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Abstract

It is shown that all the generalized Whitehead products vanish in X and all the components of XTA have
the same homotopy type when X is a T-space. It is also shown that any T-space is a G-space. The dual
spaces of T-spaces are introduced and studied.
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1. Introduction

A based m a p / : A —>• X is called cyclic [ 13] if there exists a map F : I x A - > Xsuch
that Fj ~ V(l v / ) , where j : X V A -> X x A is the inclusion and V : X v X ->• X
is the folding map. The Gottlieb set, denoted G(A, X), is the set of all homotopy
classes of cyclic maps from A to X. The concept of cyclic maps was first introduced
and studied by Gottlieb [5] and Varadarajan [13]. Gottlieb [6] introduced and studied
the evaluation subgroups Gm(X) of nm(X). Gm(X) is defined to be the set of all
homotopy classes of cyclic maps from Sm to X. A space X satisfying Gm(X) =
nm(X) for all m is called a G-space. It is known [6] that any //-space is a G-space.
On the other hand, a based map / : X —> A is called cocyclic [13] if there exists
a map <p : X -> X v A such that j<f> ~ (1 x / ) A , where j:XvA—>XxA
is the inclusion and A : X —> X x X is the diagonal map. The dual Gottlieb set,
denoted DG(X, A), is the set of all homotopy classes of cocyclic maps from X to
A. Haslam [7] introduced and studied the coevaluation subgroups Gm(X) of Hm{X).
Gm (X) is defined to be the set of all homotopy classes of cocyclic maps from X to
K(l, m). A space X satisfying Gm(X) = Hm{X) for all m is called a G'-space. It is
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known [7] that any co-//-space is a G'-space.
The purpose of this paper is to examine a class of spaces intermediate between

//-spaces and G-spaces and to dualize. In 1987, Aguade introduced and studied T-
spaces in [2]. A space X is called a T-space if the fibration Q.X —> Xs' —>• X is fiber
homotopy equivalent to the trivial fibration £2X —> X x SIX —> X, where Xs' is the
free loop space of X. In section 2, we characterize T-spaces by the Gottlieb groups
and use them to show that any //-space is a T-space and any T-space is a G-space.
In 1981, Aguade showed [1] that, in the category of spheres, only Sl, S3 and S7 are
T-spaces. In fact, we can easily show that //-spaces, T-spaces and G-spaces are
equivalent in the category of spheres. Moreover, there are many T-spaces which are
not //-spaces. We show that X is a T-space if and only if Xs' is a T-space when X is a
simply-connected space. In Section 3, we introduce a co-T-space as a dual space of a
T-space and characterize co-T-spaces by the dual Gottlieb groups, and use it to show
that any co-//-space is a co-T-space and any co-7-space is a G'-space. Moreover,
we obtain that for any space A, the group [X, £2A] is abelian when X is a co-T-space.
There is a G'-space but not a co-T-space. We show that if X is a co-7-space, then
all cup products vanish in X. Most results in Section 2 are dualized. Throughout this
paper, space means a space of the homotopy type of a connected locally finite CW
complex. We assume also that spaces have non-degenerate base points. All maps
shall mean continuous functions. All homotopies and maps are to respect base points
(except for the case of the mapping space XA). The base point as well as the constant
map will be denoted by *. For simplicity, we use the same symbol for a map and its
homotopy class. Also, we denote by [X, Y] the set of homotopy classes of pointed
maps X —*• Y. The identity map of space will be denoted by 1 when it is clear from
the context. The diagonal map A : X —*• X x X is given by A(JC) = (x, x) for each
x e X, the folding map V : X V X -> X is given byV(jc, *) = V(*, x) = x for
each x e X. EX denote the reduced suspension of X and SIX denote the based loop
space of X. The adjoint functor from the group [EX, Y] to the group [X, S2Y] will be
denoted by r. The symbols e and e' denote r~l(lax) and TQEX) respectively.

2. T -spaces and cyclic maps

In this section we characterize T-spaces by the Gottlieb groups and use them to
study the relationships between //-spaces, T-spaces and G-spaces. We also study
some properties of T-spaces. It is known [13] that if A is a co-//-group, then G(A, X)
is an abelian subgroup of [A, X]. On the other hand, G(A, X) is the evaluation
subgroup given by Gottlieb [5,6], when A is a sphere. It is clear that if / : A ->• X is
a cyclic map and 9 : B -»• A is an arbitrary map, then fO : B -»• X is a cyclic map.
It is also easily obtained that an //-space may be characterized by the Gottlieb set as
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follows;

PROPOSITION 2.1 [10]. The following are equivalent:

(1) X is an H-space;
(2) \x is cyclic;
(3) G(A, X) = [A, X] for any space A.

Aguade showed [2] that X is a T-space if and only if X is a Tx -space. In fact,
X being a T\ -space means that e : E£2X —»• X is cyclic. Thus we obtain the next
theorem which shows that a T -space may be characterized by the Gottlieb group.

THEOREM 2.2. The following are equivalent:

(1) X is a T-space;
(2) e: EftX -* X is cyclic;
(3) G(EA,X) = [Y,A,X]for any space A.

PROOF. The assertion (1) if and only if (2) follows from Proposition 4.1 in [2].
(2) implies (3): Let / : EA —>• X be a map. Then we have, from the fact that
/ = eEz(f) : T.A - • X and e is cyclic, that / : EA ->• X is cyclic. (3) implies
(2): Take A = QX. Then « : E M ^ X i s cyclic.

Let XTA be the space of maps from Y.A to X with the compact-open topology.
For a based map / : HA —>• X, let XfA be the path component of XE/i containing f.
Let (XfA)0 denote the space of base point preserving maps in XfA. In general, the
components of XTA almost never have the same homotopy type. However, it is well
known that if X is an //-space, then Xf and X^P have the same homotopy type for
arbitrary f and g in np(X). Clearly the evaluation map co : XfA —> X is a fibration
with fiber (XfA)0. The second author showed [16] that / : T,A -> X is cyclic if and
only if XfA is fiber homotopy equivalent to XfA. From the above fact and Theorem
2.2, we can get the following corollary.

COROLLARY 2.3. IfX is a T-space, then XfA and XfA have the same homotopy
type for arbitrary f and g in[Y,A, X].

It is known [2] that if X is a T-space, then all Whitehead products vanish in X.
The following corollary says that a T -space has a more powerful property.

COROLLARY 2.4. If X is a T-space, then all the generalized Whitehead products
vanish in X.

PROOF. Suppose X is a 7-space. Let / : DA -> X and g : EZ? -> X be arbitrary
maps. From Theorem 2.2, g : E B —>• X is cyclic. Thus there is a map G : X x E B -»
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X such that Gj — V(l v g), where j : X v E B ^ X x EB is the inclusion. Let
// = G ( / x l ) : EAxEfi -* X. Then/ / / = G ( / x 1) / = Gj(fvl) = V(/vg) ,
where / : E 4̂ v EB —> E A x EB is the inclusion. This proves the corollary.

A based map / : A —• X is called weaWj cyclic [15] if for any sphere 5" and any
map 8 : S" —>• A, f6 : S" —> X is cyclic, hi fact, / : A —*• X is weakly cyclic if and
only if f*(nn(A)) C Gn(X) foralln. We showed [15] that any cyclic map is a weakly
cyclic map, but the converse does not hold. Also, it is clear that if / : A -> X is a
weakly cyclic map and 0 : B -»• A is an arbitrary map, then / # : £ —> X is weakly
cyclic.

THEOREM 2.5. The following are equivalent:

(1) X is a G-space;
(2) e : ES2X -> X /s weakly cyclic;
(3) G(S", X) = [5", X] for any sphere Sn.

PROOF. (1) implies (2): Since X is a G-space, the identity map 1* of X is weakly
cyclic. Thus we have that e = \xe : E£2X -> X is weakly cyclic. (2) implies
(3): Let / : S" -+ X be a map. We may assume that S" = ES1"""1. It is clear
that if h : A —> B is a homotopy equivalence, then h* : G(B, X) —> G(A, X) is a
one-to-one correspondence. Since / = e E r ( / ) : ES"~' —>• X and e : EfiX ->• X
is weakly cyclic, we have, from the definition of weakly cyclic, that / : 5" —>• X is
cyclic. (3) implies (1): This follows from the definition of a G-space.

From the above Proposition 2.1, Theorems 2.2 and 2.5, we get the relationships
between //-spaces, T-spaces and G-spaces as follows.

COROLLARY 2.6. Any H-space is a T-space and any T-space is a G-space.

We will obtain many examples of T-spaces which are not //-spaces from Corol-
laries 2.13 and 2.14. But it remains open whether or not there are any G-spaces that
are not T-spaces. However, it is known [1] that, in the category of spheres, only
S\ S3 and S1 axe T-spaces. This result can be easily obtained from the following
proposition.

PROPOSITION 2.7. Let Xbea co-H-space. Then X is an H-space if and only ifX
is a T-space.

PROOF. It is sufficient to show that if X is a 7-space and co-//-space, then X is an
//-space. Since X is a co-//-space, there is a map s : X —>• E£2X such that es ~ 1*.
Since e : E£2X —> X is cyclic, lx is cyclic and X is an //-space. This proves the
proposition.
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COROLLARY 2.8. H-spaces, T-spaces andG-spaces are equivalent in the category
of spheres.

PROOF. Suppose 5" is a G-space. Since nn{S") = Gn(S"), 15» is cyclic and 5" is an
//-space. Thus we know, from Corollary 2.6, that //-spaces, T-spaces and G-spaces
are equivalent in the category of spheres.

PROPOSITION 2.9. Let X be a T -space. If there is a map r : X - • Y such that
ri ~ lY, where i : Y -> X, then Y is a T-space.

PROOF. Since ex : ££2X -+ X is cyclic, we have that ieY = ex££2/ : ZQY -* X
is cyclic. It is known [13] that if g : X —> y is a map which has a right homotopy
inverse and / : A —»• X is cyclic, then g / : A —>• 7 is cyclic. Thus we have that
eY ~ r(/eK) : Y,QY -+ y is cyclic.

COROLLARY 2.10. /I retract of a T-space is a T-space.

THEOREM 2.11. X x Y is a T-space if and only ifX and Y are T-spaces.

PROOF. Suppose X x Y is a T-space. Then we have, from Corollary 2.10, that
X and y are T-spaces. On the other hand, let X and Y be 7-spaces. We show that
G(ZA, X x Y) = [£A, X x Y] for any space A. Let / : EA -> X x y be a map.
Since X and Y are T-spaces, p\f : XM —> X and p 2 / : SA —> y are cyclic maps,
where pi : X x Y —> X and p2 '• X x Y —> Y are projections. It is known [10] that if
/ i : Ai —> X] and / 2 : A2 —>• X2 are cyclic, then so is / , x f2 : A\ x A2 —> X\ x X2.
Thus / = (pif x p2f)A : EA ->• X x y is cyclic. This proves the theorem.

THEOREM 2.12. Let X be a simply connected space. Then X is a T-space if and
only if Xs is a T-space.

PROOF. Suppose X is a 7-space. Since X is simply connected, £2X is connected.
Thus we know, from the definition of a T-space and Theorem 2.11, that X5' is a
connected space and T-space. On the other hand, suppose Xs' is a T-space. Consider
the inclusion / : X -> Xs ' , i(x) = x, where x(t) = x for all t e S1. Then the
evaluation map p : Xs' ->• X is a retraction of X5' to X. Thus we have, from
Corollary 2.10, that X is a T-space.

Consider the two stage Postnikov system

, 2)
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with /^-invariant a" € Hln(K{Z,2)\Z2),n > 2, where a is the generator of
H2(K(1, 2); Z2). Then the following facts were known by Haslam (See [7, The-
orem 1.2.10]).

(1) En is an //-space if and only if n = 2k;
(2) En is a G -space if and only if n is even.

COROLLARY 2.13. Ef is a T-space ifand only ifn is even.

PROOF. Since K(Z2,2n — l) ->•£„-»• K (Z, 2) is the principal fibration induced by
a" : K(Z, 2) —> K(Z2, 2n) forn > 2, En is a simply-connected space. From Theorem
2.12 and Corollary 2.6, and the above fact (2), it is sufficient to show that if n is even, En

isaT-space. Letm* : H*{K{Z,2);Z2) -> H*(K(l, 2); Z2)®H*{K(Z, 2); Z2)bethe
homomorphism induced by the multiplication /n : K(Z, 2) x /T(Z, 2) —> A"(Z, 2). On
the other hand, K(Z, 2) has a unique T-structure r : K(Z, 2)s' ->• fttf(Z, 2) which
comes from the //-structure m of £(Z, 2) (see [2]). Let co : Hl(K(I, 2); Z2) ->
//''-'(Q«"(Z, 2); Z2) be the suspension and h : A"(Z, 2) x QK(1, 2) -^ AT(Z, 2)s' be
amap given by h(x, rj)(t) = m(x,r)(t)), where r) e S2AT(Z, 2). Then(rh)*(y) = l<g>y
for ally e H*(QK(Z,2)\ I2)mdm*(an) = £? = 0 «C/(a""'®a'), where the binomial
coefficient nCi is taken mod 2. Since nC\ = 0 mod 2, w*(a") = a" ® 1 + 1 <g> a" +
Y!i~J2nCi(an-i ® a'). Since «(«') e H2i~\nK(Z, 2); Z2) = 0 for all / > 2, we
know, from Proposition 2.2 [2], that a" : K(l, 2) -+ K(Z2, In) is a T-map. Thus we
know, from Proposition 2.1 [2], that En is a T-space.

COROLLARY 2.14. Ef « an H-space if and only ifn = 2k.

PROOF. Let Ef be an //-space. Then the evaluation map p : Ef ->• En is a
retraction of Ef to En. It is well known that a retract of an //-space is an //-space.
Thus we obtain, from the Haslam's result above, that n = 2k. Suppose n = 2k. Since
En is a T-space, Ef is homotopy equivalent to En x QEn. It is also well-known that
if X and Y are //-spaces, then X x Y is an //-space. Thus we know that Ef is an
//-space.

Thus we know, in the proof of Corollary 2.13, that T-spaces are equivalent to
G-spaces in the class {En | n > 2} of EB, and E10 is an example of T-space which
is not an //-space. Moreover, we may get many new G-spaces Ef which are not
//-spaces.

THEOREM 2.15. Let Z bea homotopy equivalent to X x Y for some space Y. Then
X is a T-space if and only if there are maps r : Z —>• X and i : X -> Z such that
ri ~ l x and ie : E£2X —> Z is cyclic.
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PROOF. Suppose X is a T-space. Let / : Z —>• X x Y,g : X x y —>• Z be maps
such that g / ~ l z and / g ~ \XXY- Let r = pxf : Z ->• X and / = g/i : X -> Z,
where pi : X x K —>• X is the projection and /] : X —>• X x y is the inclusion. Then
ri = p\fgi\ ~ pi/i = lx- NOW we show that ie : T,QX —> Z is cyclic. Since X is
a T-space.there is a map E : ££2X x X ^ X such that Ej — V(e v 1). Consider
the map F = g(E x 1)(1 x / ) : ES2X x Z ^ Z. Then F / ~ V(ie V l z ) . Thus
/e : E£2X -> Z is cyclic. On the other hand, suppose there is a map r : Z —>• X
which has a right homotopy inverse i : X —> Z and ie : T,QX —»• Z is cyclic. Then
we know that e ~ r(/e) : ES2X —> X is cyclic. Thus X is a T-space.

3. co- T -spaces and cocyclic maps

In this section we introduce a co-T-space which is the dual of a T-space, character-
ize co-T-spaces by the dual Gottlieb groups, and use them to study the relationships
between co-//-spaces, co-T-spaces and G'-spaces. We study some properties of
co-r-spaces. We also define a weakly cocyclic map, and characterize G'-spaces by
these maps. It is known [12] that if A is an //-group, then DG(X, A) is an abelian
subgroup of [X, A]. On the other hand, DG(X, A) is the coevaluation subgroup given
by Haslam [7], when A is a K(Z, n). It is also known [13] that if / : X —*• A is a
cocyclic map and 9 : A ->• B is an arbitrary map, then Of : X -> B is a cocyclic
map. It is easily shown that a co-//-space may be characterized by the dual Gottlieb
set as follows.

PROPOSITION 3.1 [12]. The following are equivalent:

(1) X is a co-H -space ;
(2) lx is cocyclic;
(3) DG(X, A) = [X, A] for any space A.

DEFINITION 3.2. A space X is called a co-T-space if e' : X -»• £2EX is cocyclic.

We show that a co-T-space may be characterized by the dual Gottlieb group as follows;

THEOREM 3.3. The following are equivalent:

(1) X is a co-T-space;
(2) e' : X -> ftSX is cocyclic;
(3) £>G(X, QA) = [X, S2A] for any space A.

PROOF. (1) if and only if (2). This follows from the definition of co-T-space. (2)
implies (3). Let / : X -> QA be a map. From the fact / = Slx-\f)e' : X -»• Q.A
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and e' is cocyclic, we know that / : X —> QA is a cocyclic. (3) implies (2). Take
A = EX. Then e' : X - • QY,X is cocyclic.

It is known [12] that DG(X, QA) is an abelian subgroup of [X, QA] for any space
A. Thus we know, from Theorem 3.3, that if X is a co-T-space, then [X, QA] is
abelian for any space A. Also, Lim showed [12] that DG(X, QA) c DW(X, QA) c
[X, QA], where DW(X, QA) = {a e [X, QA] | [a, P]' = 0 for all p € [X, S2B] for
all B}, and [, ]' is the dual generalized Whitehead product [3]. Thus we obtain the
following corollary.

COROLLARY 3.4. If X is a co-T-space, then all the dual generalized Whitehead
products vanish in X.

Also, it is known [9] that EX is homotopy commutative if and only if [e', e']' = 0.
Thus we know, from Corollary 3.4, that if X is a co-T-space, then EX is homotopy
commutative.

EXAMPLE 3.5. Haslam showed [7] that the real projective space RP2 is a G'-space
but not co-//-space. In fact, he showed that DG(RP2, K(l2, 1)) # [KP2, K(l2, 1)].
Thus we know, from the fact DGiRP2, QK(Z2, 2)) ^ [RP2, QK(12, 2)] and The-
orem 3.3, that RP2 is not a co-r-space.

We can identify Hm(X; n) with [X, K(n, m)], and define the coevaluation sub-
group Gm(X; n) of Hm(X; n) to be the set of all homotopy classes of cocyclic maps
from X to K(n, m). The group Gm(X) = Gm(X; I) is the dual to the evaluation
subgroup Gm(X) of nm(X) considered in [6].

COROLLARY 3.6. IfX is a co-T-space, then Gm(X; n) = Hm(X; n) for all m and

n.

PROOF. Let h : K(jr, m) —»• QK(n, m + 1) be a homotopy equivalence and let
/ : X —*• K{n,m) be a representative of an element of Hm{X; n). Then we have,
from Theorem 3.3, that hf : X —> QK(jr, m + 1) is cocyclic. Since h : K{n, m) ->
QK(n,m + 1) is a homotopy equivalence, / : X —> K(n,m) is cocyclic. This
proves the corollary.

Let R be a ring and set Pm(X; R) = {a e Hm(X; R)\P U a = 0 for all p €
H*(X; /?)}, where p U a denotes the cup product of p and a. It is known [7] that
Gm(X; R) c Pm(X; R) for all m and R. Thus we have the following corollary.

COROLLARY 3.7. IfX is a co-T-space, then all cup products vanish in X.
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DEFINITION 3.8. A based map / : X —*• A is called weakly cocyclic if for any
n > 1 and any map 0 : A —> K(Z,n), Of : X —>• K(I,n) is cocyclic. In fact
/ : X -> A is weakly cocyclic if and only if /*( / /"(A)) C G"(X) for all n > 1.
The set of all homotopy classes of weakly cocyclic maps from X to A is denoted by
WDG(X, A).

Any cocyclic map is a weakly cocyclic map, but the converse does not hold. It
follows from Proposition 3.1 and Example 3.5 that the identity map of RP2 is not
cocyclic. But we easily know, from the fact that RP2 is a G'-space, that the identity
map of RP2 is weakly cocyclic. It is clear that if / : X —> A is an weakly cocyclic
map and 0 : A —»• B is an arbitrary map, then Of : X —>• B is weakly cocyclic.

LEMMA 3.9. Let X be any space. If A is homotopy equivalent to a K(1, n), then
f : X -> A is cocyclic if and only if f : X —>• A is weakly cocyclic.

PROOF. Clearly any cocyclic map is a weakly cocyclic map. Now suppose that
/ : X ->• A is weakly cocyclic. Since A is homotopy equivalent to K(I, n), there
exist maps k : A -*• K{T,n) and h : K(l,n) ->• A such that hk ~ 1. Since
/ : X -> A is weakly cocyclic, kf : X —> K{1, n) is cocyclic. Thus we have that
/ ~ h(kf) : X —> A is cocyclic. This proves the lemma.

THEOREM 3.10. The following are equivalent:

(1) X is a G'-space;
(2) e' : X —> £2EX /s weakly cocyclic;
(3) £>G(X, £2A'(Z,AJ + 1)) = [X, n # ( Z , w + 1)] for all n.

PROOF. (1) implies (2): Since X is a G'-space, the identity map 1 of X is weakly
cocyclic. Thus we have that e' = e'lx : X —> QY,X is weakly cocyclic. (2)
implies (3): Let / : X —>• QK(l,n + 1) be a map. Then we have, from the
fact that / = QT-\f)e' : X ->• QK(1, n + 1) and e' is weakly cocyclic, that
/ : X ->• £2^(2, n + 1) is weakly cocyclic. Let h : K(Z, n) ->• J2#(Z, n + 1) be
a homotopy equivalence. Since h* : WDG(X, A) —»• VKDG(X, fi) is a one-to-one
correspondence, there is a weakly cocyclic map g : X —> K(1, n) such that hg ~ / .
Thus we have, from Lemma 3.9, that g : X —>• ^ ( Z , «) is cocyclic. Since / ~ hg,
f : X -> QK(I,n + 1) is cocyclic. (3) implies (1): Since there is a homotopy
equivalence A : K(l, n) -> £2A:(Z, « + 1), A, : [X, K(l, «)] -^ [X, QK(1, n + 1)]
is a one-to-one correspondence. Thus it follows from the fact that h* : DG(X, A) —>
DG(X, B) is a one-to-one correspondence and the definition of G'-space.

From the above Proposition 3.1, Theorems 3.3 and 3.10, we obtain the relationships
of co-//-spaces, co-r-spaces and G'-spaces as follows.
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COROLLARY 3.11. Any co-H-space is a co-T-space, and any co-T-space is a
G'-space.

It is well-known [13] that if / : X —>• A is cocyclic and i : Y -> X has a left
homotopy inverse, then fi:Y—>Ais cocyclic.

PROPOSITION 3.12. Let X be a co-T-space. If there is a map r : X -> Y which
has a right homotopy inverse i : Y —> X, then Y is a co-T-space.

PROOF. Since e'x : X -> S2EX is cocyclic and e'Yr — (£2'Er)e'x, we have that
e'Yr : X ->• QT,Y is cocyclic. Since i : Y -*• X has a left homotopy inverse r, we
have e',, ~ (e'Yr)i : 7 -> S2EF is cocyclic and F is a co-T-space. This proves the
proposition.

COROLLARY 3.13. A retract of a co-T-space is a co-T-space.

THEOREM 3.14. X V Y is a co-T-space if and only ifX and Y are co-T-spaces.

PROOF. Suppose X V Y is a co-T-space. Let rx = pj : X v Y -» X and
r2 = p2j : X v F - > 7, where j : X v Y -> X x y is the inclusion, /?, : X x y ->• X
and p2 : X x y -> 7 are natural projections. Then rji'i = 1*- and r2ii = ly>
where I'I(JC) = (^, *), /2OO = (*, j ) . It is known [12] that if / : X -> A and
g : y —> B are cocyclic maps, then f v g : X v Y ^ A v B i s cocyclic. Thus we
have that X and Y are co-T-spaces. On the other hand, suppose that X and Y are
co-T-spaces. Let h : E(X v Y) -»• EX v XT be the natural homeomorphism and
/t : ffiXvMF ^ fi(EXvEK)begivenbyA:(w, *) = £2/,(<«),*(*, JJ) = £2/2(»>),
where /, : EX -> EX v E F is given by J'I((JC, 0 ) = «Jt, 0 . *) and i2 : E 7 ->•
EXv£Fisg ivenby/ 2 ( (> ' ,0 ) = (*, (j>0)- Then we have the following commutative
diagram

XvY

e'x V e'r

v

*• S2E(X v Y)

Qh

v S7).

Since e^ v e'y is cocyclic, fi/i^' = k(e'x v e'r) is cocyclic. Since £2/* is homeo-
morphism, f ' : X v y - > f2E(X v F) is cocyclic. This proves the theorem.
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