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On Types for Unramified p-Adic
Unitary Groups

Kazutoshi Kariyama

Abstract. Let F be a non-archimedean local field of residue characteristic neither 2 nor 3 equipped with

a galois involution with fixed field F0, and let G be a symplectic group over F or an unramified unitary

group over F0. Following the methods of Bushnell–Kutzko for GL(N, F), we define an analogue of a

simple type attached to a certain skew simple stratum, and realize a type in G. In particular, we obtain

an irreducible supercuspidal representation of G like GL(N, F).

Introduction

Let N be an integer ≥ 2, and V an N-dimensional vector space over a non-archime-
dean local field F. Put A = EndF(V ) and G = AutF(V ) ≃ GL(N, F).

From Bushnell–Kutzko [5], in which a complete classification of the irreducible
smooth representations of G is given, we obtain the following results: a stratum in A is

a 4-tuple [A, n, 0, β] which consists of a hereditary oF-order A in A, an integer n > 0,
and an element β ∈ P−n, where oF is the maximal order of F, and P is the Jacobson
radical of A. We define a compact open subgroup J = J(β, A) of G and its normal
subgroups H1(β, A), J1(β, A) [5, (3.1)], associated with a simple stratum [A, n, 0, β]

[5, (1.5)]. Let θ be a simple character which is an abelian character of H1
= H1(β, A)

[5, (3.2)]. Then there is a unique irreducible representation η of J1
= J1(β, A) such

that η|H1 contains θ [5, (5.1)], and is an irreducible representation κ of J, called a β-
extension of η, which is an extension of η and has the G-intertwining JB× J [5, (5.2)],

where B× is the G-centralizer of β.
Suppose that A is principal. The group J/ J1 is isomorphic to a Levi subgroup

of GL(R, kE), where R = dimE(V ) and kE denotes the residue class field of E. A
certain irreducible cuspidal representation of J/ J1 is chosen and is inflated to the

representation σ of J. Then an irreducible representation λ of J is defined by λ =

κ⊗σ, which is called a simple type (of positive level) [5, (5.5)]. If A∩B× is a maximal
compact subgroup of B×, then the representation ( J, λ) is a [G, π]G-type in G, for
some irreducible supercuspidal representation π of G [5, (6.2)], [6]. Such a simple

type ( J, λ) is called maximal.
Associated with a simple stratum [A, n, 0, β], there is a choice of a parabolic sub-

group P = MN of G with a Levi component M [5, (7.1)]. From a simple type ( J, λ),

we can define a certain pair of a compact open subgroups JP of G and an irreducible
representation λP of JP [5, (7.2)]. Then there is an irreducible supercuspidal repre-
sentation π of M such that ( JP∩M, λP| JP∩M) is an [M, π]M-type in M [5, (7.2)], [6],
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and ( JP, λP) is a G-cover of ( JP ∩ M, λP| JP ∩ M) [5, (7.3)], [6]. Hence ( JP, λP) is an
[M, π]G-type in G [6, (8.3)]. Moreover, the Hecke algebra of ( JP, λP) is isomorphic

to an affine Hecke algebra [5, (5.6)].

Let F be a non-archimedean local field of residual characteristic not 2 equipped
with a galois involution with fixed field F0, and V a finite dimensional F-vector space
equipped with a non-degenerate hermitian form h. Let G be the unitary group of

(V, h) over F0. Put A = EndF(V ) and G̃ = AutF(V ) here. From Stevens [28–30],
we obtain the following results. A skew semi-simple stratum [A, n, 0, β] in A is de-

fined, and we obtain the subgroups H1(β, A), J1(β, A) and J(β, A) of G̃ as above.
Restricting them to G, we obtain the subgroups H1

− = H1
−(β, A), J1

− = J1
−(β, A),

and J− = J−(β, A) of G, respectively. A skew semi-simple character θ− of H1
− is

defined as well, and we can similarly give a unique irreducible representation η− of
J1
− such that η−|H

1
− contains θ−. In particular, if the A-centralizer of β is a maximal

commutative semisimple algebra of A, there is an irreducible representation κ− of J−
such that κ−| J

1
− = η−, which is a β-extension of η− in a sense. The representation

( J−, κ−) induces an irreducible supercuspidal representation of G, and so it is a type
in G [2, 17, 32]. In general, it is very difficult to prove the existence of a β-extension
of η− even for a skew simple stratum [A, n, 0, β] in A.

Now suppose that h is a non-degenerate alternating form on a 2n-demensional F-
vector space V . Then G is a symplectic group Sp2n(F). Recently, the following results
for G = Sp2n(F) were obtained [3]. Let π be a self-contragradient supercuspidal
irreducible representation of GL(n, F) [1, 14], and ( J0, λ0) a maximal simple type

in GL(n, F) for the inertial class [GL(n, F), π]GL(n,F). We can take a special simple
stratum [A, n, 0, β] in A = EndF(V ) such that the associated parabolic subgroup
P = MN of GL(2n, F) satisfies M ≃ GL(n, F) × GL(n, F) and leads to a Siegel
parabolic subgroup P0 = M0N0 of G with M0 ≃ GL(n, F). Then there is a simple

type ( J, λ) in GL(2n, F) attached to [A, n, 0, β] such that J ∩ M ≃ J0 × J0 and
λ|( J∩M) ≃ λ0⊗λ0. Thus we can construct an irreducible representation ( JP, λP) in
GL(2n, F) from ( J, λ) as above, and restrict ( JP, λP) to G so as to obtain an [M0, π]G-
type in G as a G-cover of ( J0, λ0). The methods of [3] construct a type in G without

using a simple type for G.

Recently, the problem of constructing (simple) types for GL(N, D), with D a cen-
tral division F-algebra, was solved by Sécherre [23–25].

In this paper, let F be a non-archimedean local field of residual characteristic nei-
ther 2 nor 3 equipped with a galois involution with fixed field F0. We assume that
F/F0 is an unramified field extension, and let h be a non-degenerate F/F0-skew-
hermitian form on a vector space V of dimension 2n over F such that the anisotropic

part is zero. Put G = U (V, h). Following the methods of Bushnell–Kutzko [5], we
define a simple type for G attached to a certain skew simple stratum in A = EndF(V ),
which is called good (see Definition 2.1), and realize a type in G. A simple type in
Sp2n(F), attached to a good skew simple stratum [A, n, 0, β] with A principal and

with e(B|oF[β]) = 2, gives the one constructed in Blondel [3], where e(B|oF[β]) de-
notes the oF[β]-period of the lattice chain in V defining the A-centralizer B of β.

The contents of this paper are as follows: In Sections 1 and 2, from [5, 29], we
recall the definitions of the skew simple stratum [A, n, 0, β], the compact open sub-
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groups Ht (β, A), Jt (β, A) of G, for t = 0, 1, and the skew simple character θ− ∈
C−(A, 0, β). We define a good skew simple stratum [A, n, 0, β], which implies that

there are hereditary oF-orders Am ⊂ A ⊂ AM in A = EndF(V ) such that U (Bm) =

Am ∩ B ∩ G is an Iwahori subgroup of B ∩ G and U (BM) = AM ∩ B ∩ G is a special
(good) maximal compact subgroup of B ∩ G, where B is the A-centralizer of β. This
property is used to prove the existence of a β-extension.

In Section 3, let [A, n, 0, β] be a good skew simple stratum in A. From [30], there
is a unique irreducible representation η− of J1

−(β, A) associated with a skew simple
character θ−. Modulo some claim, we can prove that there is a β-extension κ− of η−,

which is by definition a representation of J− = J−(β, A) satisfying (i) κ−| J− = η−,
(ii) the G-intertwining of κ− contains J−.B ∩ G. J−.

In Section 4, we have a parabolic subgroup P = MNu of G, with Levi component

M and unipotent radical Nu, associated with a good skew simple stratum [A, n, 0, β]
in A. We see that Ht

−(β, A), Jt
−(β, A), t = 0, 1, have Iwahori decompositions relative

to P = MNu, and prove the claim in Section 3.

In Section 5, let [A, n, 0, β] be a good skew simple stratum in A with A principal.
We choose a certain irreducible cuspidal representation σ− of J−(β, A)/ J1

−(β, A).
From this σ−, together with a β-extension κ−, we define an irreducible representa-
tion λ− = κ− ⊗ σ− of J−(β, A), that is an analogue of a simple type of positive

level for GL(N, F) of [5, (5.5.10)]. Let W be an affine Weyl group of B ∩ G with
B∩G = U (Bm)WU (Bm), and put W (B) = {w ∈ W | w normalizes A ∩ M ∩ B}.
We prove that the G-intertwining of the simple type ( J−, λ−) is contained in
J−W (B) J−. It follows that if A ∩ B is a maximal compact subgroup of G ∩ B,

( J−, λ−) induces an irreducible supercuspidal representation of G. Moreover, we
construct an irreducible representation ( JP,−, λP,−), in the same way as [5], such that
( JP,−∩M, λP,−| JP,−∩M) is an [M, π]M-type in M, for some irreducible supercuspidal
representation π of M.

In Section 6, we study the Hecke algebra H(G, λP,−) of ( JP,−, λP,−), and then we
prove that ( JP,−, λP,−) is an [M, π]G-type in G, and so is ( J−, λ−).

1 Preliminaries

1.1 Unramified Unitary Groups

Let F be a non-archimedean local field equipped with a galois involution −, with
the fixed field F0. Let oF and pF be its maximal order and the maximal ideal of oF ,
respectively, and kF = oF/pF the residue class field. Let ̟F be a uniformizer of F.

We assume that the residual characteristic p is not 2 and that F/F0 is unramified
(possibly F = F0).

Let N be an integer ≥ 4. Let V be an N-dimensional vector space over F, and

put A = EndF(V ) ≃ M(N, F). Let h be a non-degenerate anti-hermitian form on
V over F/F0. We furthermore assume that the anisotropic part of V is zero. Then N
must be even. Let − be the adjoint (anti-)involution on A defined by the form h. Put

G̃ = AutF(V ) ≃ GL(N, F), and define γ to be the involution x 7→ x̄ −1 on G̃. Put
Γ = {1, γ}.
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We put

G = G̃Γ
= {g ∈ G̃ | h(gv, gw) = h(v, w), for all v, w ∈ V}.

By the assumption, G is a symplectic group over F if F = F0, and is an unramified
unitary group over F0 if F 6= F0. We write G = U (V, h). We also put

G = {a ∈ A | a + ā = 0}.

This is isomorphic to Lie G.
Let Z and C denote the ring of rational integers and the field of complex numbers,

respectively. For a ring R, let R× denote the multiplicative group of invertible ele-
ments in R. For a finite field extension E/F, we denote by oE, pE, kE the objects for E

analogous to those above for F.

1.2 Filtrations

We recall the notation in [5, 19].
For an oF-lattice in V , we define the dual lattice L# by

L#
= {v ∈ V | h(v, L) ⊂ oF}

[19, 1.1]. An oF-lattice chain in V is a set L = {Li | i ∈ Z} of oF-lattices in V which
satisfies

• Li ) Li+1, for all i ∈ Z,
• there is a positive integer e such that Li+e = pFLi , for all i ∈ Z.

This integer e = e(L) is unique and is called the oF-period of L.
A oF-lattice chain L in V is called self-dual (with respect to the form h) if L ∈ L

implies L# ∈ L. If L is self-dual, from [19, Proposition 1.4], there is a unique slice of
the form:

L#
r−1 ) · · · ) L#

0 ⊃ L0 ) · · · ) Lr−1 ⊃ ̟FL#
r−1,

for some integer r ≥ 1, where possibly L#
0 = L0 and/or Lr−1 = ̟FL#

r−1. This slice is
called a self-dual slice of L.

Associated with an oF-lattice chain L in V , a filtration on A is given by

Pn
= {x ∈ A | xLi ⊂ Li+n, for all i ∈ Z},

for n ∈ Z. In particular, A = A(L) = P0 is a hereditary oF-order in A, and P is its

Jacobson radical. An oF-lattice chain L in V determines a valuation map νA : A → Z

by
νA(x) = max{n ∈ Z | x ∈ Pn}, for x ∈ A,

with νA(0) = ∞.

We obtain a family of compact open subgroups A ∩ G̃ = A× and 1 + Pn for

integers n ≥ 1, of G̃. If L is self-dual, A× and 1 + Pn, n ≥ 1, are fixed by γ. So we
obtain a family of compact open subgroups of G

U (A) = (A×)Γ
= A ∩ G, U n(A) = (1 + Pn)Γ

= (1 + Pn) ∩ G,
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for integers n ≥ 1. Then {U n(A) | n ≥ 1} is a filtration on G by normal subgroups
of U (A).

For an oF-order A = A(L) in A, we put

K(A) = {x ∈ G̃ | xL ∈ L, for all L ∈ L}.

Then we have K(A) = {x ∈ G̃ | xAx−1
= A}.

1.3 An E-anti-hermitian Form

Suppose that β is an element in the Lie algebra G such that the algebra E = F[β] is
a subfield of A. Then the involution − on A fixes E. Put E0 = {x ∈ E | x = x}. We

choose an F-linear form ℓ0 : E0 → F which satisfies

ℓ0(oE0
) = oF0

, ℓ0(p−1
E0

) = p−1
F0

as in [3, 2.3]. We define an F-linear form ℓ : E → F as follows: if F = F0, put

ℓ = ℓ0 ◦ trE/E0
.

Otherwise, we extend ℓ0 to E linearly. In fact, since F/F0 is unramified and the resid-
ual characteristic p of F is not 2, there is an element ξ ∈ o×F such that F = F0[ξ],
E = E0[ξ], and ξ2 ∈ F0. We note that E/E0 is also unramified. Thus we have

oF = oF0
+ oF0

ξ, oE = oE0
+ oE0

ξ. Hence ℓ : E → F is given by

(1.1) ℓ(x + yξ) = ℓ0(x) + ℓ0(y)ξ

for all x, y ∈ E0. Hereafter we fix this F-linear form ℓ : E → F.
From the F-linear form ℓ on E = F[β] and the form h on V , we can define an

E-anti-hermitian form h̃β on V by

(1.2) h(av, w) = ℓ(ah̃β(v, w))

for all v, w ∈ V and all a ∈ E [26]. Then h̃β is non-degenerate. Let B = Bβ be the

A-centralizer of β. Then we may identify B with EndE(V ).
By definition, we have

(1.3) ℓ−1
0 (oF0

) = oE0
.

Proposition 1.1 The form h̃β is a non-degenerate E/E0-anti-hermitian form on V ,
and there is a canonical isomorphism

B× ∩ G = {x ∈ B× | γ(x) = x} ≃ U (V, h̃β).

Proof In the case of F = F0, this follows easily [3, 2.3]. Suppose that F 6= F0. By the
assumption, E/E0 is unramified, as was noted above. It follows from the definition

of the F-linear form ℓ above that ℓ(z) = ℓ(z) for z ∈ E, whence this shows that h̃β ,
defined by (1.2), is a non-degenerate E-anti-hermitian form.
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Lemma 1.2 We have

ℓ−1(oF) = p
1−e(E|E0)
E ,

where e(E | E0) denotes the ramification index of E/E0.

Proof We again note that if G is an unramified unitary group over F0 (with F 6= F0),
E/E0 must be unramified.

Write e0 = e(E | E0). Since p 6= 2, E/E0 is tamely ramified. Thus, by [33, VIII, §1,
Proposition 4], we have

(1.4) tr−1
E/E0

(oE0
) = p

1−e0

E .

Suppose first that e0 = 1, i.e., E/E0 is unramified. If F = F0, the assertion follows
directly from (1.3) and (1.4). Suppose that F 6= F0. Then oE ⊂ ℓ−1(oF) follows
immediately. Conversely, let z = x + yξ ∈ ℓ−1(oF), for x, y ∈ E0. Then from (1.1),

ℓ(z) = ℓ0(x) + ℓ0(y)ξ ∈ oF, and so ℓ0(x), ℓ0(y) ∈ oF0
. Hence from (1.3) x, y ∈ oE0

,
that is, z = x + yξ ∈ oE.

Suppose that e0 = 2, i.e., E/E0 is ramified. Then we must have F = F0. For, since
F/F0 is assumed to be unramified, it follows from (1.4) that tr−1

E/E0
(oE0

) = p−1
E . Thus

from (1.3),

tr−1
E/E0

(ℓ−1
0 (oF)) = tr−1

E/E0
(oE0

) = p−1
E = p

1−e0

E .

1.4 Self-dual Lattice Chains

Suppose that β is an element in the Lie algebra G such that the algebra E = F[β] is a

subfield of A, as in Section 1.3. Let L be an oE-lattice in V . Then L is also an oF-lattice
in V . We define the oE-dual L♮ of L, with respect to h̃β , by

L♮
= {v ∈ V | h̃β(v, L) ⊂ oE}.

There is a close relationship between L# and L♮ as follows.

Proposition 1.3 For an oE-lattice L in V , we have

L#
= ̟

1−e(E|E0)
E L♮,

where ̟E is a uniformizer of E.

Proof From (1.2), we have an equivalence: v ∈ L# ⇔ oF ⊃ h(v, L) = ℓ(h̃β(v, L)).
From Lemma 1.2, the latter is equivalent to

p
1−e0

E ⊃ h̃β(v, L) ⇐⇒ oE ⊃ h̃β(̟e0−1
E v, L) ⇐⇒ v ∈ ̟1−e0

E L♮,

where e0 = e(E | E0).
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Let L be an oF-lattice chain in V such that E× ⊂ K(A), with A = A(L). Then it
follows from [5, (1.2.1)] that L is also an oE-lattice chain in V , which is denoted by

LoE
. Thus, as in Section 1.2, L has a unique self-dual slice of the form

(1.5) L
♮
r−1 ) · · · ) L

♮
0 ⊃ L0 ) · · · ) Lr−1 ⊃ ̟EL

♮
r−1

for some integer r ≥ 1, with respect to the form h̃β .

Proposition 1.4 Let L be a self-dual oE-lattice chain in V with respect to h̃β . Then it is
also a self-dual oF-lattice chain in V with respect to h. Moreover, we have the following.

(i) Suppose that E/E0 is unramified. If the self-dual slice of L of the form (1.5) satisfies

L
♮
0 = L0, then L#

0 = L0 as an oF-lattice.

(ii) Suppose that E/E0 is ramified. If the self-dual slice of L satisfies ̟EL
♮
r−1 = Lr−1,

then it contains an oE-lattice M in V such that M#
= M as an oF-lattice.

Proof The first assertion and (i) follow immediately from Proposition 1.3. We show

(ii). Write e = e(LoE
) for the oE-period of L. From Lemma 1.2, it follows that

M = ̟−1
E Lr−1 is the desired lattice. For we have

(̟−1
E Lr−1)#

= (L−e+r−1)#
= ̟−1

E L
♮
−e+r−1

= (̟EL−e+r−1)♮
= L

♮
r−1 = ̟−1

E Lr−1.

2 Skew Simple Strata

2.1 Skew Simple Strata

We recall the definition of a skew simple stratum in [5, 29], and define a good skew
simple stratum in A.

A stratum in A is a 4-tuple [A, n, r, b], which consists of a hereditary oF-order A

in A, integers n > r, and an element b ∈ A such that νA(b) ≥ −n.

Definition 2.1 ([29, (1.7)]) A stratum [A, n, r, b] in A is called skew if the lattice
chain L, with A = A(L), is self-dual and b ∈ G ≃ Lie(G).

Definition 2.2 ([5, (1.5.5)]) A stratum [A, n, r, β] in A is pure if

(i) the algebra E = F[β] is a field,

(ii) E× ⊂ K(A),
(iii) νA(β) = −n.

For a pure stratum [A, n, r, β] in A, the integer k0(β, A) of [5, (1.4.5)] is defined.

Definition 2.3 ([5, (1.5.5)]) A pure stratum [A, n, r, β] in A is simple if it satisfies

r < −k0(β, A).

Let [A, n, r, β] be a pure stratum in A. Then the rings H(β, A), J(β, A) of
[5, (3.1)] are defined. We define

H(β, A) = H(β, A)×, J(β, A) = J(β, A)×
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subgroups of G, and for an integer m ≥ 1,

Hm(β, A) = H(β, A) ∩ (1 + Pm), Jm(β, A) = J(β, A) ∩ (1 + Pm)

normal subgroups of H(β, A) and J(β, A), respectively. A simple character set
C(A, m, β), for an integer m ≥ 0, of [5, (3.2)] is defined. An element of C(A, m, β)

is a certain abelian character of the group Hm+1(β, A).
Let [A, n, 0, β] be a skew simple stratum in A, with r = −k0(β, A). Then H(β, A)

and J(β, A) are fixed by Γ. For 0 ≤ m ≤ r − 1, the subset CΓ(A, m, β) of C(A, m, β)
is defined in [28, 3.2] by CΓ(A, m, β) = {θ ∈ C(A, m, β) | θγ

= θ}, where θγ(x) =

θ(γ(x)), for x ∈ Hm+1(β, A).
We define two families of compact open subgroups of G as follows:

Hm
−(β, A) = Hm(β, A)Γ

= Hm(β, A) ∩ G,

Jm
−(β, A) = Jm(β, A)Γ

= Jm(β, A) ∩ G,

for integers m ≥ 0. From [28, (2.1)], there is a correspondence g, which is called
Glauberman’s correspondence, between the set of equivalence classes of irreducible

representations of Hm+1(β, A) fixed by Γ and the set of equivalence classes of irre-
ducible representations of Hm+1

− (β, A). In particular, for θ ∈ CΓ(A, m, β), we have
g(θ) = θ|Hm+1

− (β, A). We put C−(A, m, β) = {g(θ) | θ ∈ CΓ(A, m, β)}.
An element of C−(A, m, β) is called a skew simple character.

2.2 Good Skew Simple Strata

Suppose that [A, n, 0, β] is a skew simple stratum in A, with A = A(L). Let E = F[β]

and B = Bβ the A-centralizer of β. Let E0 be the fixed field of E under the involution
− on A. From Proposition 1.3, L is a self-dual oE-lattice chain in V with respect to

the form h̃β . Thus LoE
has a self-dual slice of the form (1.5).

Definition 2.4 A skew simple stratum [A, n, 0, β] in A, with A = A(L), is called

good if it satisfies

(i) E/E0 is unramified;
(ii) R = dimE(V ) is even;
(iii) the self-dual slice of LoE

of the form (1.5) contains the L0 satisfying L
♮
0 = L0.

Proposition 2.5 If the conditions (i), (ii) and (iii) in Definition 2.4 are satisfied, the

anisotropic part of (V, h̃β) is zero.

Proof A proof is found in [3, 2.3].

If [A, n, 0, β] is a good skew simple stratum in A, from [5, (5.5.2), (7.1.2)(ii)], we
have an E-decomposition of V subordinated to LoE

, with e = e(LoE
):

(2.1) V =

e⊕
i=1

V i

such that
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(i) Lk =
∐e

i=1 Li
k, where Li

k = Lk ∩V i , for 1 ≤ i ≤ e, k ∈ Z;
(ii) Li

i+me = Li
i+me+1 = · · · = Li

i+(m+1)e−1 6= Li
i+(m+1)e, for 1 ≤ i ≤ e, m ∈ Z.

Lemma 2.6 Let [A, n, 0, β] be a good skew simple stratum in A, with A = A(L),
E = F[β] and e = e(LoE

). For the self-dual slice of LoE
of the form (1.5), there is a Witt

basis for L0,

(2.2) V = {v1, v2, . . . , vR},

such that L0 = oEv1 ⊕ oEv2 ⊕ · · · ⊕ oEvR, and each pair {v j , vR− j+1} generates a

hyperbolic E-subspace of V relative to h̃β . Write L0 = oE〈V〉. For the E-decomposition

(2.1) of V . Each V i is spanned by Vi
= V∩V i

= {v ji−1+1, v ji−1+2, . . . , v ji
} over E, and

Lk =
∐

i Li
k, 0 ≤ k ≤ [e/2], satisfies

Li
k =

{
oE〈V

i〉 for i ≤ e − k,

pE〈V
i〉 for i ≥ e − k + 1,

where j0, j1, . . . , je are integers with 0 = j0 < j1 < · · · < je = R and for a real
number r, [r] denotes the largest integer ≤ r.

Proof This follows directly from Proposition 1.1 and [19, Proposition 1.7].

Proposition 2.7 Suppose that [A, n, 0, β] is a good skew simple stratum in A with

A = A(L). Let E = F[β] and B = Bβ the A-centralizer of β, and e = e(LoE
).

Put t = [(e + 1)/2]. Then the E-vector space V is decomposed into an orthogonal

decomposition V = ⊥t
i=1Vi , h̃β = ⊥t

i=1h̃i such that for 1 ≤ i ≤ [e/2], (Vi , h̃i) is a
hyperbolic space, where V i and V e−i+1 are totally isotropic subspaces of Vi .

Proof From (2.1), for 1 ≤ i ≤ [e/2], put Vi = V i ⊕ V e−i+1, h̃i = h̃β |Vi , and if

t = (e + 1)/2 is an integer, put Vt = V t , h̃t = h̃β |Vt . Then the assertion follows
directly from [19, Propositions 1.7, 1.12].

Let A, E = F[β] be as above, and B = Bβ be the A-centralizer of β. Put B = B∩A.
We define a compact open subgroup of G by U (B) = A ∩ B× ∩ G, and a family of
normal subgroups of U (B) by Um(B) = (1 + Pm) ∩ B× ∩ G = (1 + Qm) ∩ G, for

integers m ≥ 1, where Q = P ∩ B.

Proposition 2.8 Suppose that [A, n, 0, β] is a good skew simple stratum in A with
A = A(L). Let E = F[β], B = Bβ the A-centralizer of β, and e = e(LoE

). Put
t = [(e + 1)/2]. Suppose moreover that the lattice chain LoE

has self-dual slice of the

form (1.5). Then there is a canonical isomorphism

U (B)/U 1(B) ≃

{∏e/2
i=1 AutkE

(V
i
) if e is even,

∏(e−1)/2
i=1 AutkE

(V
i
) × U (V t , ht ) if e is odd,

where V
i

= Li−1/Li , for 1 ≤ i ≤ [e/2], and if t = (e + 1)/2 is an integer, V t =

Lt−1/̟EL
♮
t−1 and ht is a non-degenerate form, induced naturally from h̃β . Moreover,

(V t , ht ) is a kE/kE0
-anti-hermitian space whose anisotropic part is zero.

Proof This follows at once from Proposition 2.7 and [19, 1.10 and Proposition 1.12].
In particular, the last assertion follows from Proposition 2.5 and [19, 1.10].
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3 Beta Extensions

3.1 Heisenberg Representations

Following the methods of [5, 30], we prove the existence of a beta extension for our
classical group G. Hereafter, we assume that the residual characteristic p of F is nei-
ther 2 nor 3.

If ρ is a representation of a compact open subgroup K of G, and g ∈ G, we write
Ig(ρ) = HomKg∩K (ρ, ρg), where Kg

= g−1Kg and ρg(x) = ρ(gxg−1), for x ∈ Kg ∩K.

Proposition 3.1 ([5, (5.1.1)]) Let [A, n, 0, β] be a skew simple stratum in A, and
θ− ∈ C−(A, 0, β). Then there is a unique irreducible representation η− = η(θ−) of

J1
−(β, A) such that η−|H

1
−(β, A) contains θ−. We have

dim(η−) = ( J1
−(β, A) : H1

−(β, A))
1
2 ,

and for g ∈ G,

dim(Ig(η−)) =

{
1 if g ∈ J1

−(B× ∩ G) J1
−,

0 otherwise.

Proof This is a special case of [30, (3.29) and (3.31)].

Proposition 3.2 ([5, (5.1.2)]) For i = 1, 2, suppose that [Ai , ni, 0, β] is a skew simple
stratum in A, and let θi

− ∈ C−(Ai, 0, β). Let ηi
− be the unique irreducible representa-

tion of J1
−(β, Ai) which contains θi

−. Then we have

dim(η1
−)(U 1(B1) : U 1(B2)) = dim(η2

−)( J1
−(β, A1) : J1

−(β, A2)),

where Bi denotes the A-centralizer of β, for i = 1, 2.

Proof Using the exact sequence of [30, (3.17)] and the Cayley map C(x) =

(1 + 1
2
x)(1 − 1

2
x)−1, we can prove the assertion in the same way as the proof of

[5, (5.1.2)] (see [3, 4.2]).

Suppose that [A, n, 0, β] is a good skew simple stratum in A, with A = A(L).
Let E = F[β], and B = Bβ be the A-centralizer of β. Then L = LoE

is a self-dual
oE-lattice chain in V , with e = e(LoE

). From Definition 2.4, its self-dual slice of the

form (1.5) contains the oE-lattice L0 in V such that L
♮
0 = L0. Thus we can put

LM = {̟i
EL0 | i ∈ Z}.

This is a self-dual oE-lattice chain in V satisfying LM ⊂ L, and the oE-period of
LM is equal to one. We can choose a (maximal) self-dual oE-lattice chain Lm in V

satisfying L ⊂ Lm with oE-period equal to R = dimE(V ). From LM and Lm we
obtain oE-orders BM and Bm in B = Bβ as follows:

BM = End0
oE

(LM) = {x ∈ B | xL ⊂ L, for all L ∈ LM}
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and similarly Bm = End0
oE

(Lm). Then BM (resp. Bm) is a maximal (resp. minimal)
hereditary oE-order of B. Moreover, B = B ∩ A satisfies Bm ⊂ B ⊂ BM . From

Proposition 1.3, LM and Lm are also self-dual oF-lattice chains in V . Write

AM = End0
oF

(LM), Am = End0
oF

(Lm).

Then we have BM = AM ∩ B, Bm = Am ∩ B.

We denote by νE(β) the normalized valuation of β in E. Then, since we have
νAM

(β) = −νE(β) and νAm
(β) = −νE(β)R, strata

[AM ,−νE(β), 0, β] and [Am,−νE(β)R, 0, β]

in A are both (good) skew simple. From [30, (3.26)], there is a transfer

τAm,AM ,β,0 : C−(Am, 0, β) → C−(AM , 0, β),

(see [5, (3.6.2)]). Similarly, there is a transfer τAm,A,β,0.
Let θM,− ∈ C−(AM , 0, β), θm,− ∈ C−(Am, 0, β), and θ− ∈ C−(A, 0, β). Assume

that these characters are related as follows:

θM,− = τAm,AM ,β,0(θm,−), θ− = τAm,A,β,0(θm,−),

as in [5, (5.1.13)].

For an integer t ≥ 1, write simply Jt
− = Jt

−(β, A), Jt
m,− = Jt

−(β, Am), Jt
M,− =

Jt
−(β, AM), J− = J−(β, A), and so on, with similar conventions for the group H−.

Let η− (resp. ηm,−, resp. ηM) be the unique irreducible representation in Proposition
3.1 which contains θ− (resp. θm,−, resp. θM,−). Analogous results for GL(N, F) in

[5, Propositions (5.1.14)–(5.1.19)] can be proved for G in a quite similar way.

Proposition 3.3 ([5, (5.1.14)–(5.1.18)]) Let notation and assumptions be as above.

(i) There is a unique irreducible representation η̃M,− of U 1(Bm) J1
M.− such that

(a) η̃M,−| J
1
M,− = ηM,− ;

(b) the representations η̃M,− and ηm,− induce equivalent irreducible representa-
tions of U 1(Am).

(ii) There is a unique irreducible representation η̃− of U 1(Bm) J1
− such that

(a) η̃−| J
1
− = η− ;

(b) the representations η̃− and ηm,− induce equivalent irreducible representations
of U 1(Am).

(iii) There is a unique irreducible representation η̂M,− of U 1(B) J1
M,− such that

(a) η̂M,−| J
1
M,− = ηM,− ;

(b) the representations η̂M,− and η− induce equivalent irreducible representations

of U 1(A).

If ρ is a representation of a compact open subgroup K of G, put

IG(ρ) = {g ∈ G | Ig(ρ) 6= (0)}.

We say that an element g of G intertwines ρ, if g ∈ IG(ρ).
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Proposition 3.4 ([5, (5.1.19)]) Let notation and assumptions be as in Proposition
3.3. Then we have

IG(η̃M,−) = J1
M,−(B× ∩ G) J1

M,−, IG(η−) = J1
−(B× ∩ G) J1

−.

Proof By using [29, Theorem 2.2], we can prove the assertion in the same way as the
proof of [5, (5.1.19)].

3.2 Beta Extensions

Let [A, n, 0, β] be a skew simple stratum in A, and θ− ∈ C−(A, 0, β). Let E = F[β]

and B = Bβ be the A-centralizer of β. Let η− be the unique irreducible representation
of J1

−(β, A) which contains θ−.

Definition 3.5 ([5, (5.2.1)]) A representation κ− of J−(β, A) is called a β-extension
of η−, if it satisfies κ−| J

1
−(β, A) = η− and B× ∩ G ⊂ IG(κ−).

We show that if a skew simple stratum [A, n, 0, β] in A is good, there is a β-
extension of η−.

Lemma 3.6 Let U ,V be subgroups of G̃ fixed by Γ. Suppose that U normalizes V ,
and that U ∩V is a pro p-group. Then we have (UV )Γ

= U ΓV Γ.

Proof The groups UV,U ∩V are both Γ-sets. Then we obtain a short sequence

1 −→ U ∩V
δ

−→ U ×V
π

−→ UV −→ 1,

where δ(x) = (x, x), for x ∈ U ∩ V , and π(x, y) = xy−1, for x ∈ U , y ∈ V . This is

an exact sequence of Γ-sets. For we have

δ(γ(x)) = (γ(x), γ(x)) = γ(x, x),

π(γ(x), γ(y)) = γ(x)γ(y)−1
= γ(xy−1) = γ(π(x, y)),

for x ∈ U , y ∈ V . From [22, Proposition 3.6], we thus obtain an exact sequence

1 −→ (U ∩V )Γ −→ (U ×V )Γ −→ (UV )Γ −→ H1(Γ,U ∩V ) −→ H1(Γ,U ×V ).

Since U ∩V is pro p-group and p is not 2, we hence have H1(Γ,U ∩V ) = 1, whence

(UV )Γ
= U ΓV Γ.

Proposition 3.7 ([5, (5.2.4)]) Let [A, n, 0, β] be a good skew simple stratum in A,
and η̃M,− the representation of U 1(BM) J1

M,−, as in Proposition 3.3. Then there is a
representation κM,− of JM,− such that κM,−|U

1(Bm) J1
M,− = η̃M,−.

Proof Following the methods of the proof of [5, (5.2.4)], we prove the assertion. We
sketch the proof.
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Put r = −k0(β, A). From Lemma 3.6 and [30, (3.12)], we get

J1
M,− = U 1(BM) J

[(r+1)/2]
− (β, AM), JM,− = U (BM) J1

M,−.

From the case where e = e(LoE
) = 1 in Proposition 2.8, we have

JM,−/ J1
M,− ≃ U (BM)/U 1(BM) ≃ U (V , h),

where V = L0/̟L♮
0 for L0 ∈ LoE

in (1.5) and h is a non-degenerate kE/kE0
-anti-

hermitian form, which is naturally induced from the form h̃β . It follows from Propo-

sition 2.8 that G = U (V , h) is a unitary group over kE0
of type A2

R−1. The canonical
image of U 1(Bm)/U 1(BM) into G is the unipotent radical N of a Borel subgroup of
G. Thus U 1(Bm) J1

M,− is a Sylow pro p-subgroup of JM,−. Since, from [30, (3.31)],
JM,− normalizes ηM,−, we obtain a projective representation of JM,− which is an

extension of ηM,−. We can adjust this projective representation to be a linear repre-
sentation λ of JM,−. Then we have

λ|U 1(Bm) J1
M,− = η̃M,− ⊗ φ,

where φ is a character of U 1(Bm) which is trivial on U 1(BM). This φ is a character
of N which is intertwined by all the elements of G. Let Φ be a root system of G and ∆

the set of simple roots in Φ, associated with N. We denote by Ua the root subgroup
of G associated with a ∈ Φ, and by [N, N] the commutator group of N. Let ht be

the height function on Φ with respect to the basis ∆. Then, under the assumption
p 6= 2, 3, by using the commutator relations in the twisted group G of GL(R, kE), we
can easily see that [N, N] =

∏
a Ua, where a runs through roots in Φ with ht(a) ≥ 2,

(see [27, §11], [11, §13]) and see that there is a canonical isomorphism

N/[N, N] ≃
∏

a∈∆

Ua.

As in [11, 8.1], this fact holds for any finite group of Lie type. Thus φ is trivial on N

and can be extended to a character φ ′ of G, as in the proof of [5, (5.2.4)] for GL(N, F).
We regard φ ′ as a character of JM,−, and put κM,− = λ⊗ φ ′−1. It easily seen that the

representation κM,− is the desired one.

Proposition 3.8 ([5, (5.2.5)]) Let κM,− be the representation as in Proposition 3.7.

Then there is a representation κ− of J− which is uniquely determined by the following
properties:

(i) κ−| J
1
− = η− ;

(ii) κ− and κM,−|U (B) J1
M,− induce equivalent irreducible representations of U (A);

(iii) Ind(κ− : J−, U (B)U 1(A)) is equivalent to

Ind(κM,−|U (B) J1
M,− : U (B) J1

M,−, U (B)U 1(A)).

Proof Using Proposition 3.2, we can prove the assertion in the same way as the proof
of [5, (5.2.5)].
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We show that the representation κ− in Proposition 3.8 is a β-extension.

Proposition 3.9 ([5, (5.2.7)]) Let κ− be the representation of J− constructed as in
Proposition 3.8. Then we have

IG(κ−) = J−(B× ∩ G) J− = J1
−(B× ∩ G) J1

−.

Proof The proof of [5, (5.2.7)] for GL(N, F) remains valid for our classical G, as

well. We also sketch the proof.
Using the Witt basis V of (2.2), we express elements of B× ∩ G in matrix form,

that is, B× ∩ G is embedded in GL(R, E) where R = dimE(V ). Moreover, U (BM)
is embedded in GL(R, oE), and it is a special maximal compact subgroup of B× ∩ G.

Thus B× ∩ G has a Cartan decomposition relative to U (B).
From [30, (3.13)], IG(κ−) ⊂ IG(η−) = J−(B× ∩ G) J−. So it is enough to prove

that any element y of B× ∩ G intertwines κ−. Moreover, by Proposition 3.8(ii),
it is enough to treat the case where L = LM and κ− = κM,−. Since U (BM) ⊂
J− ∩ B× ∩ G, we can choose y in a (U (BM), U (BM))-double coset, and reduce
it to a diagonal element Diag(̟n1

E , . . . , ̟nr

E , ̟−nr

E , . . . , ̟−n1

E ), where r = R/2 and
n1, n2, . . . , nr are integers with n1 ≥ n2 ≥ · · · ≥ nr. Here we recall that E/E0 is
unramified. As in the proof of [5, (5.2.7)], we can choose a self-dual oE-lattice chain

L ′ in V , with e(L ′
oE

) = e ′, for some integer e ′ ≥ 1, which satisfies the following
properties:

(P1) the self-dual slice of L ′ of the form (1.5) satisfies L
♮
0 = L0,

(P2) this lattice L0 is the same as that of L,

(P3) for the E-decomposition V =
⊕e ′

i=1 V i subordinated to L ′, the element y has
a diagonal block form (yi), and each yi in EndE(V i) is central, for 1 ≤ i ≤ e ′.

From Proposition 1.4, L ′ is also a self-dual oF-lattice chain in V . Put B ′
=

End0
oF

(L ′) ∩ B. From (P2), elements of B ′ are written in the following block form:

(x jk), 1 ≤ j, k ≤ e ′, such that coefficients of the n j × nk-matrix x jk are all in oE if
j ≤ k, and all in pE otherwise, where R = n1 + n2 + · · · + ne ′ is the partition of R

associated with L ′. Put M̃(B ′) = {(x jk) ∈ B ′ | x jk = 0, for all j 6= k}. Then it

follows from Proposition 2.7 that the involution − fixes M̃(B ′). Thus we have

M(B ′)× = (M̃(B ′)×)Γ
= M̃(B ′) ∩ G.

From the proof of [5, (5.2.7)], we have

y centralizes M̃(B ′) and BM ∩ B
y
M ⊂ pFBM + (B ′ ∩ (B ′)y),

where Ly
= y−1Ly. We denote by t B ′ the transpose of B ′. Then we also have

y−1 centralizes t M̃(B ′) and BM ∩ yBM ⊂ pFBM + y(t B ′ ∩ (t B ′)),

where yL = yLy−1.
If B ′

= BM , clearly y = 1. We note that this fact never occurs for the case of
GL(N, F). Thus y = 1 trivially intertwines κM,−.
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From [5, p. 173] together with Lemma 3.6, we obtain

(M(B ′)×U 1(B ′) J1
M) ∩ (M(B ′)×U 1(B ′) J1

M)y

= M(B ′)×(U 1(B ′) J1
M ∩ (U 1(B ′) J1

M)y)

in G̃. It follows from Lemma 3.6 and [5, (5.2.11)] that the element y intertwines
κM,−|U (B ′) J1

M,− with κM,−|U (B ′) J1
M,− ⊗ φ, where φ is an abelian character of

M(B ′)×/(M(B ′)×∩U 1(B ′) J1
M,−). For the lattice chain L ′ in V , we can choose the

minimal self-dual oE-lattice chain L ′
M = LM , given in Section 3.1, and a maximal

self-dual oE-lattice chain L ′
m in V , such that L ′

m ⊂ L ′ ⊂ L ′
M . Then we can see that

φ is factored through the determinant in a suitable sense [5, p. 173]. Let κ− be the

representation of J−(β, A ′) given by Proposition 3.8, where A ′
= End0

oF
(L ′). We

can form the representation κ− ⊗ φ, and by using Propositions 3.8 and 3.1, we can
prove that y intertwines κ− with κ− ⊗ φ.

Claim 3.10 There is an extension µ− of η− intertwined by y.

We shall prove the claim in Section 4.2 below. We now assume that the claim is
true. We also apply H = J1

−, N = M(B ′)×, g = y, ρ = η− to [5, (5.2.11)]. Then
these satisfy those hypotheses. In particular, we apply κ− to ρ̃ there. We now apply

µ− to ρ ′ [5, (5.2.11)(a)] so that y intertwines µ− with µ− ⊗ φ. Thus the uniqueness
of φ shows that φ is trivial. Hence we have seen that y intertwines κM,−|U (B ′) J1

M,−.
From the proof of [5, (5.2.7)] and Lemma 3.6, we obtain

JM,− ∩ J
y
M,− = (U 1(BM) ∩ U (BM)y)(U (B ′) J1

M,− ∩ (U (B ′) J1
M,−)y).

Similarly,

(U 1(BM) ∩ U (BM)y) ⊂ (U (BM) ∩ U 1(BM)y)(U (B ′) ∩ U (B ′)y).

Hence we can prove that y intertwines κM,− in the same way as the proof of
[5, (5.2.7)]. This completes the proof modulo the claim.

Theorem 3.11 Let [A, n, 0, β] be a good skew simple stratum in A, and

θ− ∈ C−(A, 0, β).

Let η− be the unique irreducible representation of J1
−(β, A) which contains θ−. Then

there is a β-extension of η−.

Proof The assertion follows directly from Propositions 3.8 and 3.9 (modulo the
claim).

To prove the claim, the following lemma will be used in the next section.

Lemma 3.12 Let L ′ be the self-dual oE-lattice chain in V associated with y ∈ B×∩ G
in the proof of Proposition 3.9. Let A ′

= End0
oF

(L ′) and n ′
= −νA ′(β). Then

[A ′, n ′, 0, β] is a good skew simple stratum in A.

Proof Straightforward.
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4 Iwahori Decompositions

4.1 Iwahori Decompositions

We prove the claim in the proof of Proposition 3.9.

Suppose that [A, n, 0, β] is a skew simple stratum in A, with A = A(L). Let
E = F[β], and B = Bβ be the A-centralizer of β. Put e = e(LoE

). For the E-decom-
position V =

⊕e
i=1 V i of (2.1) subordinated to LoE

, put

Ai j
= HomF(V j ,V i), Ai

= Aii , for 1 ≤ i, j ≤ e.

We define subgroups of G̃ as follows:

P̃ = G̃ ∩
( ∏

1≤i< j≤e

Ai j
)

M̃ = G̃ ∩
( ∏

1≤i≤e

Ai
)

Nu =

∏

1≤i< j≤e

Ai j , Ñu = 1 + Nu Nℓ =

∏

1≤ j<i≤e

Ai j , Ñℓ = 1 + Nℓ.

Each oE-lattice Lk in LoE
has a decomposition Lk =

∐
1≤i≤e Li

k, with Li
k = Lk ∩ V i ,

for k ∈ Z. From [5, (7.1.12)], there is a canonical isomorphism

H1(β, A) ∩ M̃ ≃
e∏

i=1

Hi(β, A(i)),

where A(i)
= End0

oF
({Li

k | k ∈ Z}), for 1 ≤ i ≤ e.

Proposition 4.1 ([5, (7.1.19)]) Let [A, n, 0, β] be a simple stratum in A, with A =

A(L) and e = e(LF[β]), and θ ∈ (A, 0, β). Then θ is trivial on

H1(β, A) ∩ HomF(V j ,V i),

for i 6= j. Under the identification H1(β, A) ∩ M̃ =
∏

i H1(β, A(i)), we have

θ|(H1(β, A) ∩ M̃) = θ(1) ⊗ · · · ⊗ θ(e),

where θ(i) ∈ C(A(i), 0, β) and θ(i)
= τA,A(i),β,0(θ), for 1 ≤ i ≤ e.

Suppose that a skew simple stratum [A, n, 0, β] in A is good. Let A = A(L),
E = F[β], e = e(LoE

), and B = Bβ be the A-centralizer of β. Put t = [(e + 1)/2]. For

the orthogonal decomposition (V, h̃β) = ⊥i (Vi , h̃i) in Proposition 2.7, we define

hi = ℓ ◦ h̃i ,

for 1 ≤ i ≤ t , where ℓ : E → F is the F-linear form defined in Section 1.3. Then
for 1 ≤ i ≤ [e/2], (Vi, hi) is a hyperbolic F-space such that V i, V e−i+1 are totally
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isotropic F-subspaces of Vi , and if t = (e + 1)/2 is an integer, then Vt = V t and
ht = h|Vt . Moreover, we have an orthogonal F-decomposition of V :

V = ⊥t
i=1Vi, h = ⊥t

i=1hi,

Thus the involution − on A defined by h, induces involutions Ai → Ae−i+1, Ai j →
Ae−i+1,e− j+1, for 1 ≤ i, j,≤ e, where if i ≡ j (mod e), we set i = j. We denote
by x 7→ x̄ the induced involution Ai → Ae−i+1. Hence the involution − on A fixes∏

i Ai , Nu and Nℓ, respectively, whence the involution γ on G̃ fixes the subgroups P̃,

M̃, Ñu and Ñℓ. Let G̃ be one of these subgroups. Put G = G̃Γ
= G̃∩G. Then P = MNu

is a parabolic subgroup of G, with Levi component M and unipotent radical Nu. We
also have the opposite parabolic subgroup Pℓ = MNℓ with respect to M. We say
that the parabolic subgroup P = MNu is associated with a good skew simple stratum

[A, n, 0, β].

Lemma 4.2 Let [A, n, 0, β] be a good skew simple stratum in A, and P = MNu a
parabolic subgroup of G associated with [A, n, 0, β]. Let A = A(L), E = F[β], and

e = e(LoE
). Let V =

⊕e
i=1 V i be the E-decomposition of (2.1) subordinated to LoE

.
Then there is a canonical isomorphism

M ≃





∏e/2
i=1 AutF(V i) if e is even,

(∏(e−1)/2
i=1 AutF(V i)

)
×U (Vt , ht ) if e is odd,

where t = (e + 1)/2.

Proof The assertion follows easily from the above argument (see Proposition 2.8).

We write simply Hm
− = Hm

−(β, A) and Jm
− = Jm

−(β, A), for m = 0, 1. From
[5, (7.1.14), (7.1.16)–(7.1.18)], we obtain Iwahori decompositions of Hm

−, Jm
−, for

m = 0, 1, as follows.

Proposition 4.3 ([5, (7.1.14)]) Let G− denote any of the groups Hm
−, Jm

−, for m =

0, 1. Then we have the Iwahori decomposition:

G− = (G− ∩ Nℓ) · (G− ∩ M) · (G− ∩ Nu),

G− ∩ P = (G− ∩ M) · (G− ∩ Nu),

Put t = [(e + 1)/2]. According to the decomposition of M in Lemma 4.2, for
m = 0, 1, we have

Jm
−(β, A) ∩ M ≃

t∏
i=1

Jm(β, A(i)),

where if t = (e+1)/2 is an integer, we understand Jm(β, A(t)) = Jm
−(β, A(t)). Likewise

for Hm
−(β, A), for m = 0, 1. Moreover, we have

( J− ∩ M)H1
− = (H1

− ∩ Nℓ)( J− ∩ M)(H1
− ∩ Nu),

( J− ∩ P)H1
− = (H1

− ∩ Nℓ)( J− ∩ M)( J1
− ∩ Nu).
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4.2 The Proof of Claim 3.10

We are ready to prove Claim 3.10.

Proposition 4.4 Let [A, n, 0, β] be a good skew simple stratum in A, with A = A(L)
and e = e(LoE

), and θ− ∈ C−(A, 0, β). Let P = MNu be a parabolic subgroup of G as-

sociated with [A, n, 0, β]. Put t = [(e+1)/2]. Then θ− is trivial on both H1
−(β, A)∩ Nℓ

and H1
−(β, A) ∩ Nu. After the identification H1

−(β, A) ∩ M =
∏t

i=1 H1(β, A(i)), we
have

θ−|(H1
−(β, A) ∩ M) = θ(1) ⊗ · · · ⊗ θ(t),

where θ(i) ∈ C(A(i), 0, 2β), for 1 ≤ i ≤ [e/2], and if t = (e + 1)/2 is an integer,

we understand θ(t)
= θ(t)

− and C(A(t), 0, β) = C−(A(t), 0, β). Further, θ(i) is a simple

character of H1(2β, A(i)) = H1(β, A(i)) for 1 ≤ i ≤ [e/2].

Proof The first assertion follows directly from Proposition 4.1. As in Section 2.1,
we have θ− = g(θ)) = θ|H1

−(β, A), for some θ ∈ C(A, 0, β) with θγ
= θ. From

Proposition 4.1, θ|(H1(β, A ∩ M̃) = θ(1) ′ ⊗ · · · ⊗ θ(e) ′. We restrict this character to

G̃ ∩ (Ai × Ae−i+1) for 1 ≤ i ≤ [e/2] and so have

(G̃ ∩ (Ai × Ae−i+1))Γ
= {(x, x −1) | x ∈ (Ai)× = AutF(V i)},

where x 7→ x is the involution Ai → Ae−i+1 defined in Section 4.1. Since θ((x, 1)) =

θγ((x, 1)), for x ∈ H1(β, A(i)), we have θ(i) ′(x) = θ(e−i+1) ′(x −1). Thus θ− restricted
to the factor H1(β, A(i)) is equal to (θ(i) ′)2. Denote this character by θ(i). Then θ(i)

belongs to C(A(i), 0, 2β). Since it follows from [3, §4.3, Lemma 1] that H1(2β, A(i)) =

H1(β, A(i)), θ(i) is a simple character of H1(β, A(i)) as in the assertion. Moreover, if

t = (e + 1)/2 is an integer, clearly θ(t)
= θ(t)

− ∈ C1
−(A(t), 0, β).

Suppose that [A, n, 0, β], θ− ∈ C−(A, 0, β), and P = MNu is as in Proposi-
tion 4.4. From [5, (5.1.1)] and Proposition 3.1, we obtain the unique irreducible rep-

resentation η− (resp. η(i), resp. η(t)
− ) of J1

−(β, A) (resp. J1(β, A(i)), resp. J1
−(β, A(t)))

which contains θ− (resp. θ(i), resp. θ(t)
− ). We define a subgroup of J− by

J1
P,− = ( J1

−(β, A) ∩ P)H1
−(β, A).

Proposition 4.5 Let notation and assumptions be as above. Then there is an irre-
ducible representation ηP,− of J1

P,− which satisfies the following conditions:

(i) ηP,−|( J1
−(β, A) ∩ M) ≃ η(1) ⊗ · · · ⊗ η(t),

(ii) ηP,−|H
1
−(β, A) is a multiple of θ−,

(iii) ηP,−|( J1
−(β, A) ∩ Nu) is the trivial character,

(iv) η− = Ind(ηP,− : JP,−, J−),

where in (i), if t = (e + 1)/2 ∈ Z, we understand η(t)
= η(t)

− .

Proof By using Proposition 4.4, we can prove the proposition in the same way as the
proofs of [5, (7.2.3), (7.2.4)].
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Let y be the element in the proof Proposition 3.9. From Lemma 3.12, we may re-
place [A ′, n ′, 0, β] in that proposition by [A, n, 0, β] in this subsection. From Lemma

4.2, we can write y in the form y = (y1, . . . , yt ), where if t = (e + 1)/2 ∈ Z, yt = 1.

Lemma 4.6 Let notation and assumptions be as above. For 1 ≤ i ≤ [e/2], there is an
irreducible representation µ(i) of J(β, A(i)) which is intertwined by yi and is an exten-

sion of η(i). Moreover, if t = (e+1)/2 is an integer, there is an irreducible representation

µ(t)
= µ(t)

− of J−(β, A(t)) which is an extension of η(t).

Proof In case 1 ≤ i ≤ [e/2], the assertion is just [5, (7.2.10)]. In case t = (e+1)/2 ∈
Z, since yt = 1, the assertion follows from Proposition 3.8.

The following proposition is nothing but Claim 3.10.

Proposition 4.7 There is an irreducible representation µ of J−(β, A) which is inter-
twined by y and such that µ| J1

− = η−.

Proof For η(i) in Lemma 4.6, put ηNu,− = η(1)⊗· · ·⊗η(t), where if t = (e+1)/2 ∈ Z,

we understand J1(β, A(t)) = J1
−(β, A(t)), η(t)

= η(t)
− . From Lemma 4.6, we obtain an

irreducible representation of J−(β, A) ∩ M =
∏

i J(β, A(i)) by

µNu,− = µ(1) ⊗ · · · ⊗ µ(t).

Then y = (yi) clearly intertwines µNu,−. From the Iwahori decomposition in Sec-
tion 4.1, we can inflate µNu,− to a representation µP,− of ( J−(β, A) ∩ P)H1

−(β, A) by
putting

µP,−(hm j) = µNu,−(m), for h ∈ H1
− ∩ Nℓ, m ∈ J− ∩ M, j ∈ J1

− ∩ Nu.

So put µ− = Ind(µP,− : ( J− ∩ P)H1
−, J−). From Proposition 4.5, ηP,− induces

η−. Hence, from the Mackey restriction formula, we get µ−| J
1
− = η−, and from

[5, (4.1.5)], we can at once see that y intertwines µ−.

The proposition completes the proof of Proposition 3.9, and hence that of Theo-

rem 3.11.

5 Simple Types

5.1 Affine Weyl Groups

In this section, we define an analogue of a simple type for GL(N, F) defined by
[5, (5.5.10)].

Suppose that [A, n, 0, β] is a good skew simple stratum in A = EndF(V ). Let
E = F[β], and B = Bβ the A-centralizer of β. Put R = dimE(V ). Let A = A(L),

B = A ∩ B, and put e = e(LoE
).

From Proposition 1.1, B×∩G is the unramified unitary group of the non-degene-

rated E-anti-hermitian space (V, h̃β), and from Proposition 2.5, it is of type C in the
sense of [8, (10.1.2)]. In this paragraph, we recall the structure of the affine Weyl
group of B× ∩ G by [8, 10.1] and [31]. Denote by G1 the algebraic group defined
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over E0 such that the group of E0-rational points in G1, denoted by G1 = G1(E0), is
equal to B× ∩ G.

In order to quote [8, 10.1] and [31], we rewrite the Witt basis V of (2.2) for (V, h̃β)

as follows: let r = R/2 and I = {±1, . . . ,±r}. Put V = {ei| i ∈ I} with e−r =

v1, e−r+1 = v2, . . . , e−1 = vr, e1 = vr+1, . . . , er = v2r = vR.

We express elements of G1 in the matrix form by this basis V. Let S be the maximal
E0-split torus of G1 defined by

S(E0) = {Diag(d−r, . . . , d−1, d1, . . . , dr)| di ∈ E0 and d−idi = 1 (i ∈ I)}.

Let Z be the centralizer of S, and N the normalizer of S. Then we have

Z(E0) = {Diag(d−r, . . . , d−1, d1, . . . , dr)| di ∈ E and d−idi = 1 (i ∈ I)}.

Write H = Z(E0) for simplicity. Then H has the maximal compact open subgroup

H0 = {Diag(d−r, . . . , d−1, d1, . . . , dr)| di ∈ o×E and d−idi = 1 (i ∈ I)},

which coincides with Zc in the notation of [31, 1.2]. Let W0 = N (E0)/H and W =

N (E0)/H0.

For i, j ∈ I, denote by δi, j the Kronecker delta. Then the group N (E0) consists of
all matrices of the form n = n(σ; d−r, . . . , dr) = (gi j) with gi j = δi,σ( j)d j , where (i)
σ is a permutation of I which preserves the partition of I in pairs (−i, i), (ii) di ∈ E
such that d−idi = 1, and (iii) det(n) = ±

∏
i∈I di = 1.

For an integer i, 1 ≤ i ≤ r, we define a character ai : S → GL1 by

ai(Diag(d−r, . . . , dr)) = d−i,

where GL1 denotes the multiplicative group defined over E0. Then (ai)1≤i≤r is a

Z-basis of the character group X∗
= HomE0

(S, GL1). Put a−i = −ai , ai j = ai + a j

in X∗. Then Φ = {ai j | i, j ∈ I, i 6= ± j} ∪ {2ai| i ∈ I} is the root system of (G1, S).
Let Ua be the root subgroup of G1 associated with a root a ∈ Φ. Associated with
ai j and 2ai , we define elements ui j(c) (c ∈ E) and ui(0, d) (d ∈ E0) of G1 = G1(E0)

respectively as follows: ui j(c) = 1 + (gkℓ) with g− j,i = c, g−i, j = −c and all other
gkℓ = 0, and ui(0, d) = 1 + (gkℓ) with g−i,i = d and all other gkℓ = 0 [8, (10.2.1)],
where we recall that 2 ∈ E0 is invertible. Then Uai j

(E0) = {ui j(c)| c ∈ E} and
U2ai

(E0) = {ui(0, d) | d ∈ E0}. Further, we define elements m(ui j (c)) (c ∈ E×) and

m(ui(0, d)) (d ∈ E×
0 ) of N (E0) by

m(ui j(c)) = u− j,−i(−c−1)ui j (c)u− j,−i(−c−1) = n(σ; d−r, . . . , dr),

where σ = (i,− j)( j,−i), d−i = c−1, d− j = −(c)−1, d j = −c, di = c and all other

dk = 1, and

m(ui(0, d)) = u−i(0,−d−1)ui(0, d)u−i(0,−d−1) = n(σ; d−r, . . . , dr),
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where σ = (i,−i), d−i = −d−1, di = d and all other dk = 1. For each integer i,
1 ≤ i ≤ r, we define an element hi of H0 by hi = Diag(d−r, . . . , dr) with d−r+i−1 =

dr−i+1 = −1 and all other dk = 1. Put

nsi
=

{
m(u−(r−i),r−i+1(1))hi (1 ≤ i ≤ r − 1),

m(u−1(0, 1))hr (i = r).

Then it follows from [8, (10.1.2), (10.1.6)] that nsr
, nsr−1

, . . . , ns1
∈ N (E0) corre-

spond to the roots 2a−1, a1,−2, · · · , ar−1,−r, respectively, which form a basis ∆ of Φ.
The root 2a−r is the highest root with respect to ∆. Associated with this 2a−r, put
ns0

= n(σ; d−r, . . . , dr) where σ = (−r, r), d−r = −̟−1
E , dr = ̟E and all other

di = 0.
We now denote by N0 the subgroup of N (E0) generated by {ns1

, . . . , nsr
}, and

by No the subgroup of N (E0) generated by N0 and H0. Then No consists of all
n(σ; d−r, . . . , dr) ∈ N (E0) with di ∈ o×E , and N (E0) is generated by No and H =

Z(E0). We define a subgroup D of H by

D = {Diag(̟mr

E , . . . , ̟m1

E , ̟−m1

E , . . . , ̟−mr

E ) | m1, . . . , mr ∈ Z}.

Then, since E×
= ̟Z

E × o×E , we have semi-direct products H = D · H0 and

N (E0) = D ⋊ No.

Since the derived subgroup of G1 is semi-simple and simply-connected, W =

N (E0)/H0 is an affine Weyl group [31, 1.13]. Since E/E0 is unramified, it follows
from [31, 1.6, 1.8] that

Φa f = {ai j + γ| i, j ∈ I, i 6= ± j, γ ∈ Z} ∪ {2ai + γ| i ∈ I, γ ∈ Z}

(see [31, 1.15]). The set {2a−1, a1,−2, · · · , ar−1,−r, 2ar + 1} is a basis of Φa f . For each
i, 0 ≤ i ≤ r, denote by si ∈ W the image of nsi

∈ N (E0) under the canonical map

N (E0) → W = N (E0)/H0. Then it follows that sr, sr−1, . . . , s1, s0 are the affine
reflections associated with 2a−1, a1,−2, · · · , ar−1,−r, 2ar + 1}, respectively.

Proposition 5.1 Let notation and assumptions be as above. Then W is a Coxeter
group with a set of generators {s0, s1, . . . , sr}, and there is an isomorphism

W ≃ D ⋊ W0.

Identifying W with D⋊W0 via this isomorphism, we can regard W0 as a finite Coxeter

group with a set of generators {s1, . . . , sr}.

Proof The first assertion has been proved above. For the second, from the above
arguments, we have

W = (D ⋊ No)/H0 = D ⋊ (No/H0),

(see [16, 2.1]). By definition, {s1, . . . , sr} is contained in N0 and so in No. Thus
from [8, (10.1.6), (10.1.7)] there is an isomorphism No/H0 ≃ W0, which shows the

second assertion. The last is clear.
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5.2 Intertwining

Suppose that [A, n, 0, β] is a good skew simple stratum in A = EndF(V ) as in Sec-
tion 5.1. Let E = F[β], and B = Bβ the A-centralizer of β. Let A = A(L), B = A∩B,
and put e = e(LoE

). Hereafter we assume that A is principal. Then for R = dimE(V ),

there is a positive integer f such that R = f e.
We choose self-dual oE-lattice chains LM , Lm in V such that e(LM|oE) = 1,

e(Lm|oE) = R, and LM ⊂ L ⊂ Lm, as in Section 3.1. In B = Bβ , put BM =

End0
oE

(LM) and Bm = End0
oE

(Lm), as in Section 3.1. Then B× ∩ G contains an Iwa-

hori subgroup U (Bm) = Bm ∩ G. From Proposition 5.1, we have the semi-direct
product W = D ⋊ W0 and an Iwahori–Bruhat decomposition of B× ∩ G:

(5.1) B× ∩ G = U (Bm)WU (Bm).

Let V =
⊕e

i=1 V i be the E-decomposition of V subordinated to LoE
, and write

V = {vi} again. For each integer i, 1 ≤ i ≤ e, we may set

Vi
= V ∩V i

= {v(i−1) f +1, v(i−1) f +2, . . . , vi f }.

For each i, 1 ≤ i ≤ e, define an integer i, with 1 ≤ i ≤ e by

(5.2) i = e − i + 1.

For each i, 1 ≤ i ≤ [(e + 1)/2], we rewrite the basis Vi and Vi as follows: Vi
=

{vi
1, vi

2, . . . , vi
f }, Vi

= {vi
1, vi

2, . . . , vi
f }, and

vi
1 = v(i−1) f +1, vi

2 = v(i−1) f +2, . . . , vi
f = vi f ,

vi
1 = vi f , vi

2 = vi f−1, . . . , vi
f = v(i−1) f +1.

(5.3)

If i 6= i, each Evi
j + Evi

j is a hyperbolic subspace of V by Lemma 2.6. If i = i, e is
odd and i = (e + 1)/2. Since R = e f is even, so f is also even. In this case, each

Evi
j + Evi

f− j+1 is a hyperbolic subspace of V as well.

Put M̃(B) =
⊕e

i=1 Bi as in the proof of Proposition 3.9, where Bi
= A(i) ∩

EndE(V i) for A(i), defined in Section 4.1. Denote by D(B) the D-centralizer of

M̃(B)×. We define elements ns1
, ns2

, . . . , ns[e/2]
of No as follows: for 1 ≤ i ≤

[e/2] − 1,

nsi
: vi

j ↔ vi+1
j , vi

j ↔ vi+1
j , for 1 ≤ j ≤ f ,

nsi
|V k ≡ I, for k 6= i, i,

and

ns[e/2]
: v

[e/2]
j 7→ v

[e/2]
j , v

[e/2]
j 7→ −v

[e/2]
j , for 1 ≤ j ≤ f ,

ns[e/2]
|V k ≡ I, for k 6= [e/2]

Let s1, s2, . . . , s[e/2] be the canonical image of ns1
, ns2

, . . . , ns[e/2]
, respectively, under

the canonical map No → W0. Denote by W0(B) the subgroup of W0 generated by
s1, s2, . . . , s[e/2]. From Proposition 5.1, we can define a subgroup, W (B), of W by

W (B) = D(B) ⋊ W0(B). This group is the W -normalizer of M̃(B)×.
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5.3 Simple Types

Suppose that [A, n, 0, β] is a good skew simple stratum in A, with A = A(L) prin-
cipal. Let E = F[β], e = e(LoE

), and B = Bβ be the A-centralizer of β. We have
R = dimE(V ) = e f , for some positive integer f , as in Section 5.2. We note that f
must be even if e is odd, since R is even. Since J−(β, A)/ J1

−(β, A) ≃ U (B)/U 1(B),

from Proposition 2.8, there is a canonical isomorphism

J−(β, A)/ J1
−(β, A) ≃

{
GL( f , kE)e/2 if e is even,

GL( f , kE)(e−1)/2 ×U ( f , kE0
) if e is odd,

where U ( f , kE0
) is the unitary group of a non-degenerate kE/kE0

-anti-hermitian form.

Suppose that σ0 (resp. σ1) is an irreducible cuspidal representation of GL( f , kE)
(resp. U ( f , kE0

)). If e is even, we define an irreducible representation σ− of

GL( f , kE)e/2 by

σ− = σ0 ⊗ · · · ⊗ σ0 =

e/2⊗
σ0,

and if e is odd, we define an irreducible representation σ− of GL( f , kE)(e−1)/2 ×
U ( f , kE0

) by

σ− = σ0 ⊗ · · · ⊗ σ0 ⊗ σ1 =

( (e−1)/2⊗
σ0

)
⊗σ1.

Via the above isomorphism, we lift σ− to an irreducible representation, say again σ−,
of J−(β, A). We can also regard σ− as an irreducible representation of U (B).

Let [A, n, 0, β] be a good skew simple stratum in A, with A = A(L) principal, and
θ− ∈ C−(A, 0, β). Then there is a unique irreducible representation η− of J1

−(β, A)

which contains θ−, and from Theorem 3.11, there is an irreducible representation
κ− of J−(β, A) which is a β-extension of η−.

Definition 5.2 Let notation and assumptions be as above. We say that a represen-
tation λ− is a simple type (of positive level) in G, if it has the form λ− = κ− ⊗ σ−

for a β-extension κ− and an irreducible representation σ− of J−(β, A) as above.

The representation λ− is an analogue of a simple type for GLN (F) defined by
[5, (5.5.10)(a)].

Proposition 5.3 ([5, (5.3.2)]) Let λ− = κ− ⊗ σ− be a simple type in G. Let E =

F[β], B = Bβ , and B = A ∩ B. Then λ− is irreducible and

IG(λ−) = J−(β, A)IB×∩G(σ−|U (B)) J−(β, A),

Proof By using Propositions 3.1 and 3.9, we can prove the assertion in the same way

as the proof of [5, (5.3.2)].

Let W (B) be as in Section 5.2, and σ− be an irreducible representation of U (B)
defined as above. Put W (σ−) = {w ∈ W (B) | (σ−)w ≃ σ−}, where (σ−)w(x) =

σ−(wxw−1) for x ∈ U (B)/U 1(B).
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The involution x 7→ x : Ai → Ae−i+1, defined in Section 4.1, induces an involution
Bi → Be−i+1. This is also induced by the involution on B which is defined by h̃β . Un-

der the identification B1
= · · · = Be

= M( f , E) via the Witt basis V, the involution
Bi → Be−i+1 induces naturally the involution on the GL( f , oE), and induces ones on
GL( f , kE) and U ( f , kE0

). We write again by − these involutions. In particular, we
have U ( f , kE0

) = {x ∈ GL( f , kE) | xx = 1}.

Definition 5.4 Let σ0 be an irreducible cuspidal representation of GL( f , kE). We
define a representation σ∗

0 by σ∗
0 (x) = σ0(x −1) for x ∈ GL( f , kE). We say that the

representation σ0 is self-dual, if σ0 ≃ σ∗
0 .

In this definition, the definition of σ∗
0 depends on the choice of the Witt basis

V. But the definition of self-dual does not depend on it. For another Witt basis
induces an involution on each GL( f , oE) which differs by a conjugation from the
above involution x 7→ x.

If the component σ0 of σ− is self-dual, it is easy to see that W (σ−) is equal to

W (B).
In the next paragraph, we shall show the existence of a self-dual irreducible cusp-

idal representation σ0 of GL( f , kE).

Remark 5.5. Any irreducible cuspidal representation σ1 of U ( f , kE0
) is automatically

self-dual.

5.4 Self-dual Irreducible Cuspidal Representations

Suppose that f is an integer ≥ 2. For simplicity, write k0 = kE0
and k = kE. Let

k0 = Fq be the finite field of order q. Then k = Fq2 is the quadratic extension of k0.
Let x 7→ x = xq be the non-trivial Galois involution of k/k0. Let G = GL f be the
general linear group of rank f defined over k, and G = G(k) the group of k-rational
points in G. We define a Frobenius map F0 on G as follows: for g = (gi j) ∈ G,

F0(g) = (g i j) = (g
q
i j).

Let (σ0, V) be an irreducible cuspidal representation of G = G(k). From Re-
mark 5.5, we may set the representation (σ∗

0 , V) of G to be one defined by

σ∗
0 (g) = σ0(t (F0(g))−1), g ∈ G,

where t g denotes the transpose of g.
Put G1 = Resk/k0

(G), where Res denotes the functor of restrictions of scalars. We
may identify G1 with G × G = G × F0(G). We define a Frobenius map F1 on G1

as follows: for (x, y) ∈ G1 = G × G, F1(x, y) = (F0(y), F0(x)). Then we have
G1(k0) = G(k) and G1(k0) = GF1

1 = {g ∈ G1| F1(g) = g}.
We define automorphisms δ and τ of G1 by δ(x, y) = (y, x) for x, y ∈ G and

τ (g) =
tδ(g)−1 for g ∈ G1, where t (x, y) = (t x,t y) for (x, y) ∈ G1 = G×G. Then

for g = (g, F0(g)) ∈ G1(k0) = G(k) = G, we have δ(g) = F0(g) and

τ (g) =
t (F0(g))−1.
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Let χσ0
be the character of σ0, i.e., χσ0

(g) = Tr(σ0(g)), g ∈ G. Then by Deligne–
Lusztig theory [13, Proposition 8.3] (cf. [10, Ch. 7]), it is well known that there are a

minisotropic maximal k-torus T of G and a regular (in general position) character θ
of T = T (k) such that

χσ0
= ±RT,θ (Deligne–Lusztig character).

Then there are an extension k f = Fq2 f of k of degree f and the multiplicative group
GL1 defined over k f such that T is isomorphic to Resk f /k(GL1). We identify T =

Resk f /k(GL1). Put T1 = Resk/k0
(T ). Then we have T = T (k) = T1(k0).

We study χσ∗

0
. The automorphism τ of G1 satisfies the following properties:

• τ is defined over k0,
• τ ◦ F1 = F1 ◦ τ ,
• τ 2

= Id.

Since σ∗
0 (g) = σ0(τ (g)), g ∈ G, by definition, we have

χσ∗

0
(g) = χσ0

(τ (g)) = ±RT,θ(τ (g)), g ∈ G.

We prove the following.

Proposition 5.6 We have RT,θ(τ (g)) = Rτ (T),θ◦τ (g), g ∈ G.

Proof We first note that T = T1(k0) = T (k) and G = G1(k0) = G(k). We adapt
Deligne–Lusztig theory [13] (cf. [10, Ch. 7]) to the groups G1 ⊃ T1 defined over k0.
Let g ∈ G = G1(k0) and g = us = su be the Jordan decomposition of g, where u is

the unipotent part of g and s is the semisimple part of g. Then we have the character
formula [13, Theorem 4.2] (cf. [10, Theorem 7.2.8]) as follows:

RT,θ(g) =
1

|C0(s)F1 |

∑

x∈G,x−1sx∈T1

θ(x−1sx)QC0(s)
xT1x−1 (u),

where C0(s) denotes the connected centralizer of s in G1, and QG1

T1
(u) = RT1,1(u).

For the decomposition g = us, τ (g) = τ (u)τ (s) is also the Jordan decomposition
with τ (u) unipotent and τ (s) semisimple. Thus we obtain

(5.4) RT,θ(τ (g)) =
1

|C0(τ (s))F1 |

∑

x∈G,x−1τ (s)x∈T1

θ(x−1τ (s)x)QC0(τ (s))
xT1x−1 (τ (u))

as well.

(i) From the properties of τ , we have τ (C0(τ (s))F1 ) = C0(s)F1 and

|C0(τ (s))F1 | = |C0(s)F1 |.

(ii) Similarly, from τ (x−1τ (s)x) = τ (x)−1sτ (x), we obtain

θ(x−1τ (s)x) = θ ◦ τ (τ (x)−1sτ (x)),

and if x ∈ G = G1(k0), x−1τ (s)x ∈ T = T1(k0), we have

τ (x) ∈ G, τ (x)−1sτ (x) ∈ τ (T).

https://doi.org/10.4153/CJM-2008-048-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-048-7


1092 K. Kariyama

(iii) We again have τ (C0(τ (s))) = C0(s), τ (τ (x)τ (T1)τ (x)−1) = xT1x−1. The Lang
variety X̃ = L−1(U ) is associated with a Borel subgroup B = T1U of G1,

where U is the unipotent radical of B. Thus, τ (X̃) = τ (L−1(U )) = L−1(τ (U ))
is associated with τ (B) = τ (T1)τ (U ). Hence we get

QC0(τ (s))
xT1x−1 (τ (u)) = QC0(s)

τ (x)τ (T1)τ (x)−1 (u).

From (i)–(iii), it follows that the right-hand side of RT,θ(τ (g)) in (5.4) is equal to
Rτ (T),θ◦τ (g).

We further study the right-hand side of the equality in Proposition 5.6 and obtain
the following.

Proposition 5.7 We have χσ∗

0
= ±RT,θ1

for the unique character θ1 of T = T (k)

with θ
q
1 = θ.

Proof From Proposition 5.6, we have χσ∗

0
= ±Rτ (T),θ◦τ .

We can represent T = T (k) in G = G(k) as follows. We choose an element
α ∈ k×f = k f − {0} satisfying

• {1, α, . . . , α f−1} is a basis of k f as a k-vector space,
• for the regular representation ρ : k×f → G = GL f (k) with respect to the basis, we

may set T = {ρ(x)|x ∈ k×f }.

Write ρ(x) = F0(ρ(x)) for simplicity. We have α = F0(α) ∈ k×f and {1, α, . . . , α f−1}

is also a k-basis of k f . Let ρ ′ : k×f → G be the regular representation of k×f with respect

to this new basis. Then for x ∈ k×f , we can check that ρ(x) = ρ ′(xq) = ρ ′(x)q and

that there is an element g0 ∈ G such that ρ ′(x) = g0ρ(x)g−1
0 , x ∈ k×f . Hence we

have ρ(x) = g0ρ(x)qg−1
0 , x ∈ k×f , and T = {ρ(x)|x ∈ k×f } = g0Tg−1

0 . However, for

g ∈ τ (T) =
t T, we have θ ◦ τ (g) = θ((t g)−1) = θ(t g). Since the Pontrjagin dual

T̂ of T is (non-canonically) isomorphic to k×f = (Fq2 f )×, it is a cyclic group of order

q2 f −1. It follows that there is a chracter θ1 of T with θ
q
1 = θ as in the assertion. Thus

we have θ ◦ τ (g) = θ
q

1(t g). We can write t g = ρ(x) for some x ∈ k×f , so that

t g = ρ(x) = g0ρ(x)qg−1
0 .

From T = g0Tg−1
0 above, it follows that g0θ1 is a unique character of T. Thus

(g0θ1)(t g) = θ1(g−1
0 (t g)g0) = θ1(ρ(x)q) = θ

q

1(t g) = θ(t g).

Hence, for g ∈ τ (T) =
t T, we have θ ◦ τ (g) =

g0θ1(t g).
Let h be a generator of the group τ (T) =

t T. Then the elements h ∈ τ (T) and
t h ∈ T are both regular semisimple, and have the same characteristic polynomial.
Thus there is an element g1 ∈ G such that h = g1(t h)g−1

1 , and it does not depend on
the choice of h. So we have τ (T) =

t T = g1(T)g−1
1 . Hence, since t g = g−1

1 gg1 for
g ∈ τ (T), we have g0θ1(t g) =

g0θ1(g−1
1 gg1) =

g1g0 (θ1)(g). Consequently, it follows
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that θ ◦ τ (g) =
g1g0 (θ1)(g), g ∈ τ (T) and that (g1g0)−1τ (T)(g1g0) = T. By the

orthogonality relation [13, Theorem 6.8]for RT,θ , we obtain

Rτ (T),θ◦τ = Rτ (T),g1g0 θ1
= RT,θ1

,

which completes the proof.

Corollary 5.8 If the integer f is odd, there is an irreducible cuspidal representation σ0

of G = GL( f , kE) such that σ0 is equivalent to σ∗
0 .

Proof Let T be a minisotropic maximal k-torus of G, and θ be a regular character

of T = T (k) such that χσ = ±RT,θ . We have σ0 ≃ σ∗
0 if and only if χσ0

= χσ∗

0
.

Thus it follows from Proposition 5.7 that σ0 ≃ σ∗
0 is equivalent to RT,θ = RT,θ1

,

where θ
q
1 = θ. By the orthogonality relations for RT,θ , the last condition is equivalent

to the condition that there is a non-negative integer ℓ such that θq2ℓ

= θ1, that is,

θq2ℓ+1

= θ−1.

Let ξ be a generator of T̂ ≃ k×f . Take θ = ξq f −1 in T̂. Then we have θq f +1
=

(ξq f −1)q f +1
= ξq2 f −1

= 1. Further we can show directly that θq2i

6= θ for any integer
i, 1 ≤ i ≤ f − 1, that is, θ is regular.

5.5 The G-intertwining of a Simple Type

We moreover study the G-intertwining of a simple type ( J−(β, A), λ−) in G.

Proposition 5.9 ([[5, (5.5.11)]) Let [A, n, 0, β] be a good skew simple stratum in
A, with A = A(L) principal, and λ− = κ− ⊗ σ− a simple type in G attached to
[A, n, 0, β]. Then we have IG(λ−) ⊂ J−(β, A)W (B) J−(β, A).

Proof If g ∈ G intertwines λ−, from Proposition 5.3, g ∈ J−y J− for some y ∈
B×∩G and y intertwines σ−|U (B). Since J− contains the Iwahori subgroup U (Bm)

of B×∩G, by the Iwahori–Bruhat decomposition of (5.1), we may take y ∈ W . Thus
the result follows from the following lemma, which is an analogue of [5, (5.5.5)].

Lemma 5.10 If w ∈ W intertwines σ−|U (B), then w ∈ W (B).

Proof It is hard to prove this lemma, (see [5, (5.5.5)]).

It follows from the argument in Section 5.2 that the W -normalizer of M̃(B)× is
equal to W (B) = D(B) ⋊ W0(B). Thus, if w ∈ W intertwines σ−|U (B), it is

enough to prove that w normalizes M̃(B)×.

We now assume that w ∈ W does not normalize M̃(B)×. Put LoE
= {Lk | k ∈ Z}

with L
♮
0 = L0. Let V =

⊕e
i=1 V i be the E-decomposition of V subordinated to LoE

,
Lk =

∐e
i=1 Li

k, Li
k = Lk ∩V i , for k ∈ Z, V = {v1, v2, . . . , vR} and let V =

∐e
i=1 Vi be

as in Lemma 2.6. Let Lk ∈ L. Then for each integer i, 1 ≤ i ≤ e, there is an integer

m(i, k) such that
Lk ∩V i

= Li
k = p

m(i,k)
E 〈Vi〉.

We denote this lattice by 〈p
m(i,k)
E 〉i . Thus we have

Lk =

e⊕
i=1

Li
k =

e⊕
i=1

〈p
m(i,k)
E 〉i
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We prepare the following three lemmas.

Lemma 5.11 The function m(i, k) on {1, . . . , e}×Z satisfies the following conditions:

(i) m(1, 0) = m(2, 0) = · · · = m(e, 0) = 0,
(ii) m(1, k) ≤ m(2, k) ≤ · · · ≤ m(e, k) ≤ m(1, k) + 1, for k ∈ Z, and precisely one of

these inequalities is strict,
(iii) for each i, m(i, k) jumps at k, with k ≡ −i (mod e), that is, m(i, k + 1) =

m(i, k) + 1.

Proof Straightforward.

Lemma 5.12 Let w ∈ W . Then for each integer j, 1 ≤ j ≤ R/2, there are integers
d j and k = k( j), determined uniquely by j, such that

w(oEv j) = p
d j

E vk, w(oEvR− j+1) = p
−d j

E vR−k+1.

Proof This follows straightforwardly by the definition of W in Section 5.1.

We recall i = e − i + 1, for i ∈ {1, 2, . . . , e}, defined by (5.2).

Lemma 5.13 Let w ∈ W . The element w permutes {Li
k | i ∈ {1, 2, . . . , e}, k ∈ Z} if

and only if for each Li
k = 〈p

m(i,k)
E 〉i, Li

k = 〈p
m(i,k)
E 〉i , there are integers δi, j, k ′, k ′′ such

that
w(Li

k) = L
j
k ′ = 〈p

m(i,k)+δi

E 〉 j , w(Li
k) = L

j
k ′ ′ = 〈p

m(i,k)−δi

E 〉 j .

Proof This follows directly from Lemma 5.12.

By Lemma 5.13, we may assume that the element w does not permute {Li
k} as in

the proof of [5, (5.5.5)].
For i ∈ {1, . . . , e} and j ∈ {1, . . . , f }, let the basis Vi

= {vi
j} to be as in (5.3),

and define an integer ν(i, j) in {1, . . . , e} by w−1(vi
j) ∈ V ν(i, j). Let k be any integer,

and Lk be the lattice in L as above. Then wLk ∩ Evi
j ⊂ w(Lk ∩ V ν(i, j)), and from

Lemma 5.12, there is an integer di
j such that

wLk ∩ Evi
j = p

m(ν(i, j),k)+di
j

E vi
j .

We remark that the integers ν(i, j) and di
j depend on the element w of W , but they

do not depend on k of Lk.
Let i be an integer with 1 ≤ i ≤ [(e + 1)/2]. Then, for each integer k, we have

wLk ∩ (V i + V i) = (wLk ∩V i) + (wLk ∩V i).

If i 6= i, then, again by Lemma 5.12, we have w−1(vi
j) ∈ V ν(i, j), so that ν(i, j) =

ν(i, j), and similarly di
j = −di

j . If i = i, then we have ν(i, f − j + 1) = ν(i, j) and

di
f− j+1 = −di

j as well. We put

f ′
=

{
f if i 6= i,

f /2 if i = i,
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and for each j ∈ {1, . . . , f ′}, rewrite

vi
− j =

{
vi

j if i 6= i,

vi
2 f ′− j+1 if i = i.

Then {vi
j , vi

− j | j ∈ {1, . . . , f ′}} form a basis of V i + V i , and for each integer k, we
have

(5.5) wLk ∩ (V i + V i) =

f ′∑

j=1

p
m(ν(i, j),k)+di

j

E vi
j +

f ′∑

j=1

p
m(ν(i, j),k)−di

j

E vi
− j .

Lemma 5.14 There is an integer i, 1 ≤ i ≤ [(e + 1)/2], which satisfies the condition,
“not ν(i, 1) = · · · = ν(i, f ) or not di

1 = · · · = di
f ”.

Proof Suppose that there is no integer i as in the assertion. Then for i = i =

(e + 1)/2, we have ν(i, 1) = · · · = ν(i, f ′) = (e + 1)/2 and di
1 = · · · = di

f ′ = 0, so

that w(Li
k) = Li

k, for k ∈ Z. For i, with i 6= i, put ν = ν(i, 1) = · · · = ν(i, f ′) and
d = di

1 = · · · = di
f ′ . For each integer k, it follows from the above argument that

wLν
k = wLk ∩V i

= 〈p
m(ν,k)+d
E 〉i,

whence, by Lemma 5.11, we have wLν
k = 〈p

m(i,ℓ)
E 〉i

= Li
ℓ for some integer ℓ. Hence

the element w permutes {Li
k}, which contradicts the assumption on w.

We fix such an integer i as in Lemma 5.14, and for each j ∈ {1, . . . , f ′}, write

µ( j), d j , and v j for ν(i, j), di
j , and vi

j , respectively. Put W = V i + V i , and

W+ =

f ′∑

j=1

Ev j , W− =

f ′∑

j=1

Ev− j .

Then we have W = W+ ⊕ W−, and W+ and W− are both maximal totally isotropic

subspaces of W with respect to h̃β |W .

Remarks 5.15. (i) In case i = i, the condition in Lemma 5.14 is divided into the
following two cases:

(a) not ν(1) = · · · = ν( f ′) or not d1 = · · · = d f ′ ,

(b) ν(1) = · · · = ν( f ′), d1 = · · · = d f ′ , and either ν( f ′) 6= ν(1) or d1 6= 0.

(ii) In case i 6= i, it is nothing but (a) above, since f ′
= f .

For wLk ∩W of (5.5), put

M = {(ν( j), d j), (ν( j),−d j) | j ∈ {1, . . . , f ′}},

where the (ν( j), d j) do not depend on k of Lk as remarked above. We define a linear
order ≺ on the set M by (ν ′, d ′) ≺ (ν, d) if and only if either d ′ < d or both d ′

= d
and ν ′ < ν.
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Lemma 5.16 If elements (ν, d) and (ν ′, d ′) in Mi satisfy (ν ′, d ′) ≺ (ν, d), then
m(ν ′, k) + d ′ ≤ m(ν, k) + d and m(ν, k) − d ≤ m(ν ′, k) − d ′, for any integer k.

Proof This follows directly from Lemma 5.11(ii).

Denote by τ jℓ the product of the transposition of v j and vℓ in Vi with that of

v− j and v−ℓ in Vi . By Lemma 5.16, multiplying an element u which is a product of

appropriate τ jℓ’s, we can permute {v1, . . . , v f ′} (so {v−1, . . . , v− f ′}) so as to have

uwLk ∩W =

f ′∑

j=1

p
µ( j,k)
E v j +

f ′∑

j=1

p
µ ′( j,k)
E v− j ,

with µ(1, k) ≤ · · · ≤ µ( f ′, k), µ ′( f ′, k) ≤ · · · ≤ µ ′(1, k). for each k.

Let (ν0, d0) be the maximal element in the set M with respect to the order ≺.
Then we have d0 ≥ 0, and µ( f ′, k) = m(ν0, k) + d0 or µ ′(1, k) = m(ν0, k) + d0. We

may assume µ( f ′, k) = m(ν0, k) + d0, up to the transposition of W+ and W−. Put
κ = e − ν0, and for uwLκ ∩W and uwLκ+1 ∩W , write

a j = µ( j, κ), a ′
j = µ ′( j, κ) and b j = µ( j, κ + 1), b ′

j = µ ′( j, κ + 1)

for j ∈ {1, . . . , f ′}. Then from the choice of κ, we have

m(1, κ) = · · · = m(ν0, κ) = 0, m(ν0 + 1, κ) = · · · = m(e, κ) = 1,

m(ν0, κ + 1) = 1.

Thus, by definition, we have

a f ′ = µ( f ′, κ) = m(ν0, κ) + d0 = d0,

b f ′ = µ( f ′, κ + 1) = m(ν0, κ + 1) + d0 = 1 + d0 = a f ′ + 1.

This implies uwLκ ∩W ) uwLκ+1 ∩W .

Lemma 5.17 (i) In case i 6= i, there is an integer s, 1 ≤ s ≤ f ′, such that b1 ≤
· · · ≤ bs < bs+1 = · · · = b f ′ .

(ii) In case i = i, we can replace the element u of W so that there is an integer s,

0 ≤ s ≤ f ′, such that b1 ≤ · · · ≤ bs < bs+1 = · · · = b f ′ and b ′
1 < bs+1. In

particular, if s = 0, then b1 = · · · = b f ′ > b ′
f ′ = · · · = b ′

1.

Proof We first assume (1) not ν(1) = · · · = ν( f ′) or not d1 = · · · = d f ′ in Remark
5.15. Then there is an integer s, 1 ≤ s ≤ f ′, which satisfies b1 ≤ · · · ≤ bs < bs+1 =

· · · = b f ′ . For if not all the ν( j) are equal, then there is some s such that as = bs.

Thus the maximal one of these is the desired. If all the ν( j) are equal, not all the d j

are equal. Thus, if as < a f ′ , then bs ≤ as + 1 < a f ′ + 1 = b f ′ . Hence, similarly, we
get s as claimed. If i 6= i, then, since the assumption (1) is satisfied, the assertion (i)
is proved.
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So, let i = i. Denote by τ j the transposition of v j and v− j . If we have bs+1 = b f ′ =

b ′
1, we can replace u by the product of appropriate τ jℓ’s and τm’s so that b ′

f ′ ≤ · · · ≤

b ′
1 < bs+1. Then we have 0 ≤ s ≤ f ′ and b1 ≤ · · · ≤ bs < bs+1 = · · · = b f ′ as the

assertion says.
We next assume (2) ν(1) = · · · = ν( f ′), d1 = · · · = d f ′ , and “ν( f ′) 6= ν(1) or

d1 6= 0” in Remark 5.15. Then similarly we can replace u so that µ(1, k) = · · · =

µ( f ′, k) > µ ′( f ′, k) = · · · = µ ′(1, k), for any integer k. In particular, for k = κ + 1,
b1 = · · · = b f ′ > b ′

f ′ = · · · = b ′
1.

Via the integer s in Lemma 5.17, we decompose the spaces W+ and W− into

W+ = W1 ⊕W2, W− = W
♮
2 ⊕W

♮
1

by setting

W1 =

s∑

j=1

Ev j , W2 =

f ′∑

j=s+1

Ev j , W ♮
2 =

f ′∑

j=s+1

Ev− j , W ♮
1 =

s∑

j=1

Ev− j .

Here, if s = 0, we understand W1 = W ♮
1 = (0). Then we have W = W2 ⊕ (W ♮

1 ⊕
W1) ⊕W2. We produce a self-dual oE-lattice chain in W of oE-period equal to 2 or 3.
We first define oE-lattices in W+ by

L0 =

f ′∑

j=1

oEv j ) L1 =

s∑

j=1

oEv j +

f ′∑

j=s+1

pEv j ) ̟EL0,

and in W− by

L
♮
0 =

f ′∑

j=1

oEv− j ) ̟EL
♮
1

f ′∑

j=s+1

oEv− j +

s∑

j=1

pEv− j ) ̟EL
♮
0.

Multiplying these oE-lattices by ̟m
E , m ∈ Z, we obtain an oE-lattice chain L in V i .

Further, in W we define

M0 = L
♮
0 ⊕ L0, M1 = L

♮
0 ⊕ ̟EL1, M2 = ̟EL

♮
1 ⊕ ̟EL0.

Then we have M0 ) M1 ⊃ M2 ) ̟EM0, and these oE-lattices generate a self-dual
oE-lattice chain M in W . The oE-period of M is equal to 3 if s 6= 0, and to 2 if s = 0.

Let B = End0
oE

(M) be the hereditary oE-order in EndE(W ) defined by M, and Q

its Jacobson radical. In EndE(W ) ∩ G, put

n =
{

HomE(W
♮
1 ⊕W1 ⊕W2,W

♮
2)

∐
HomE(W2,W

♮
1 ⊕W1)

}
∩ G,

if i = i, and put

n =
{

HomE(W ♮
1,W ♮

2)
∐

HomE(W2,W1)
}
∩ G,

if i 6= i. Take any element x ∈ n ∩ B = n ∩ Q.
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Lemma 5.18 There is an integer ℓ, with 0 ≤ ℓ < e, such that

x(uwLκ+1 ∩W ) ⊂ uwLκ+ℓ+1 ∩W,(5.6)

x(uwLκ+ℓ+1 ∩W ) ⊂ ̟E(uwLκ+1 ∩W ).(5.7)

Since we have chosen the element u ∈ W so as to have b ′
1 ≤ bs+1, we have b1 ≥

b ′
s+1 by Lemma 5.16. Thus b1 ≥ b ′

s+1 ≤ b ′
s . To prove Lemma 5.18, we will consider

the following two cases:

Case 1. b ′
s+1 < b ′

s , if i 6= i, and b1 > b ′
s+1 < b ′

s , if i = i,
Case 2. b ′

s+1 = b ′
s , if i 6= i, and b1 = b ′

s+1 or b ′
s+1 = b ′

s , if i = i.

In Case 1, by definition, we see that x(uwLκ+1 ∩W ) is contained in

(5.8)





f ′∑

j=s+1

p
b ′

s

E v− j +

s∑

j=1

p
bs+1

E v j , if i 6= i,

f ′∑

j=s+1

p
min{b ′

s ,b1}
E v− j +

s∑

j=1

(p
bs+1

E v− j + p
bs+1

E v j), if i = i.

By Lemma 5.17, we have

b ′
f ′ + 1 ≤ · · · ≤ b ′

s+1 + 1 ≤ min{b ′
s , b1} ≤ b ′

s ,

b ′
s + 1 ≤ · · · ≤ b ′

1 + 1 ≤ bs+1, if i = i,

b1 + 1 ≤ · · · ≤ bs + 1 ≤ bs+1.

Hence we obtain x(uwLκ+1 ∩ W ) ⊂ ̟E(uwLκ+1 ∩ W ), which is (5.7) with ℓ = 0 in
Lemma 5.18.

We consider Case 2. For an integer ℓ, 0 ≤ ℓ < e, put

c j = µ( j, κ + ℓ + 1), c ′j = µ ′( j, κ + ℓ + 1)

for j ∈ {1, . . . , f ′}. Then we see that x(uwLκ+ℓ+1 ∩W ) is contained in (5.8) in which
b ′

s , b1, and bs+1 are replaced by c ′s , c1, and cs+1, respectively. To prove (5.6), we must

prove the following inequalities:

(I-1) c ′s+1 ≤ b ′
s if i 6= i, and c ′s+1 ≤ min{b1, b ′

s} if i = i,
(I-2) c ′1 ≤ bs+1 if i = i,
(I-3) cs ≤ bs+1,

and for (5.7),

(II-1) b ′
s+1 < c ′s if i 6= i, and b ′

s+1 < min{c1, c ′s} if i = i,

(II-2) b ′
1 < cs+1 if i = i,

(II-3) bs < cs+1.

By Lemma 5.17, we easily obtain (I-2), (I-3), (II-2), and (II-3), for any integer ℓ,
0 ≤ ℓ < e, in Case 2. Thus it remains for us to prove that there is an integer ℓ,
0 ≤ ℓ < e, such that (I-1) and (II-1) hold.
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Lemma 5.19 If b ′
s+1 = b ′

s , then there is an integer ℓ, 0 ≤ ℓ < e, such that c ′s+1 = b ′
s+1

and c ′s = b ′
s + 1.

Proof Put b ′
s = m(a, κ+1)+d, for some integers a and d. Then bs = m(a, κ+1)−d.

On the other hand, bs+1 = b f ′ = m(ν0, κ+1)+d0 = 1+d0 and b ′
s+1 = m(ν0, κ+1)−d0.

From bs < bs+1 and b ′
s+1 = b ′

s , we easily get ν0 < a. For if ν0 = a, then a = ν0.
It follows that bs < bs+1 implies −d < d0 and that b ′

s = b ′
s+1 implies d = −d0.

This is a contradiction. Thus, if ν0 ≤ ν0, then ν0 ≤ ν0 < a. On the other hand,
if ν0 < ν0, then we have a < ν0. For suppose ν0 ≤ a. Then a ≤ ν0, so that

m(ν0, κ + 1) = m(a, κ + 1) = 0 and m(a, κ + 1) = 1. Thus, again from the above
condition, we obtain −d < 1 + d0 and −d0 = 1 + d. This is a contradiction. Hence
we have obtained {

ν0 ≤ ν0 < a, if ν0 ≤ ν0,

ν0 < a < ν0, if ν0 < ν0.

It follows from Lemma 5.11 that m(a, k) jumps at k = κ + ℓ + 1 for some integer ℓ,
0 ≤ ℓ < e, and that m(ν0, k) is constant for κ+1 ≤ k ≤ κ+ℓ+1. Hence the assertion

follows.

If i 6= i, for the integer ℓ of Lemma 5.19, we have

c ′s+1 = b ′
s+1 = b ′

s < b ′
s + 1 = c ′s .

Thus (I-1) and (II-1) hold. Hence, the proof of Lemma 5.18 is complete in Case 2

with i 6= i.
To prove Lemma 5.18 in Case 2 with i = i, let i = i, and b1 = b ′

s+1 or b ′
s+1 = b ′

s .

Lemma 5.20 If b1 = b ′
s+1, then there is an integer ℓ, 0 ≤ ℓ < e, such that c ′s+1 = b ′

s+1

and c1 = b1 + 1.

Proof The proof is quite similar to that of Lemma 5.19. We sketch the outline. Put
b1 = m(a, κ + 1) + d. Then b ′

1 = m(a, κ + 1) − d. We have bs+1 = 1 + d0 and
b ′

s+1 = m(ν0, κ + 1) − d0. By Lemma 5.17(ii), we have b1 < bs+1 and b1 = b ′
s+1.

Similarly, it follows that

{
a ≤ ν0 or ν0 < a, if ν0 ≤ ν0,

ν0 < a ≤ ν0, if ν0 < ν0.

This shows the assertion.

Denote by ℓ1 (resp. ℓ2) the integer ℓ in Lemma 5.19 (resp. Lemma 5.20). Put
ℓ = max{ℓ1, ℓ2}. Then for this ℓ, we have c ′s+1 = b ′

s+1, c ′s = b ′
s + 1, and c1 = b1 + 1.

Since b1 ≥ b ′
s+1 ≤ b ′

s , we obtain c ′s+1 = b ′
s+1 ≤ min{b1, b ′

s} (I-1). Further, c1 > b1 ≥
b ′

s+1 ≤ b ′
s < c ′s , so that b ′

s+1 = c ′s+1 < min{c1, c ′s} (II-1). Hence the proof of Lemma
5.18 is complete.

By Lemma 5.18, we have

(5.9) (uw)−1x(uw) ∈ Q = rad(B),
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and by definition

(5.10) u−1xu ∈ u−1Qu = End1
oE

(u−1M)

in EndE(W ) as well.
Let i = i. Then u−1M is a self-dual oE-lattice chain in W = V i

= V i of oE-period

equal to 2 or 3. Let h = C(x) = (1 − 1
2
x)(1 + 1

2
x)−1 in G. Then from (5.9), we have

w−1u−1huw ∈ U 1(B). Take an operator T in Iw(σ−|U (B)). Then it follows that

σ−(u−1hu) ◦ T = σw
−(w−1u−1huw) ◦ T = T ◦ σ−(w−1u−1huw) = T.

In Bi
= EndE(V i), let Bi

= EndoE
({Li

k | k ∈ Z}) with Qi its Jacobson radical. By
the choice of the element u of W , it follows from (5.10) that the set of {u−1hu | h =

C(x), x ∈ n ∩ Q} projects onto the unipotent radical of a proper parabolic subgroup

of U (Bi)/U 1(Bi). Thus σ−(u−1hu) ◦ T = T above contradicts the cuspidality of
σ1. Hence the element w never intertwines σ−|U (B).

Let i 6= i. Then u−1M is a self-dual oE-chain in W = V i ⊕ V i of oE-period

equal to 3. For the oE-lattice chain L in V i defined above, let B
i

= End0
oE

(L) and

Q
i

its Jacobson radical, in Bi
= EndE(V i). As an element x ∈ n ∩ B = n ∩ Q

above, we take x = (x1, x
♮
1) ∈ (Bi)× × (Bi)× and let h = C(x). Then this is written

in the form (y, y ′), with y = C(x1) = 1 − x1 ∈ U 1(B
i
). If x1 varies, the set of

the y = C(x1) projects onto U 1(B
i
)/U 1(Bi). The quotient U (B

i
)/U 1(Bi) is a

proper parabolic subgroup of U (Bi)/U 1(Bi), and U 1(B
i
)/U 1(Bi) is its unipotent

radical, as in the proof of [5, 5.5.7]. Hence, similarly, we have σ−(u−1hu) ◦ T = T
for T ∈ Iw(σ−|U (B)), and this contradicts the cuspidality of σ0. This completes the

proof of Lemma 5.10.

5.6 Types

From Proposition 5.9, we obtain an analogue of a maximal simple type for GL(N, F)
of [5, (6.1)] as follows.

Theorem 5.21 Let [A, n, 0, β] be a good skew simple stratum in A, with A = A(L)
principal, and let ( J−, λ−) be a simple type in G attached to [A, n, 0, β]. Let B be the
A-centralizer of β. Suppose that B is maximal, i.e., e(LoE

) = 1. Then ( J−, λ−) is

a [G, π]G-type in G for some irreducible supercuspidal representation π of G, and π is
given by Ind(λ− : J−, G).

Proof From Proposition 5.1, we have W (B) = {1}, and from Proposition 5.9,
IG(λ−) ⊂ J−. Thus Ind(λ− : J−, G) is an irreducible supercuspidal representation of
G (see [9, (1.5)]). If an irreducible representation π of G contains λ−, from Frobenius

reciprocity (see [9, (1.6)]), π is equivalent to Ind(λ− : J−, G). Hence the assertion
follows from [6, Section 2] (see also [21, Definition 7.3]).

Such a simple type ( J−, λ−) in G as in Theorem 5.21 is called a supercuspidal type
in G.

Suppose that [A, n, 0, β] is a good simple stratum in A, with A = A(L) principal,
and θ− ∈ C−(A, 0, β). Let E = F[β] and e = e(LoE

).
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Definition 5.22 Let P = MNu be a parabolic subgroup of G associated with
[A, n, 0, β]. Let ( J−, λ−) be a simple type in G attached to [A, n, 0, β]. We write

JP,− = ( J− ∩ P)H1
−

as in Subsection 4.2, and define λP,− to be the natural representation on the subspace

of ( J− ∩ Nu)-fixed vectors in the representation space of λ−. Moreover, we define a
representation ( JP,− ∩ M, λM,−) by λM,− = λP,−|( JP,− ∩ M).

We note JP,− ∩ M = J− ∩M. Put t = [(e + 1)/2]. We have seen in Subsection 4.2
that

(5.11) J− ∩ M =

t∏

i=1

J(β, A(i)),

where if t = (e + 1)/2 ∈ Z, we understand J(β, A(t)) = J−(β, A(t)) in U (V t , ht )
by Lemma 4.2. According to this decomposition, the representation λM,− will be
decomposed.

From Proposition 4.3, under the identification H1
−(β, A) =

∏
i H1(β, A(i)), we

have θ− = θ(1) ⊗ · · · ⊗ θ(t), where θ(i) ∈ C(A(i), 0, 2β), 1 ≤ i ≤ t , (see Propo-
sition 4.4). From Proposition 3.2, there is a unique irreducible representation η−
which contains θ−, and from Theorem 3.11, we have an irreducible representation
κ− of J−, which is a β-extension of η−. From Proposition 4.5, we obtain ηP,− of
J1
P,− = ( J1

−∩P)H1
− such that ηP,−|( J1

−∩M) ≃ η(1)⊗· · ·⊗η(t), where η(i) is the unique

irreducible representation of J1(β, A(i)) which contains θ(i), and if t = (e + 1)/2 ∈ Z,

we understand J1(β, A(t)) = J1
−(β, A(t)), η(t)

= η(t)
− .

Let κP,− be the natural representation on the subspace of ( J1
− ∩ Nu)-fixed vectors

in the representation space of κ−. Then, as in [5, (7.2)], we obtain the results for κP,−

as follows: κP,− is irreducible and κP,−| J
1
P,− = ηP,−. We have

κP,−|( J− ∩ M) ≃ κ(1) ⊗ · · · ⊗ κ(t),

where κ(i) is an irreducible representation of J(β, A(i)) and a β-extension of η(i),
and if t = (e + 1)/2 ∈ Z, we understand J(β, A(t)) = J−(β, A(t)), κ(t)

= κ(t)
− .

Moreover, we have κ− = Ind(κP,− : ( J− ∩ P)H1
−, J−). By definition, elements of

W (B) normalize the Levi subgroup M of G (cf. Subsections 4.1 and 5.1). We can

easily show that the analogues of [5, (7.2.10), (7.1.15)] hold for G. Thus it follows
from [5, (7.2.16)] that some element of W (B) may induce an equivalence κ(i) ≃
κ( j). Hence we have κ(i) ≃ κ( j), for 1 ≤ i, j ≤ [e/2]. We note that the involution
− on A induces an involution on J(β, A(i)), for 1 ≤ i ≤ t , by (5.11). Furthermore,

if the component σ0 of σ− is self-dual, we have κ(i) ≃ (κ(i))∗, for 1 ≤ i ≤ t , where
(κ(i))∗(x) = κ(i)(x −1), for x ∈ J(β, A(i)). This leads to θ(i) ≃ (θ(i))∗, for 1 ≤ i ≤ t .
In particular, if t = (e + 1)/2 ∈ Z, κ(t)

= κ(t)
− , and automatically, κ(t)

− = (κ(t)
− )∗, and

θ(t)
− = (θ(t)

− )∗.
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Theorem 5.23 ([5, (7.2.17)]) Let [A, n, 0, β] be a good skew simple stratum in A,
with A = A(L) principal, and let ( J−, λ−) be a simple type in G attached to [A, n, 0, β].

Let P = MNu be a parabolic subgroup of G associated with [A, n, 0, β], and ( JP,−, λP,−),
( JP,− ∩ M, λM,−) the representations in Definition 5.22.

(i) λP,− and λM,− are irreducible, and λ− ≃ Ind(λP,− : JP,−, J−).
(ii) Under the identification JP,− ∩ M =

∏
i J(β, A(i)), for 1 ≤ i ≤ [e/2], there is a

supercuspidal type ( J(β, A(i)), λ(i)) in AutF(V i), and if t = (e + 1)/2 ∈ Z, there

is a supercuspidal type ( J−(β, A(t)), λ(t)
− ) in U (V t , ht ) such that

λM,− ≃ λ(1) ⊗ · · · ⊗ λ(t),

where we understand that λ(t) means λ(t)
− if e is odd.

(iii) For 1 ≤ i, j ≤ [e/2], λ(i) ≃ λ( j). If the component σ0 of σ− is self-dual, then

λ(i) ≃ (λ(i))∗, for 1 ≤ i ≤ t.

Proof By the above argument, we can prove the theorem in the same way as the
proof of [5, (7.2.17)]. In particular, for (iii), we can similarly translate properties of

κ− directly to λ−, if the component σ0 of σ− is self-dual.

Corollary 5.24 Let notation and assumptions be as in Theorem 5.23. Let πi be an

irreducible supercuspidal representation of AutF(V i) which contains λ(i), for 1 ≤ i ≤
[e/2], and when t = (e+1)/2 ∈ Z, let πt be an irreducible supercuspidal representation

of U (V t , ht ) which contains λ(t)
− . We define an irreducible supercuspidal representation

π of the Levi subgroup M of G by

π =

[(e+1)/2]⊗
πi

Then ( JP,− ∩ M, λM,−) is an [M, π]M-type in M.

Proof This follows directly from [5, (6.2.2)] and Theorem 5.23 (see [7, Proposition

1.3]).

Remark 5.25. Let π be an irreducible supercuspidal representation of M as in Corol-
lary 5.24. If the component σ0 of σ−, with λ− = κ− ⊗ σ−, is self-dual, the con-
tragradient representation of π belongs to [M, π]M , and this inertial class contains a
self-contragradient representation of M. This follows from Theorem 5.23 and state-

ments in [3, 2.2 and Introduction].

6 Hecke Algebras and Types

6.1 Hecke Algebras

In this section, we prove that ( JP,−, λP,−) is a type in G. To do so, we study the Hecke

algebras H(G, λP,−) of ( JP,−, λP,−).
Suppose that [A, n, 0, β] is a good simple stratum in A, with A = A(L) principal,

and ( J−, λ−) a simple type in G attached to [A, n, 0, β], with λ− = κ− ⊗ σ−. Let
E = F[β], B = Bβ the A-centralizer of β, and B = A ∩ B.
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Proposition 6.1 ([5, (7.2.19)]) Let λM,− be the representation of JP,− ∩ M which
is the restriction of λP,− as in Definition 5.22, and W (σ−) be the subgroup of W (B)

defined in Subsection 3.1. Let w be an element of W (B). Then Iw(λP,−) = Iw(λM,−),
and if w ∈ W (σ−), its dimension is equal to one.

Proof As stated in Subsection 5.6, W (B) normalizes J− ∩M. Take a representative,
y ∈ N (E0) ⊂ B× ∩ G, of w (see 5.1). Clearly Iy(λP,−) = Iw(λP,−) ⊂ Iy(λM,−). We
show the converse inclusion. For GL(N, D) with D a central division F-algebra, we

have an Iwahori decomposition of JP in the proof of [24, Theorem 2.19]. Similarly
we obtain

(6.1) JP,− = ( JP,− ∩ yNℓ)( JP,− ∩ M)( JP,− ∩ yNu).

The subgroups Ñℓ and Ñu of G̃, defined in Subsection 4.1, are denoted by U− and U
respectively in the proof. We have

(6.2) (ÑℓM̃Ñu)Γ
= ÑΓ

ℓ M̃ΓÑΓ

u = NℓMNu.

In the proof of [24, Theorem 2.19], replacing JP, κM and κP by JP,−, λM,− and λP,−

respectively, we imitate the proof to prove Iy(λM,−) ⊂ Iy(λP,−) by using (6.1) and

(6.2). Hence the first assertion follows.

Suppose that w ∈ W (σ−). Then, since by definition (σ−)y ≃ σ−, it follows from
Theorem 5.23(iii) that the element y stabilizes λM,− (see the proof of [5, (7.2.19)]).

Thus the space Iy(λM,−) = Iw(λM,−) has dimension one.

Let P = MNu be a parabolic subgroup of G associated with [A, n, 0, β], and
( JP,−, λP,−) the representation obtained from ( J−, λ−) in Definition 5.22. Let
H(G, λ−) be the Hecke algebra of ( J−, λ−) (see [5, 4.1]). From Theorem 5.23(i)
and [5, (4.1.3)], there is a canonical algebra isomorphism

(6.3) H(G, λ−) ≃ H(G, λP,−).

Proposition 6.2 The Hecke algebra H(G, λ−) is spanned by functions with support
J−w J−, w ∈ W (σ−), as a C-vector space, and the isomorphism of (6.3) is support-
preserving.

Proof From Proposition 5.9, the Hecke algebra H(G, λ−) is spanned by functions
with support J−w J−, w ∈ W (B), as a C-vector space. For w ∈ W (B), we can

show that the dimension of Iw(λ−) is at most one, in a quite similar way to the proof
of [5, (5.6.15)]. If w intertwines λ−, the space Iw(λ−) has one dimension. Thus
it follows from [5, (4.1.5)] that w intertwines λP,−. Since Iw(λP,−) = Iw(λM,−) by
Proposition 6.1, it intertwines λM,− as well. Hence, from Theorem 5.23(iii), we see

that w ∈ W (σ−) and that H(G, λ−) is spanned by functions with support J−w J−,
w ∈ W (σ−). For w ∈ W (σ−), again from [5, (4.1.5)] and Proposition 6.1, we see
that the spaces Iw(λ−) and Iw(λP,−) are both of one dimensional. Thus the algebra
isomorphism (6.3) is support-preserving.
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We may identify H(G, λP,−) with H(G, λ−) via the isomorphism (6.3). Let E =

F[β], B = Bβ the A-centralizer of β, and B = A ∩ B. Let D(B) be the subgroup

of B× ∩ G defined in Subsection 5.1. Let e = e(LoE
) and e ′ = [e/2]. We define

D−(B) to be a submonoid of D(B) which consists of elements whose eigenvalues

are ̟n1

E , . . . , ̟
ne ′

E , ̟
−ne ′

E , . . . , ̟−n1

E with n1 ≥ · · · ≥ ne ′ if e is even, and whose
eigenvalues are those, together with 1, if e is odd.

Lemma 6.3 Let λM,− be the representation of JP,− ∩ M as above. Then the Hecke

algebra H(M, λM,−) is isomorphic to the Laurent polynomial ring

C[X1, . . . , X[e/2]; X−1
1 , . . . , X−1

[e/2]
].

Proof From Theorem 5.23, λM,− ≃ λ(1) ⊗ · · · ⊗ λ(t), where t = [(e + 1)/2]. If

t = (e + 1)/2 ∈ Z, λ(t)
= λ(t)

− is a supercuspidal type in U (V t , ht ). Thus from

Theorem 5.21, we have H(U (V t , ht ), λ
(t)
− ) ≃ C. However, since λ(i), 1 ≤ i ≤ [e/2],

is a maximal simple type in AutF(V i), from [5, (7.6.3)], we have

H(AutF(V i), λ(i)) ≃ C[X, X−1].

Put e ′ = [e/2]. Hence we obtain

H(M, λM,−) ≃ H(AutF(V 1), λ(1)) ⊗ · · · ⊗ H(AutF(V e ′), λ(e ′))

≃ C[X1, X−1
1 ] ⊗ · · · ⊗ C[Xe ′ , X−1

e ′ ]

≃ C[X1, . . . , Xe ′ ; X−1
1 , . . . , X−1

e ′ ].

Proposition 6.4 There is an injective homomorphism

jP : H(M, λM,−) → H(G, λP,−)

such that for z ∈ D−(B) and φ ∈ H(M, λM,−) with support ( J− ∩ M)z, the support
of jP(φ) is JP,−z JP,−, and jP(φ)(z) = φ(z).

Proof Identify H(G, λ−) = H(G, λP,−) as above. Since D−(B) ⊂ W (σ−), it fol-

lows from Proposition 6.1 that for each z ∈ D−(B), there is a function of H(G, λP,−)
supported on JP,−z JP,−. Hence the proposition is proved in a quite similar way to the
proof of [5, (7.6.2)].

6.2 Types in G

Suppose that ( J−, λ−), with λ− = κ− ⊗ σ−, is a simple type in G attached to a
good skew simple stratum [A, n, 0, β], with A = A(L) principal. Let P = MNu

be a parabolic subgroup G associated with [A, n, 0, β], and ( JP,−, λP,−) the natural
representation defined by ( J−, λ−). Then, from Corollary 5.24, there is an irreducible

supercuspidal representation π of M, which is of the form
⊗e/2

π0,
⊗(e−1)/2

π0 ⊗
π1, according to e = e(LoE

) ≡ 0, 1 (mod 2), such that ( JP,− ∩ M, λM,−) is an
[M, π]M-type in M. Moreover, the representation satisfies the following conditions:
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(i) ( JP,−, λP,−) is a decomposed pair with respect to (M, P), i.e.,

JP,− = ( JP,− ∩ Nℓ)( J− ∩ M)( JP,− ∩ Nu),

and λP,− is trivial on both JP,− ∩ Nℓ and JP,− ∩ Nu.

(ii) λM,− = λP,−|( JP,− ∩ M).

Lemma 6.5 Let notation and assumptions be as above. Then there is an invertible
element ξ of H(G, λP,−) supported on the double coset JP,−zP JP,−, where zP is an element

of the center, Z(M), of M, and ξ is a strongly (P, JP,−)-positive element.

Proof For an integer j, 1 ≤ j ≤ [e/2], we put

a j = Diag(̟EI, . . . , ̟EI, I, . . . , I, ̟−1
E I, . . . , ̟−1

E I),

where ̟EI (resp. ̟−1
E I) appears j times. Then these are elements of D−(B), and

for each an integer i, 1 ≤ i ≤ [e/2], there is a non-zero function Xi in H(M, λM,−)
supported on ( JP,−∩M)ai , as in the proof of [5, (7.6.2)]. This element Xi is the same
as that of Lemma 6.3 (see [5, p. 245]) and is invertible in H(M, λM,−). Put e0 =

e(E|F) and ZP = Xe0

1 Xe0

2 · · ·Xe0

[e/2] in H(M, λM,−). Then the function ZP is supported

on ( JP,− ∩ M)zP, with zP = ae0

1 ae0

2 · · · ae0

[e/2]
, and it is invertible in H(M, λM,−). It

is easy to see zP ∈ Z(M). Put ξ = jP(ZP) ∈ H(G, λP,−). Then it follows from
Proposition 6.4 that the function ξ is supported on JP,−zP JP,− and is invertible.

Theorem 6.6 Let [A, n, 0, β] be a good skew simple stratum in A, with A principal,
and ( J−, λ−) a simple type in G attached to [A, n, 0, β]. Let ( JP,−, λP,−) be the repre-
sentation defined in Definition 5.22 from ( J−, λ−), and π an irreducible supercuspidal

representation of M as in Corollary 5.24. Then ( JP,−, λP,−) is an [M, π]G-type in G,
and so is ( J−, λ−).

Proof From the conditions (i), (ii) and Lemma 6.5, ( JP,−, λP,−) satisfy the hypothe-
ses of [6, (7.9)]. Thus, (iii) for any smooth irreducible representation (µ, V) of G, the
restriction to VλP,− of the Jacquet functor ru is injective. The definition of G-cover,
given in [6, (8.1)], is modified so that if the conditions (i), (ii) and (iii) are satisfied

for one parabolic subgroup P, then ( JP.−, λP,−) is a G-cover of ( JP,− ∩ M, λM,−) (see
[3, Introduction]). This modification follows from [4]. Since ( JP,− ∩ M, λM,−) is an
[M, π]M-type in M, the theorem follows from [6, (8.3)]. Moreover, since

λ− ≃ Ind(λP,− : JP,−, J−)

by Theorem 5.23(i), it is easy to see that ( J−, λ−) is also an [M, π]G-type in G [25,
5.3].
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