above. Then W is a Coxeter
group with a set of generators {so, s, . . ., S, }, and there is an isomorphism

W ~ D x W,.

Identifying W with D x W, via this isomorphism, we can regard W, as a finite Coxeter
group with a set of generators {sy, ..., s }.

Proof The first assertion has been proved above. For the second, from the above
arguments, we have

W = (D x N,)/Hy = D x (N,/Hy),

(see [16, 2.1]). By definition, {s;,...,s,} is contained in Ny and so in N,. Thus
from [8, (10.1.6), (10.1.7)] there is an isomorphism N,/H, ~ W, which shows the
second assertion. The last is clear. [ |
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5.2 Intertwining

Suppose that [U, n, 0, 3] is a good skew simple stratum in A = Endg(V') as in Sec-
tion 5.1. Let E = F[3], and B = Bg the A-centralizer of 5. Let A = A(L), B = ANB,
and put e = e(L,,). Hereafter we assume that U is principal. Then for R = dimg(V),
there is a positive integer f such that R = fe.

We choose self-dual og-lattice chains Ly, £,, in V such that e(Lp|op) = 1,
e(Lmlog) = R,and Ly € L C L, as in Section 3.1. In B = Bg, put By =
EndgE(LM) and B, = EndgE(Lm), as in Section 3.1. Then B* N G contains an Iwa-
hori subgroup U (8B,,) = B,, N G. From Proposition 5.1, we have the semi-direct
product W = D x Wj and an Iwahori-Bruhat decomposition of B* N G:

(5.1) B*NG=U(B,)WU(3B,,).

Let V. = @;_, V' be the E-decomposition of V subordinated to L,,, and write
V = {v;} again. For each integer i, 1 < i < e, we may set

Vi=—vnvi= Vi—vfen Vi—nfeas - - -5 Vi)
For each i, 1 < i < e, define an integer i, with 1 < i < eby
(5.2) i=e—i+1.
Foreachi, 1 < i_§ [(e_+ _1)/2], we rewrite the basis V' and V' as follows: Vi —
v ..., v}}, Vi={vi, v, ... ,v}}, and

(5.3) Vﬁ = V@i-1)f+1» V; = V(i—1)f+25 er = Vif,

=Vip V2 = Vif_n - VE= Vi-1)f+1°

—_.
.

v

If i # i, each EV? + Evj- is a hyperbolic subspace of V by Lemma 2.6. If i = i, eis
odd and i = (e+ 1)/2. Since R = ef is even, so f is also even. In this case, each
Ev? + EV3.;7 j1isa hyperbolic subspace of V' as well.

Put M(B) = @;_, B' as in the proof of Proposition 3.9, where B' = AV N
Endg (V') for AD, defined in Section 4.1. Denote by D(%B) the D-centralizer of
iﬁi(%)x. We define elements ng, ng,, . - My of N, as follows: for 1 < i <
le/2] — 1,

C i i+l 7 i+l .
ng vy vy, vie v, forl <j<f,

ng|[VE=1, fork+#1i, i,

and
s v&e/z] — Vge/2]7 Vg'e/z] — —v&e/z], for1 <j<f,
. |Vk =1, fork# [e/2]
Let 81, 82, .. -, S[¢/2) be the canonical image of 11, , 115, , . . . , s ), TESpectively, under

the canonical map N, — Wj. Denote by W;(B) the subgroup of W), generated by
81,82, ..., 8[¢/2). From Proposition 5.1, we can define a subgroup, W (8), of W by

W (B) = D(B) x Wy(B). This group is the W -normalizer of‘.ﬁ?(%)x.
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5.3 Simple Types

Suppose that [U, 1,0, 5] is a good skew simple stratum in A, with A = A(L) prin-
cipal. Let E = F[(], e = e(L,,), and B = Bp be the A-centralizer of 5. We have
R = dimg(V) = ef, for some positive integer f, as in Section 5.2. We note that f
must be even if e is odd, since R is even. Since J_(3,)/JL (3,A) ~ U(B)/U(B),
from Proposition 2.8, there is a canonical isomorphism

GL(f, kg)¥/? if e is even,
1@/ (g, = USRI e

GL(f, kg)'® x U(f,kg) ifeisodd,
where U(f, kg, ) is the unitary group of a non-degenerate kg / kg, -anti-hermitian form.

Suppose that o (resp. ;) is an irreducible cuspidal representation of GL( f, kg)
(resp. U(f,kg,)). If eis even, we define an irreducible representation o_ of
GL(f, ke)*/2 by
e/2
o_=00® - ® 0y = Q) 0y,

and if e is odd, we define an irreducible representation o_ of GL(f,kg)¢~1/? x
U(f, k) by
(e—1)/2
O =00Q - RQoy®o = ( X Uo)®01-

Via the above isomorphism, we lift o_ to an irreducible representation, say again o_,
of J_ (03, A). We can also regard o_ as an irreducible representation of U (B).

Let [, 1,0, 5] be a good skew simple stratum in A, with A = A(L) principal, and
6_ € C_(U,0, ). Then there is a unique irreducible representation n_ of J* (3, )
which contains 6_, and from Theorem 3.11, there is an irreducible representation
k_ of J_(3, ) which is a 3-extension of 7_.

Definition 5.2 Let notation and assumptions be as above. We say that a represen-
tation A_ is a simple type (of positive level) in G, if it has the form A_ = k_ ® o_
for a B-extension k_ and an irreducible representation o_ of J_ (3, ) as above.

The representation A_ is an analogue of a simple type for GLy(F) defined by
[5, (5.5.10)(a)].

Proposition 5.3 ([5, (5.3.2)]) Let \_ = k_ ® o_ be a simple type in G. Let E =
F[8], B= Bg, and B = AN B. Then A_ is irreducible and

Ig(A-) = J- (B, WIpx (o |U(B))]-(3,),

Proof By using Propositions 3.1 and 3.9, we can prove the assertion in the same way
as the proof of [5, (5.3.2)]. [ |

Let W (®B) be as in Section 5.2, and o_ be an irreducible representation of U (B)
defined as above. Put W(o_) = {w € W(8B) | (6_)" ~ o_}, where (c_)"(x) =
o_(wxw™ 1) forx € U(B)/U(B).
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The involution x — %: A’ — A¢~**1 defined in Section 4.1, induces an involution
B' — B°~"*1, This is also induced by the involution on B which is defined by 3. Un-
der the identification B! = --. = B® = MI(f, E) via the Witt basis V, the involution
B' — B¢~"*! induces naturally the involution on the GL( f, 0g), and induces ones on
GL(f, kg) and U(f, kg,). We write again by ~ these involutions. In particular, we
have U(f, kg,) = {x € GL(f, kg) | xx = 1}.

Definition 5.4 Let oy be an irreducible cuspidal representation of GL(f, kg). We
define a representation o by o (x) = oo(x ~!) for x € GL(f, kg). We say that the
representation oy is self-dual, if 0y ~ 0.

In this definition, the definition of o] depends on the choice of the Witt basis
V. But the definition of self-dual does not depend on it. For another Witt basis
induces an involution on each GL(f, og) which differs by a conjugation from the
above involution x — X.

If the component oy of o_ is self-dual, it is easy to see that W (o_) is equal to
W (B).

In the next paragraph, we shall show the existence of a self-dual irreducible cusp-
idal representation oy of GL( f, kg).

Remark 5.5. Any irreducible cuspidal representation oy of U(f, kg, ) is automatically
self-dual.

5.4 Self-dual Irreducible Cuspidal Representations

Suppose that f is an integer > 2. For simplicity, write kg = kg, and k = kg. Let
ko = F, be the finite field of order q. Then k = . is the quadratic extension of k.
Let x — X = x be the non-trivial Galois involution of k/k. Let G = G Ly be the
general linear group of rank f defined over k, and G = G/(k) the group of k-rational
points in G'. We define a Frobenius map Fy on G as follows: for g = (g;;) € G,

Fo(g) = (&) = (g8).

Let (09, V) be an irreducible cuspidal representation of G = G(k). From Re-
mark 5.5, we may set the representation (o, V) of G to be one defined by

o5(g) = ao("(Folg)™"), gE€G,

where ‘g denotes the transpose of g.

Put G| = Resyx, (G), where Res denotes the functor of restrictions of scalars. We
may identify G; with G x G = G x Fy(G). We define a Frobenius map F; on G,
as follows: for (x,y) € G, = G x G, Fi(x,y) = (Fy(y),Fo(x)). Then we have
G (ky) = G(k) and G, (ko) = G = {g € G| Fy(g) = g}

We define automorphisms § and 7 of G by §(x, y) = (y,x) for x,y € G and
7(g) = '6(g) ! forg € Gy, where'(x, y) = ('x, y) for (x,y) € G; = G x G. Then
for g = (g, Fo(g)) € Gi(ky) = G(k) = G, we have 6(g) = Fy(g) and

7(g) = "(Fo(g) ™"
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Let ., be the character of oy, i.e., X0, (g) = Tr(oo(g)), ¢ € G. Then by Deligne—
Lusztig theory [13, Proposition 8.3] (¢f. [10, Ch. 7]), it is well known that there are a

minisotropic maximal k-torus T" of G and a regular (in general position) character 6
of T = T'(k) such that

Xoy = £R7p (Deligne-Lusztig character).

Then there are an extension ky = F s of k of degree f and the multiplicative group
G L, defined over k¢ such that T is isomorphic to Reskf/k(GLl). We identify T' =
Reskf/k(GLl). Put T} = Resy, (T'). Then we have T = T'(k) = T (ko).

We study X, . The automorphism 7 of G satisfies the following properties:
* 7 isdefined over ky,
* 7ToFf=For,
e 2=1Id

Since 03 (g) = 0o(7(g)), g € G, by definition, we have

Xog (8) = X0y (T(8)) = £Rrp(7(g)), gE€G.
We prove the following.
Proposition 5.6 We have Rrp(7(g2)) = Ry(1).00-(£), g € G.

Proof We first note that T = T (ko) = T'(k) and G = G,(kg) = G(k). We adapt
Deligne—Lusztig theory [13] (cf. [10, Ch. 7]) to the groups G| D T defined over k.
Letg € G = Gi(ky) and g = us = su be the Jordan decomposition of g, where u is
the unipotent part of g and s is the semisimple part of g. Then we have the character
formula [13, Theorem 4.2] (¢f. [10, Theorem 7.2.8]) as follows:

1 0
Rr(g) > 06T QG (w),

R TAYA
|C (S) 1| xEGx~Isx€Ty

where C(s) denotes the connected centralizer of s in G, and Q%l (u) = Ry, 1(u).
For the decomposition g = us, 7(g) = 7(u)7(s) is also the Jordan decomposition
with 7(u) unipotent and 7(s) semisimple. Thus we obtain

Yo 0T (905 ) (r(w)

x€Gx~17(s)x€Ty

1
(5.4) Rro(7(8)) = CCG)R|

as well.
(i)  From the properties of 7, we have 7(C°(7(s))") = C°(s)* and
CO(r ()™ = [C ().
(ii) Similarly, from 7(x~!7(s)x) = 7(x) ~'s7(x), we obtain
O(x'7(s)x) = o T(7(x) LsT(x)),
andif x € G = G(ky), x '7(s)x € T = T} (ky), we have

7(x) € G, 7(x) " 'sT(x) € 7(T).
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(iif) We again have 7(C°(7(s))) = C°(s), 7(7(x)7(T1)7(x)~") = xTyx~". The Lang
variety X = L™Y(U) is associated with a Borel subgroup B = T\U of G1,

where U is the unipotent radical of B. Thus, 7(X) = (LY (U)) = L Y(+(U))
is associated with 7(B) = 7(T7)7(U). Hence we get

CO(7(s)) _ A6
QT () = QS gy ().

From (i)—(iii), it follows that the right-hand side of Ry4(7(g)) in (5.4) is equal to

RT(T),GOT (g) n
We further study the right-hand side of the equality in Proposition 5.6 and obtain
the following.

Proposition 5.7 We have X,y = £R;j for the unique character 6, of T = T'(k)
with 01 = 0.
Proof From Proposition 5.6, we have X, = £R(1) gor-
We can represent T = T'(k) in G = G(k) as follows. We choose an element
a € ki = ky — {0} satisfying
* {l,a,...,af "'} isabasis of k¢ as a k-vector space,
* for the regular representation p: k? — G = G L (k) with respect to the basis, we
may set T = {p(x)|x € kf }.

Write p(x) = Fy(p(x)) for simplicity. We have @ = Fo(av) € k? and {1,@,...,a/~!}
isalso a k-basis of ky. Let p’: k? — G be the regular representation of k? with respect
to this new basis. Then for x € kfX , we can check that p(x) = p’(x?) = p/(x)? and
that there is an element g € G such that p’(x) = gop(x)g, ''xe k?. Hence we
have p(x) = gop(x)1g; ', x € kf, and T = {p(x)|x € ki} = 2Tg, . However, for
g € 7(T) = 'T,wehave § o 7(g) = 0(('g)~") = 0('g). Since the Pontrjagin dual
T of T is (non-canonically) isomorphic to k? = (Fpr)*, itis a cyclic group of order
g%/ — 1. Tt follows that there is a chracter 6, of T with 6] = ¢ as in the assertion. Thus
we have f o 7(g) = 5?(?). We can write ‘g = p(x) for some x € k? , so that

g = p(x) = gop(x)igy .

From T = gTg, ' above, it follows that £6; is a unique character of T. Thus

©8,)("g) = 01(g;  ('g)g0) = 01 (p(x)1) = G} (Tg) = O('g).

Hence, for g € 7(T) = 'T, we have § o 7(g) = 20,('¢).

Let h be a generator of the group 7(T) = 'T. Then the elements h € 7(T) and
'h € T are both regular semisimple, and have the same characteristic polynomial.
Thus there is an element g, € G such that h = g;(*h)g; ', and it does not depend on
the choice of h. So we have 7(T) = ‘T = g(T)g; '. Hence, since ‘g = g; 'gg for
g € 7(T), we have gogl(’g) = &0, (gflggl) = &i% (51)(g). Consequently, it follows
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that 6 o 7(g) = glgO(gl)(g), g € 7(T) and that (g,g9) " '7(T)(g180) = T. By the
orthogonality relation [13, Theorem 6.8]for Ry, we obtain

Rr(1).p0r = Ry (1) g, = R,
which completes the proof. ]

Corollary 5.8 If the integer f is odd, there is an irreducible cuspidal representation o
of G = GL(f, kg) such that oy is equivalent to o.

Proof Let T' be a minisotropic maximal k-torus of G, and 6 be a regular character
of T = T'(k) such that x, = £Rry. We have oy ~ oy if and only if x,, = Xo;-
Thus it follows from Proposition 5.7 that 0y ~ o is equivalent to Ryy = RTﬁl’
where 61 = 6. By the orthogonality relations for Rr, the last conditizf)n is equivalent
to the condition that there is a non-negative integer ¢ such that §¢9 = 6, that is,
9q2/’+] _ 971‘

Let & be a generator of T ~ kf. Take § = ¢7=Vin T. Then we have 67+ =
(¢7 -1+ = ¢4/ =1 = 1. Further we can show directly that 64" # 0 for any integer
i, 1 <i< f—1,thatis, 0 is regular. |

5.5 The G-intertwining of a Simple Type
We moreover study the G-intertwining of a simple type (J_(3,U),A_) in G.

Proposition 5.9 ([[5, (5.5.11)]) Let [, n,0,3] be a good skew simple stratum in
A, with W = WL) principal, and \_ = k_ ® o_ a simple type in G attached to
(U, 1,0, B]. Then we have Ic(A_) C J_ (5, WW (B)]_(3,N).

Proof If ¢ € G intertwines A_, from Proposition 5.3, g € J_yJ_ for some y €
B*NGand y intertwines o_ |U (B). Since J_ contains the Iwahori subgroup U (B,,)
of B* NG, by the Iwahori—Bruhat decomposition of (5.1), we may take y € W. Thus
the result follows from the following lemma, which is an analogue of [5, (5.5.5)]. H

Lemma 5.10 Ifw € W intertwines o_|U (B), then w € W (8).

Proof It is hard to prove this lemma, (see [5, (5.5.5)]).

It follows from the argument in Section 5.2 that the W -normalizer of iﬁ?(%)x is
equal to W(B) = D(B) x Wy(B). Thus, if w € W intertwines o_ |U(B), it is
enough to prove that w normalizes M(B)*.

We now assume that w € W’ does not normalize M(B)*. Put Lo, = {L | k € Z}
with Lg = Ly. Let V. = @;_, V' be the E-decomposition of V subordinated to L,,,
L=l L, Li=LcnVifork € Z,V = {vi,vs,...,vr} and let V = [[;_, V' be
as in Lemma 2.6. Let Ly € L. Then for each integer i, 1 < i < e, there is an integer
m(i, k) such that ‘

LN Vi — L;‘( — pg”(”k)<\7i).

We denote this lattice by (p"¥)i. Thus we have

L= @1 = Gy

i=1
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We prepare the following three lemmas.

Lemma 5.11 The function m(i, k) on {1, ..., e} x Z satisfies the following conditions:

(i) m(1,0) =m(2,0)="---=m(e,0) =0,

(i) m(1,k) <m2,k) <--- <m(e k) < m(l,k)+ 1, for k € Z, and precisely one of
these inequalities is strict,

(iii) for each i, m(i, k) jumps at k, with k = —i (mod e), that is, m(i,k + 1) =
m(i, k) + 1.

Proof Straightforward. u
Lemma 5.12 Letw € W. Then for each integer j, 1 < j < R/2, there are integers
d; and k = k(j), determined uniquely by j, such that
w(0pvj) = PE' vk, W(OEVR—j+1) = Pp ' VR—k+1-
Proof This follows straightforwardly by the definition of W in Section 5.1. ]
Werecalli =e—i+1,fori € {1,2,...,e}, defined by (5.2).
Lemma 5.13 Letw € W. The element w permutes {L} | i € {1,2,...,e},k € Z} if

and only if for each Li = (prRyi, Li = (PN there are integers 8, j, k', k' such
that . . . . - = = -

w(L) = L, = ("), wi(ly) = L, = (o070,
Proof This follows directly from Lemma 5.12. ]

By Lemma 5.13, we may assume that the element w does not permute {L } as in
the proof of [5, (5.5.5)]. ‘ ‘

Fori € {1,...,e}and j € {1,..., f}, let the basis V' = {v\} to be as in (5.3),
and define an integer v/(i, j) in {1, ..., e} by W_I(Vg-) € VV(@i), Let k be any integer,
and L; be the lattice in £ as above. Then wL; N EV? C w(Ly N V¥%D) and from
Lemma 5.12, there is an integer d;- such that
Wi, j) b+,

Jvl“.

H m
wLi N Ev} = Py f

We remark that the integers v(i, j) and d; depend on the element w of W, but they
do not depend on k of Ly.
Let i be an integer with 1 < i < [(e + 1)/2]. Then, for each integer k, we have

wLe N (V+ V) = (wLy 0 V) + (wLp N V).

If i # i, then, again by Lemma 5.12, we have W_I(Vg) € VY0i) 5o that v(i, j) =
v(i, j), and similarly d? = —dj». Ifi = i, then we have v(i, f — j+ 1) = v(i, j) and
d} = —dj» as well. We put

—j+1

;) f ifi#d
f{f/z ifi =1,
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and foreach j € {1,..., f'}, rewrite

; v ifi # 1,
14 ]: ]

— l . .7_.
Vipr_jm =i

Ehen {vﬁ-, v’;]- | je{1,..., f'}} form abasis of Vi + V', and for each integer k, we
ave

’ f/ - )

j 3 m(v(i,j),k)+d; m(v(i,j),k)—d; ;
(5.5) wLe NV (VI+V) = " py Y g a
j=1 j=1

Lemma 5.14 Thereis anintegeri, 1 < i < [(e+ 1)/2], which satisfies the condition,
“notv(i,1) =---=v(i, f)ornotd; =--- = d’f’f

Proof Suppose that there is no integer i as in the assertion. Then fori = i =
(e+1)/2,wehavev(i,1) = --- =v(i,f') = (e+1)/2and d} = --- = d}, =0, so
that W(Li) = L, for k € 7. For i, with i #+ i, putv = v(i,1) =--- = v(i, f’) and
d=d =---=dj,. For each integer k, it follows from the above argument that

wLY = wLy N Vi = (ppt-rdyi

whence, by Lemma 5.11, we have wL] = <pgl(i'z)>i = L} for some integer /. Hence
the element w permutes {L; }, which contradicts the assumption on w. ]
We fix such an integer i as in Lemma 5.14, and for each j € {1,..., f'}, write
u(j),d;j, and v; for v(i, j), d;, and v?, respectively. Put W = V' + V', and
f! f!
W, =Y Evj, W_=> Ev_j
j=1 j=1

Then we have W = W, @ W_ % and W, and W_ are both maximal totally isotropic
subspaces of W with respect to hg|W.
Remarks 5.15. (i) In case i = i, the condition in Lemma 5.14 is divided into the
following two cases:

(a) notv(l) =--- =wv(f')ornotd, =--- =djg,

b) v(1) =---=v(f"),dy =--- =dg,and either v(f’) # v(1) ord, # 0.
(ii) In case i # i, it is nothing but (a) above, since f’ = f.

For wL; N W of (5.5), put

M = {(w(j),dj), (v(j),—d;) | je{1,.... f'}},
where the (v(j), d;) do not depend on k of L as remarked above. We define a linear

order < on the set M by (v’,d’) < (v, d) if and only if either d’ < d or both d’ = d
and v’ < v.
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Lemma 5.16 If elements (v,d) and (v',d’) in M; satisfy v',d") < (v,d), then
m' k) +d <m(v, k) +dand m(v, k) —d < m(v', k) — d’, for any integer k.

Proof This follows directly from Lemma 5.11(ii). |

Denote by 7, the product of the transposition of v; and v, in V' with that of

v_;and v_; in V'. By Lemma 5.16, multiplying an element u which is a product of
appropriate 7j,’s, we can permute {vy,...,v¢ } (so {v_y,...,v_¢}) so as to have

! !
uwLy "W = Z pﬁ("'k)vj + Z pl (],k)vij,
j=1 j=1

with u(1,k) < - < u(f", k), p'(f', k) <--- < pu'(1,k). for each k.

Let (19,dp) be the maximal element in the set M with respect to the order <.
Then we have dy > 0, and p(f’, k) = m(vg, k) + dy or p/(1,k) = m(vo, k) + do. We
may assume p(f’, k) = m(vo, k) + do, up to the transposition of W, and W_. Put
Kk = e — 1y, and for uwL, N W and uwL,..; N W, write

a; = p(j,k), @) =p'Gyrw) and by =p(j,r+1), b= p/(k+1)
for j € {1,..., f'}. Then from the choice of x, we have

m(17"<‘7):"':m(y07‘%):07 m(VO+17K;):"':m(e7K/):17

m(vg, k +1) = 1.
Thus, by definition, we have

agr = M(flw‘i) = m(vy, k) + dy = do,
by = p(f' sk +1) =mvo, K+ 1) +do = 1+do = ap + 1.

This implies uwL, "W 2 uwL,; NW.

Lemma 5.17 (i) Incasei # i, there is an integer s, 1 < s < f', such that b; <

...Sbs<b5_+l :"':bf’~

(ii) In case i = i, we can replace the element u of W so that there is an integer s,
0 <s< f,suchthatby < --- < by < by = -+ = bprand by < bg,y. In
particular, if s = 0, then by = -+~ = by > bp, = -+ = b}

Proof We first assume (1) not (1) = --- = v(f’) ornotd, = --- = dy. in Remark

5.15. Then there is an integer s, 1 < s < f’, which satisfies b; < --- < by < by =
--+ = bys. For if not all the v(j) are equal, then there is some s such that a, = bs.
Thus the maximal one of these is the desired. If all the v/(j) are equal, not all the d;
are equal. Thus, if a;, < af/, then by < a, + 1 < ay/ + 1 = by/. Hence, similarly, we
get s as claimed. If i # i, then, since the assumption (1) is satisfied, the assertion (i)
is proved.
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So, let i = i. Denote by 7; the transposition of v; and v_ ;. If we have by, = by/ =

b, we can replace u by the product of appropriate 7;,’s and 7,,’s so that b}/ < <L

b{ < bgy. Thenwehave 0 < s < f'and by < --- < by < by = -+ = by as the
assertion says.

We next assume (2) v(1) = --- = v(f'),dy = --- = dy, and “v(f') # v(1) or

dy # 07 in Remark 5.15. Then similarly we can replace u so that u(1,k) = --- =

u(f' k) > u'(f', k) = -+ = p'(1, k), for any integer k. In particular, for k = x + 1,

by=-=bp >0bp = =by. [ |

Via the integer s in Lemma 5.17, we decompose the spaces W, and W_ into
W, =W, &W,, W_ =W:aW?
by setting

lei:Evj, W, = ZEVJ, wi= ZEV,], W= ZEV,
j=1

j=s+1 j=s+1

Here, if s = 0, we understand W; = Wlh = (0). Then we have W = W, & (Wlh @
W) & W,. We produce a self-dual og-lattice chain in W of og-period equal to 2 or 3.
We first define og-lattices in W, by

f/
I() = Z OEV; 2 L1 Z Opvj + Z Pevj 2 D) ’ZUEL(),
j=1

j=s+1

and in W_ by

ZDEV, 2 wELl Z DEV_ +ZPEV, ) wEL()

j=s+1

Multiplying these vg-lattices by ), m € 7, we obtain an og-lattice chain £ in V.
Further, in W we define

MO = Ig @ZQ, Ml = IE) D szl, M2 = WEZE D wEfo.

Then we have My 2 M; D M, 2 wgM,, and these og-lattices generate a self-dual
og-lattice chain M in W. The og-period of M is equal to 3 if s # 0, and to 2 if s = 0.

Let B = EndgE (M) be the hereditary og-order in Endg(W) defined by M, and Q
its Jacobson radical. In Endg(W) N 6, put

n= {Hom};(Wlh O W, ® Wy, W) [[ Homg(W,, Wi @ Wi} No,
ifi =1, and put
n= {HomE(Wf, th) [T Homg(W,, Wl)} no,

if i # i. Take any elementx € nNB =nN Q.
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Lemma 5.18 There is an integer £, with 0 < £ < e, such that

(5.6) x(uwLy "W) C uwLyppp N W,
(5.7) x(uwWL o1 NW) C wg(uwL, NW).

Since we have chosen the element u € W so as to have b] < by, we have b; >
b.., by Lemma 5.16. Thus b; > b/, < b.. To prove Lemma 5.18, we will consider
the following two cases:

Case 1. b/, < bl,ifi #i,and by > b/, < b, ifi =1, .
Case 2. b/, =b/,ifi #i,and by = b/, orb.,, =b],ifi = 1.

In Case 1, by definition, we see that x(uwL,; N W) is contained in

I’ s

!

s b op . <
Z PE v_j+ZpE“v]-, ifi #1,
j=s+1 j=1

(5.8) P , .

in{b/,b . e =
Z pgun{ - 1}V_]_ + Z(p%+1v_j + p%ﬂvj)’ ifi=1.
j=s+1 j=1

By Lemma 5.17, we have
b+ 1<+ <bjyy +1 <min{b/, b} <b,
bl+1 < <bj+1< by, ifi=i,

b1+1S"'Sbs+1Sbs+l~

Hence we obtain x(uwL,..1 N W) C wg(uwL,.,; N W), which is (5.7) with £ = 0 in
Lemma 5.18.
We consider Case 2. For an integer £,0 < ¢ < ¢, put

cj:/,L(j,/@+€+1),c§:;/(j,n+€+l)

for j € {1,..., f'}. Then we see that x(uwL,.+,,; "W ) is contained in (5.8) in which
b!, by, and by, are replaced by ¢/, ¢1, and ¢, respectively. To prove (5.6), we must
prove the following inequalities:

(I-1) ¢/, < blifi #i,and ¢/;; < min{by, b/} if i =i,

(I-2) ¢f < bg ifi =1,

(1'3) Cs é b5+1>

and for (5.7),

(II-1) b}y, < ¢ ifi #i,and bl,; < min{c,, ¢} ifi =1,

(I-2) b} < ¢y ifi =1,

(I1-3) bs < Cor1-

By Lemma 5.17, we easily obtain (I-2), (I-3), (II-2), and (II-3), for any integer ¢,
0 < £ < ¢, in Case 2. Thus it remains for us to prove that there is an integer ¢,
0 </ < e, such that (I-1) and (II-1) hold.
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Lemma 5.19 Ifb.., = b., then there is an integer {, 0 < ¢ < e, such thatc.,, = bl,,
andc =b] + 1.

Proof Putb] = m(a, r+1)+d, for some integers a and d. Then b, = m(a, K+1) —d.
On the other hand, by = by = m(vy, k+1)+dy = 1+dg and b, = m(T, k+1)—d.
From b; < by and bl,; = b!, we easily get 7y < a. For if 5 = a4, then @ = w,.
It follows that by < by, implies —d < dy and that b] = b.,, implies d = —d.
This is a contradiction. Thus, if vy < 7j, then vy < 77 < a. On the other hand,
if g < 1y, then we have a < vy. For suppose vy < a. Thena < 77, so that
m(tg, k + 1) = m(a,x + 1) = 0 and m(a, k + 1) = 1. Thus, again from the above
condition, we obtain —d < 1 + dy and —dy = 1 + d. This is a contradiction. Hence
we have obtained
{Vo <7y <a, ifry <,

U <a<u, ifry <.

It follows from Lemma 5.11 that m(a, k) jumps at k = k + £ + 1 for some integer ¢,
0 </ < e, and that m(7, k) is constant for kK +1 < k < k+£+ 1. Hence the assertion
follows. u

Ifi # i, for the integer ¢ of Lemma 5.19, we have
C5/+l = bsl+1 = bsl < b5/+ 1 :Cs/'

Thus (I-1) and (II-1) hold. Hence, the proof of Lemma 5.18 is complete in Case 2
with 7 # 1. ) )

To prove Lemma 5.18 in Case 2 with i = 4, leti = i,and b; = b/, or bl,, = b/.
Lemma 5.20 Ifby = b.,,, then there is an integer £, 0 < £ < e, such that c/,; = bl,,
andc; = b; + L.

Proof The proof is quite similar to that of Lemma 5.19. We sketch the outline. Put
by = m(a,k + 1) +d. Then b] = m(a,x + 1) — d. We have by;; = 1 + dy and
bl., = m(ty,k + 1) — dyp. By Lemma 5.17(ii), we have b; < bgy; and by = bL,,.
Similarly, it follows that

a<pyoryy <a, ifyy <,
7y < a <1, if7g < 1.

This shows the assertion. |

Denote by ¢; (resp. ¢;) the integer ¢ in Lemma 5.19 (resp. Lemma 5.20). Put
¢ = max{/;, {,}. Then for this ¢, we have ¢/,; = b.,,,c/ = b/ +1,and ¢; = b; + 1.
Since by > bl,, < b/, we obtain ¢/,; = b/,; < min{by, b} (I-1). Further, ¢; > b, >
bl,, < bl </, sothatbl,, = ¢/, < min{cy,c/} (II-1). Hence the proof of Lemma
5.18 is complete.

By Lemma 5.18, we have

(5.9) (uw) " 'x(uw) € Q = rad(B),
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and by definition
(5.10) wlxu e uQu = Endiﬁ(u_lﬁ)

in Endg(W) as well. )

Leti = i. Then u~'M is a self-dual og-lattice chain in W = Vi = V' of og-period
equalto2or3. Leth = C(x) = (1 — %x)(l + %x)f1 in G. Then from (5.9), we have
wlu"thuw € U'(B). Take an operator T in I,,(o_ |U(B)). Then it follows that

o_(wthwyoT=c"wluthuw)o T = Too_(w 'u"thuw) = T.

In B = Endp(V?), let B! = EndDE({Lf< | k € 7}) with Q' its Jacobson radical. By
the choice of the element u of W/, it follows from (5.10) that the set of {u~"hu | h =
C(x),x € nN Q} projects onto the unipotent radical of a proper parabolic subgroup
of U(B) /U (B'). Thus o_(u"'hu) o T = T above contradicts the cuspidality of
1. Hence the element w never intertwines o _ |U (B).

Let i # i. Then u~'M is a self-dual og-chain in W = V' @ V' of og-period
equal to 3. For the ogp-lattice chain £ in V' defined above, let B = End(D)E (L) and

Q' its Jacobson radical, in B = Endg(V’). Asan elementx € nNB = nNQ
above, we take x = (xl,xﬁ) € (B)* x (B')* and let h = C(x). Then this is written
in the form (y,y’), with y = C(x;). = 1 — x; € U'Y(B). If x, varies, the set of
the y = C(x;) projects onto Ul(%l)/Ul(%i). The quotient U(@l)/Ul(%i) is a
proper parabolic subgroup of U (B') /U (B), and U (%l)/U1 (B) is its unipotent
radical, as in the proof of [5, 5.5.7]. Hence, similarly, we have 0 _(u"‘hu) o T = T
for T € I,(6_|U(B)), and this contradicts the cuspidality of g. This completes the
proof of Lemma 5.10. ]

5.6 Types

From Proposition 5.9, we obtain an analogue of a maximal simple type for GL(N, F)
of [5, (6.1)] as follows.

Theorem 5.21 Let [U,n,0, 3] be a good skew simple stratum in A, with W = A(L)
principal, and let (J_, A_) be a simple type in G attached to [, n, 0, 3]. Let B be the
W-centralizer of B. Suppose that B is maximal, i.e., e(Ly,) = 1. Then (J_,A_) is
a [G, mlg-type in G for some irreducible supercuspidal representation 7 of G, and T is
given by Ind(A\_ : J_, G).

Proof From Proposition 5.1, we have W(8B) = {1}, and from Proposition 5.9,
Is(A-) C J—. ThusInd(A_ : J_, G)isan irreducible supercuspidal representation of
G (see [9, (1.5)]). If an irreducible representation 7 of G contains A _, from Frobenius
reciprocity (see [9, (1.6)]), 7 is equivalent to Ind(A_ : J_, G). Hence the assertion
follows from [6, Section 2] (see also [21, Definition 7.3]). [ |

Such a simple type (J_, A_) in G as in Theorem 5.21 is called a supercuspidal type
in G.

Suppose that [, 1, 0, 5] is a good simple stratum in A, with A = A(L) principal,
and0_ € C_(U,0,0). Let E= F[B] and e = e(L,,).
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Definition 5.22 Let P = MN, be a parabolic subgroup of G associated with
[U, 7,0, 5]. Let (J—, A_) be a simple type in G attached to [U, n, 0, 3]. We write

Jo— =(J-NPH.

as in Subsection 4.2, and define Ap_ to be the natural representation on the subspace
of (J_ N N,)-fixed vectors in the representation space of A_. Moreover, we define a
representation (Jp— N M, Ay,—) by Ay — = Ap—|(Jp— N M).

Wenote Jp_ "M = J_NM. Putt = [(e+1)/2]. We have seen in Subsection 4.2
that

(5.11) J-nM =[] 73,a9),

i=1

where if t = (e +1)/2 € Z, we understand J(3,U") = J_(3,AD) in U(V*, h,)
by Lemma 4.2. According to this decomposition, the representation Ay _ will be
decomposed.

From Proposition 4.3, under the identification H' (3,%) = [[, H'(3,A"), we
have . = 0V @ --- ® Y, where 0% ¢ C(UAD 0,203),1 < i < t, (see Propo-
sition 4.4). From Proposition 3.2, there is a unique irreducible representation 7)_
which contains 6_, and from Theorem 3.11, we have an irreducible representation
k_ of J_, which is a B-extension of _. From Proposition 4.5, we obtain 7p_ of
Jb— = (JLNP)H! such thatnp_|(J-NM) ~ nV®- - -@n", where n” is the unique
irreducible representation of J'(3, AY) which contains §), and if t = (e+1)/2 € Z,
we understand J'(3, A®) = JL (3, A0), n® = n®,

Let rip— be the natural representation on the subspace of (JL N N,,)-fixed vectors
in the representation space of k_. Then, as in [5, (7.2)], we obtain the results for kp_
as follows: kp_ is irreducible and kp_|J)_ = np_. We have

ko |J-NM) =~V @ @ k",

where £ is an irreducible representation of J(3,A") and a -extension of 1",
andif t = (e + 1)/2 € Z, we understand J(3,AD) = J_(3,AD), O = g,
Moreover, we have k_ = Ind(kp_ : (J- N P)HL, J_). By definition, elements of
W (3B) normalize the Levi subgroup M of G (cf. Subsections 4.1 and 5.1). We can
easily show that the analogues of [5, (7.2.10), (7.1.15)] hold for G. Thus it follows
from [5, (7.2.16)] that some element of W (B) may induce an equivalence ) ~
k7). Hence we have k) ~ k), for 1 < i,j < [e/2]. We note that the involution
~ on A induces an involution on J(3,AD), for 1 < i < t, by (5.11). Furthermore,
if the component o of o_ is self-dual, we have kD ~ (kD) for 1 < i < t, where
(KY*(x) = kD& 1), for x € J(B, AD). This leads to 8% ~ (0)* forl < i < t.
In particular, ift = (e +1)/2 € Z, k') = k", and automatically, k" = (k")*, and
6" = (o).
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Theorem 5.23 ([5, (7.2.17)]) Let [U,n,0, 3] be a good skew simple stratum in A,

with W = (L) principal, and let (J_, A_) be a simple type in G attached to [U, n, 0, 5].

Let P = MN,, be a parabolic subgroup of G associated with [U, n,0, 8], and (Jp—, Ap_),

(Jp— N M, Ay, ) the representations in Definition 5.22.

(i)  Ap— and Ay, areirreducible, and \_ ~ Ind(Ap_ : Jp_, J).

(ii) Under the identification Jp_ N M = []. J(3,AD), for1 <i < [e/2], thereisa
supercuspidal type (J(3,UD), \D) in Autp(V?), and ift =(e+1)/2 € Z, there
is a supercuspidal type (J_(3,A"), )\(i)) in U(V*', hy) such that

Au— :)\(1)®,,,®/\(f)7

where we understand that X means \*) if e is odd.
(iii) For 1 <i,j < [e/2], A = XU, If the component o of o is self-dual, then
A~ (ADY for1 <i<t.

Proof By the above argument, we can prove the theorem in the same way as the
proof of [5, (7.2.17)]. In particular, for (iii), we can similarly translate properties of
k_ directly to A_, if the component o of o_ is self-dual. |

Corollary 5.24 Let notation and assumptions be as in Theorem 5.23. Let m; be an
irreducible supercuspidal representation of Autp(V') which contains \¥), for 1 < i <
le/2], and whent = (e+1)/2 € Z, let m, be an irreducible supercuspidal representation
of U(V', ) which contains \'). We define an irreducible supercuspidal representation
7 of the Levi subgroup M of G by

[(e+1)/2]
= Q

Then (Jp— N M, Ay, ) is an [M, 7] y-type in M.

Proof This follows directly from [5, (6.2.2)] and Theorem 5.23 (see [7, Proposition
1.3]). [ |

Remark 5.25. Let  be an irreducible supercuspidal representation of M as in Corol-
lary 5.24. If the component oy of 0_, with A_ = k_ ® o_, is self-dual, the con-
tragradient representation of 7 belongs to [M, 7]y, and this inertial class contains a
self-contragradient representation of M. This follows from Theorem 5.23 and state-
ments in 3, 2.2 and Introduction].

6 Hecke Algebras and Types
6.1 Hecke Algebras

In this section, we prove that (Jp_, Ap_) is a type in G. To do so, we study the Hecke
algebras H(G, Ap_) of (Jp—, Ap_).

Suppose that [, 1,0, 5] is a good simple stratum in A, with A = A(L) principal,
and (J—, A_) a simple type in G attached to [U, n,0, 5], with A_ = k_ ® o_. Let
E = F[(3], B = Bj the A-centralizer of §, and B = AN B.
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Proposition 6.1 ([5, (7.2.19)]) Let \y,— be the representation of Jp_ N M which
is the restriction of Ap_ as in Definition 5.22, and W (o_) be the subgroup of W (B)
defined in Subsection 3.1. Let w be an element of W (B). Then I,(Ap—) = L,(Ap,—),
andif w € W (o_), its dimension is equal to one.

Proof As stated in Subsection 5.6, W (®B) normalizes J_ N M. Take a representative,
y € N(Ey)) C B* NG, of w(see5.1). Clearly I,(Ap—) = L,(Ap_) C I,(Am,—). We
show the converse inclusion. For GL(N, D) with D a central division F-algebra, we
have an Iwahori decomposition of Jp in the proof of [24, Theorem 2.19]. Similarly
we obtain

(6.1) Jo— = (Jp— N "Ny)(Jp— " M)(Jp— N 'N,).

The subgroups Ng and NM of 6, defined in Subsection 4.1, are denoted by U~ and U
respectively in the proof. We have

(6.2) (N;MN,)' = NFMPNY = NyMN,.

In the proof of [24, Theorem 2.19], replacing Jp, kp and kp by Jp_, Ay, — and Ap_
respectively, we imitate the proof to prove I,(Ay,—) C I,(Ap_) by using (6.1) and
(6.2). Hence the first assertion follows.

Suppose that w € W (o_). Then, since by definition (0_)” ~ o_, it follows from
Theorem 5.23(iii) that the element y stabilizes Ay _ (see the proof of [5, (7.2.19)]).
Thus the space I,,(Ayr,—) = I,,(Ay,— ) has dimension one. [ |

Let P = MN, be a parabolic subgroup of G associated with [, n,0, 3], and
(Jp—, Ap—) the representation obtained from (J_,A_) in Definition 5.22. Let
H(G, A_) be the Hecke algebra of (J_, A_) (see [5, 4.1]). From Theorem 5.23(i)
and [5, (4.1.3)], there is a canonical algebra isomorphism

(6.3) H(G, A_) = H(G, Ap-).

Proposition 6.2 The Hecke algebra H(G, \_) is spanned by functions with support
J-wj_, w € W(o_), as a C-vector space, and the isomorphism of (6.3) is support-
preserving.

Proof From Proposition 5.9, the Hecke algebra H{(G, A\_) is spanned by functions
with support J_wJj_, w € W (B), as a C-vector space. For w € W (8B), we can
show that the dimension of I,,(A_) is at most one, in a quite similar way to the proof
of [5, (5.6.15)]. If w intertwines A_, the space I,,(A_) has one dimension. Thus
it follows from [5, (4.1.5)] that w intertwines Ap_. Since I,,(Ap—) = I,(Ap,—) by
Proposition 6.1, it intertwines Ay as well. Hence, from Theorem 5.23(iii), we see
that w € W(o_) and that H(G, A_) is spanned by functions with support J_w]_,
w e W(o_). Forw € W(o_), again from [5, (4.1.5)] and Proposition 6.1, we see
that the spaces I,,(A_) and I,,(Ap_) are both of one dimensional. Thus the algebra
isomorphism (6.3) is support-preserving. ]
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We may identify H(G, A\p_) with H(G, A_) via the isomorphism (6.3). Let E =
F[5], B = By the A-centralizer of 8, and B = AN B. Let D(B) be the subgroup
of B* N G defined in Subsection 5.1. Let e = e(L,,) and ¢’ = [e¢/2]. We define
D~ (B) to be a submonoid of D(B) which consists of elements whose eigenvalues

7

n —n, — . . .
are wp', ..., wg , @ ..., " withny > -+ > n, if e is even, and whose
eigenvalues are those, together with 1, if e is odd.

Lemma 6.3 Let \y,_ be the representation of Jp_ N M as above. Then the Hecke
algebra H(M, Ay ) is isomorphic to the Laurent polynomial ring

(C[Xl,...,X[e/z];Xl_la---aX[;/lz]]'

Proof From Theorem 5.23, Ay =~ AD @ oo @ XD where t = [(e + 1)/2]. If
t=(e+1)/2 € 7, \V) = AY s a supercuspidal type in U(V* k). Thus from
Theorem 5.21, we have H(U (V*, h;), A1) ~ €. However, since AV, 1 < i < le/2],
is a maximal simple type in Autg(V'), from [5, (7.6.3)], we have

H(Autp(VH, Ay ~ C[X, X7
Put e’ = [e/2]. Hence we obtain

HM, My.—) ~ H(Autp(V), AD) @ - @ H(Autp(VE), A€)
~CX, X, '1® - @ ClXer, X, ']
~ C[X1, .., Xes X1 X0 [

y el

Proposition 6.4 There is an injective homomorphism
j : HM, Ayg.—) — H(G, Ap-)

such that forz € D™(B) and ¢ € H(M, Ay, —) with support (J— N M)z, the support
of jp(@) is Jp—zJp—, and jp(¢)(2) = ¢(2).

Proof Identify H(G, A\_) = H(G, Ap_) as above. Since D~ (B) C W (o_), it fol-
lows from Proposition 6.1 that for each z € D~ (B), there is a function of H(G, A\p_)
supported on Jp_zJp_. Hence the proposition is proved in a quite similar way to the
proof of [5, (7.6.2)]. [ |

6.2 TypesinG

Suppose that (J_,A_), with A\_ = k_ ® o_, is a simple type in G attached to a
good skew simple stratum [, 1,0, 5], with A = A(L) principal. Let P = MN,
be a parabolic subgroup G associated with [, n,0, 5], and (Jp_, Ap_) the natural
representation defined by (J_, A_). Then, from Corollary 5.24, there is an irreducible
supercuspidal representation 7 of M, which is of the form ®%* o, ®“™"/* 7, ®
m1, according to e = e(L,,) = 0, 1 (mod 2), such that (Jp_ N M, A\y,—) is an
[M, 7] pm-type in M. Moreover, the representation satisfies the following conditions:
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(i)  (Jp—,Ap—)is a decomposed pair with respect to (M, P), i.e.,
Jp— = Up— NN(J-NM)(Jp— NN,),

and Ap_ is trivial on both Jp,_ N Nyand Jp_ NN,,.
(i) Am— = Ap_|(Jp— N M).

Lemma 6.5 Let notation and assumptions be as above. Then there is an invertible
element £ of H(G, \p_ ) supported on the double coset Jp_zp Jp _, where zp is an element
of the center, Z(M), of M, and & is a strongly (P, Jp_)-positive element.

Proof For an integer j, 1 < j < [e/2], we put
aj = Diag(wel, ..., wl, 1,...,.I,wg 'I,... w5 '),

where I (resp. wy 'I) appears j times. Then these are elements of D~ (%B), and
for each an integer i, 1 < i < [e/2], there is a non-zero function X; in H(M, Ay )
supported on (Jp— N M)aj, as in the proof of [5, (7.6.2)]. This element X; is the same
as that of Lemma 6.3 (see [5, p. 245]) and is invertible in (M, Ap;,—). Put ey =
e(E|F) and Zp = X X3’ - - ~ng/2] in H(M, Ap,—). Then the function Zp is supported
on (Jp— N M)zp, with zp = af’ay - - afg/zl’ and it is invertible in H(M, Ay —). It
is easy to see zp € Z(M). Put § = jp(Zp) € H(G,Ap_). Then it follows from
Proposition 6.4 that the function £ is supported on Jp_zp Jp_ and is invertible. W

Theorem 6.6 Let [U, n,0, 3] be a good skew simple stratum in A, with W principal,
and (J—, A_) a simple type in G attached to [U, n,0, 3]. Let (Jp—, Ap_) be the repre-
sentation defined in Definition 5.22 from (J_, A_), and 7 an irreducible supercuspidal
representation of M as in Corollary 5.24. Then (Jp—, Ap_) is an [M, w]g-type in G,
andsois (J_,A_).

Proof From the conditions (i), (ii) and Lemma 6.5, (Jp—, Ap_) satisfy the hypothe-
ses of [6, (7.9)]. Thus, (iii) for any smooth irreducible representation (u, V) of G, the
restriction to V2~ of the Jacquet functor r, is injective. The definition of G-cover,
given in [6, (8.1)], is modified so that if the conditions (i), (ii) and (iii) are satisfied
for one parabolic subgroup P, then (Jp_, Ap_) is a G-cover of (Jp— N M, Ay, ) (see
[3, Introduction]). This modification follows from [4]. Since (Jp— N M, Ay, ) is an
[M, 7]p-type in M, the theorem follows from [6, (8.3)]. Moreover, since

A~ Ind(/\g_ : ]P;_’ ]_)

by Theorem 5.23(i), it is easy to see that (J_, A_) is also an [M, w]s-type in G [25,
5.3]. [ |
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