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Summary

A method for estimating genotypic and identity-by-descent probabilities in complex pedigrees is

described. The method consists of an algorithm for drawing independent genotype samples which

are consistent with the pedigree and observed genotype. The probability distribution function for

samples obtained using the algorithm can be evaluated up to a normalizing constant, and

combined with the likelihood to produce a weight for each sample. Importance sampling is then

used to estimate genotypic and identity-by-descent probabilities. On small but complex pedigrees,

the genotypic probability estimates are demonstrated to be empirically unbiased. On large complex

pedigrees, while the algorithm for obtaining genotype samples is feasible, importance sampling

may require an infeasible number of samples to estimate genotypic probabilities with accuracy.

1. Introduction

The estimation of genotypic probabilities and identity-

by-descent (IBD) probabilities is of interest to geneti-

cists studying both human and animal pedigrees. In

human populations, the gene of interest might be

recessive, with genotypes only observable on indi-

viduals carrying two copies of the deleterious allele. In

livestock populations, undesirable recessive alleles are

also of interest, as are areas of the genome which are

associated with traits of economic importance. In

livestock species, it is increasingly common for the

genotype of some animals in the pedigree to be

determined using a test (genotyping), and the ability

to infer the genotypes of related individuals has the

potential to significantly reduce costs.

Estimates of IBD probabilities are of interest to

geneticists when knowledge of genotypic probability

is insufficient. An example is where no test exists for a

gene of importance but there is a test for a linked

marker. In this case the actual genotype at the marker

locus is not important as, unless there is reason to
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expect linkage disequilibrium, marker genotype does

not determine genotype for the gene of interest.

However, by estimating IBD at the marker locus, IBD

at the gene locus can be inferred, with appropriate

adjustments for recombination.

Inferring genotypic probabilities in complex pedi-

grees (those with marriage or inbreeding loops) is now

a standard procedure using algorithms based on the

method of ‘peeling’ (Elston & Stewart, 1971 ; van

Arendonk et al., 1989; Fernando et al., 1993; Stricker

et al., 1995; Janss et al., 1995b ; Kerr & Kinghorn,

1996). This process is often referred to as segregation

analysis. Peeling can be used to produce unbiased

genotypic probabilities for small complex pedigrees,

but peeling may be infeasible for large complex

pedigrees. In this case the pedigree may be simplified

by cutting loops, or an iterative peeling algorithm may

be used, but some bias may be introduced into

genotypic or IBD probability estimates (Fernando et

al., 1993). Lacking exact methods for large complex

pedigrees, potential biases resulting from the use of

pedigree simplification or iterative peeling are com-

monly ignored.

For very large complex pedigrees with multiple

alleles at each locus, where exact peeling is infeasible,

Markov Chain Monte Carlo (MCMC) approaches

are often advocated (Guo & Thompson, 1994; Janss

et al., 1995a). Many of these MCMC algorithms work
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on sampling in the space of descent graphs. A descent

graph for the locus of interest is a model which

specifies which allele (grandpaternal or grand-

maternal) was inherited by each individual from each

parent. A legal descent graph (LDG) is one which is

consistentwith the observed genotypic data. By linking

all gametes of known allelic type to a base gamete, a

descent graph determines the allelic type of base

gametes. Prior belief about allele frequencies in the

base population can then be used to determine the

likelihood of any particular descent graph (Sobel &

Lange, 1996). For a multilocus descent graph, the

likelihood is also a function of observed and expected

numbers of recombinations between adjacent loci

(Sobel & Lange, 1996).

As a starting point, many MCMC algorithms

require a descent graph which is consistent with the

observed genotypic data (Sobel & Lange, 1996). The

choice of starting LDG may be critical to the success

of the MCMC algorithm because, while it is theoreti-

cally possible for the Markov chain to move from any

legal graph to any other legal graph, in practice some

transitions may be extremely unlikely (Sobel & Lange,

1996). This may prevent the chain from moving from

a local optimum to a far more likely global optimum.

The problem of obtaining a LDG is closely related

to the problem of estimating IBD, and is no easy

matter for a large complex pedigree. The space of

descent graphs is so large, and the proportion of

descent states which are legal so small, that the chance

of arriving at a LDG through the use of simple

methods (such as gene dropping) is negligible.

An iterative, elimination approach was suggested

by Sobel & Lange (1996). The genotype elimination

algorithm of Lange & Goradia (1987) is used to

generate an ordered legal genotype sample (in which

the origin of each allele, maternal or paternal, is

specified). An individual with multiple possible geno-

types is then chosen at random, and a genotype

assigned at random from those feasible. The genotype

elimination algorithm is then applied to the newly

constrained pedigree. This is repeated until all

individuals have only a single legal ordered genotype.

A LDG can easily be derived from the ordered legal

genotype sample.

In the algorithm of Sobel & Lange (1996), a single

genotype is selected from those currently feasible for

the chosen individual at each exclusion step. No

account is taken of the relative genotypic probabilities,

but selecting a genotype of low probability reduces the

chance of the algorithm arriving at a LDG. Heath

(1998) proposed including a peeling step so that the

genotype could be drawn from the approximate

distribution of genotypes.

If it were possible to sample LDGs directly from the

equilibrium distribution of genotypes, then not only

would such samples be ideal for use as starting values

in multi-locus MCMC algorithms, but successive

independent samples could be used to obtain a

description of the equilibrium distribution. Estimating

genotypic probabilities and IBD probabilities using

this method would avoid the problems with biased

estimates due to poor starting values. This approach

was attempted by Henshall et al. (1999), who proposed

the sampling of the origin (grandpaternal or grand-

maternal), or inheritance state, of each gamete instead

of sampling the genotype of an individual as in the

genotype elimination algorithms of Sobel & Lange

(1996) and Heath (1998). The genotype elimination

through inheritance constraint (GEIC) algorithm

(Henshall et al., 1999) also included a weight function,

in an attempt to ensure that the mean of the samples

was an unbiased estimator of genotypic and IBD

probability. Samples were weighted according to the

frequency with which the algorithm was likely to find

them. However, their algorithm failed to account

correctly for the effect of sampling base genotypes,

and was unable to incorporate other than uniform

prior allele frequencies in the base population.

In the GEIC algorithm of Henshall et al. (1999), a

gamete is chosen at random, and a random inheritance

state assigned (unless of course only one inheritance

state is feasible). The consequences of this action are

then explored using the genotype elimination al-

gorithm (Lange & Goradia, 1987), modified to take

account of inheritance state constraints. This process

is repeated until no unconstrained inheritance states

remain. However, with random choice of gametes to

sample, the proportion of infeasible solutions can be

high. Also, the algorithm is slower than necessary,

because it fails to take account of the fact that, for

many gametes, the inheritance constraint chosen is

irrelevant. It is therefore unnecessary to sample

inheritance constraints for all gametes. While it can be

determined in advance that some gametes need never

be sampled, whether or not sampling is required for

other gametes will depend on the sampled inheritance

state of other gametes.

In this article, an improved GEIC algorithm is

proposed. Compared with the original algorithm, the

improved algorithm for sampling descent graphs is

faster and produces fewer infeasible samples. This

allows the algorithm to be used with larger complex

pedigrees. Allelic types for base gametes are then

sampled to produce a descent state sample. The

likelihood of this sample is computed using prior

allele frequencies for the base population. Importance

sampling is then used to produce genotypic and IBD

probability estimates. Thus the improved algorithm

correctly accounts for the sampling of genotypes for

base individuals, and so produces unbiased estimates.

The unbiasedness of the improved method is demon-

strated using small datasets. The method’s ability to

produce legal descent states in large complex pedigrees
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is also demonstrated, and the limitations of im-

portance sampling for such pedigrees discussed.

2. Method and application

(i) The sampling algorithm

At any locus, individuals inherit either a grandpaternal

or a grandmaternal gamete from each parent. There

are two constraints which can apply to a gamete.

Firstly, genotypic information from the individual, or

phenotypic information coupled with a penetrance

function, might restrict its allelic type to a single allele

if the individual is homozygous, to one of two alleles

if the individual is heterozygous, or possibly to a

subset of available alleles via the penetrance function.

We will refer to such gametes as informative gametes.

The second restriction relates to the grandpaternal or

grandmaternal origin, or inheritance state of the

gamete. For some gametes, observed genotypic in-

formation is sufficient to allow the inheritance state to

be determined. These gametes have constrained

inheritance states. The inheritance states of all other

gametes are unconstrained by the genotypie data.

To produce a sample LDG, it is sufficient to

construct a set of paths connecting every informative

gamete in the pedigree to a base gamete, such that

Mendelian inheritance rules are not violated. Each

path will consist of inheritance states which are either

constrained by genotypic data or constrained through

sampling. The inheritance states of uninformative

gametes which do not lie on any of these paths are not

constrained, and can be assigned a random value.

The modified GEIC algorithm to sample a single

LDG and associated genotype sample is as follows (an

example of steps 1 to 7 of the algorithm is shown in

the Appendix) :

1. Construct a list of informative gametes, ordered in

reverse pedigree order (i.e. progeny before parents).

2. Construct a list of feasible ordered genotypes for

each individual, using the genotype elimination

algorithm (Lange & Goradia, 1987).

3. For each informative gamete, construct a path

from the informative gamete to a base gamete by

repeating the following:

(a) If a path already exists from the gamete to a

parent gamete, proceed up the path until a gamete

with an unconstrained inheritance state is found.

(b) If the gamete is a base gamete, proceed to the

next informative gamete.

(c) Otherwise, sample an inheritance state for

the gamete, by eliminating one inheritance state at

random.

(d) Construct a new list of feasible ordered

genotypes for each individual, using the genotype

elimination algorithm, modified to take account of

inheritance constraints. Note that there may be no

valid genotypes for some individuals, in which case

the sample is illegal, and the algorithm has failed.

The sample now consists of a set of constrained

inheritance states connecting informative gametes to

base gametes. This set will be referred to as the

primary descent graph sample.

4. Assign an inheritance state at random to every

non-base gamete which is not in the primary

descent graph sample. These will be referred to as

the secondary descent graph sample.

5. If the sample is legal, each base gamete in the

primary descent graph sample will now be con-

strained to have either a single possible allelic type

or a subset of possible allelic types. Construct a list

of those which have more than one possible allelic

type.

6. Repeat for each base gamete in the list of base

gametes with more than one possible allelic type:

(a) Constrain the allelic type by assigning at

random one of the possible allelic types ; reference

may be made to prior allele frequencies for base

alleles.

(b) Use the genotype elimination algorithm,

modified to take account of inheritance constraints,

to determine the consequences of this constraint.

This may include removing base gametes from the

list to be constrained.

7. Base gametes which are not in the primary descent

graph sample can be sampled according to prior

allele frequencies for base alleles.

8. Drop down through the pedigree, assigning allelic

types to all gametes.

The sampled inheritance states obtained following

step 4 comprise a LDG. With base gametes uniquely

determined (steps 6 and 7) and a LDG, the allelic type

of all gametes in the pedigree is also uniquely

determined, and comprise a legal descent state.

(ii) Probability distribution junction of the samples

As this density will be used in importance sampling it

will be denoted I (x ). With the algorithm described

above, LDGs and states may not be sampled with

equal probability. The variation comes from two

sources. First, when some regions of the space of

descent graphs are illegal, some legal samples may

require fewer elimination steps (steps 3c and 4) than

others. Samples requiring fewer elimination steps are

found more frequently than samples requiring more

elimination steps. Second, when prior allele frequen-

cies for the base population are other than uniform,

steps 6 and 7 introduce variation in the probability of

legal descent states being sampled.

Variation in the number of elimination steps

required to produce a sample can be incorporated in
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Fig. 1. A small pedigree, with alleles a, b, c and d, with
subscripts indicating individual of origin. For this
pedigree, the number of descent graphs consistent with
individual 7 having inherited allele c from individual 4 is
reduced by 1 if individual X is included, while the
number of descent graphs consistent with individual 7
having inherited allele c from individual 2 is unchanged.

the probability distribution function for the sampling

algorithm by noting that the search process is a series

of binary choices between grandpaternal and grand-

maternal inheritance state. Therefore a sample re-

quiring s steps will be found twice as often as a sample

requiring s­1 steps. The probability of finding a

particular descent graph is then proportional to 2−si

where s
i

is the number of steps used in obtaining

descent graph x
i
. Thus

I (x
i
)£ I *(x

i
)¯ 2−si0

ni

j="

p
ij

(1)

where n
i
is the number of implementations of step 6 or

7 in obtaining sample x
i

and p
ij

is the prior allele

frequency for the allele sampled in each of those steps.

(iii) Likelihood of a descent state

The likelihood of a descent state is affected by

sampled and expected allele frequency in the base

population, and, for multilocus descent graphs,

sampled and expected recombination (Sobel & Lange,

1996). This likelihood will be denoted g(x ).

It is important to note that, even for a single locus

pedigree with genotypes observed on all base indi-

viduals, all LDGs (as distinct from descent states)

may not be equally likely. This is demonstrated in the

pedigree in Fig. 1, a simple pedigree with eight gametes

in the base population (individuals 1, 2, 3 and 4),

having alleles a, b, c and d, with subscripts indicating

the base individual of origin. The genotypes given are

unordered; thus for individual 1, allele a
"

could be

either maternal or paternal in origin. Individual 7 can

have inherited either alleles b
"
and c

%
, or alleles b

$
and

c
#
. It is clear that these two possibilities are equally

likely. If we introduce individual X to be a parent of

individual 4, with observed genotype ac, then the

genotypes (b
"
, c

%
(¯ c

X
)) and (b

$
, c

#
) for individual 7

should still be equally likely. However, the number of

LDGs consistent with genotype (b
$
, c

#
) is one more

than the number of LDGs consistent with genotype

(b
"
, c

%
).

In the algorithm described above, variation in the

likelihood of descent graphs is correctly accounted for

in the formula for the sampling distribution of descent

states (equation 1), specifically by the term 0ni

j="
p
ij
.

However, the above example illustrates the importance

of obtaining a descent state sample, even if the

purpose is to estimate IBD probabilities rather than

genotypic probabilities. MCMC descent graph sam-

pling algorithms also need to take account of this

variation in the likelihood of descent graphs; for

example, the algorithm of Sobel & Lange (1996)

requires that lists of ‘ founder tree graphs’ be

maintained for this purpose.

(iv) Calculating IBD and genotypic probabilities

With the method described above, each sampled

descent state has associated with it a value I *(x
i
),

which is proportional to the probability distribution

function I (x
i
), and a likelihood g (x

i
). Importance

sampling can be used to obtain estimates of IBD or

genotypic probabilities. With importance sampling,

an estimate of genotype probability or IBD probability

J= (y) is given by

Jq (y)¯3 f (y rx
i
)w (x

i
)

3w
i

where f (y rx
i
) is the observed genotype or IBD for

sample x
i

and w (x
i
)¯ g (x

i
)}I *(x

i
) is a weight

function (see, for example, Geweke (1989) or Tanner

(1993)). As noted by Geweke (1989), it is not necessary

to normalize the importance sampling density I *(x).

Geweke (1989) provides expressions for the Monte

Carlo standard error of J=(y) and for the number of

effective samples ; however, these are subject to

conditions which may not apply to all pedigrees.

Accordingly, to evaluate the accuracy of sampled

probabilities, the number of effective samples will be

approximated by

m¯ 3w
i

w
max

(2)

where w
max

is the maximum weight observed. This

effective number of samples will be less than the total

number of samples if (g (x
i
)}I (x

i
)) is not constant for

all i.
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Table 1. Pedigree A: for each analysis, genotype was

a�ailable for only four randomly chosen indi�iduals

ID Father Mother Genotype

1 0 0 AD
2 0 0 BD
3 0 0 AC
4 2 1 AB
5 2 3 CD
6 2 4 BB
7 5 4 BC
8 5 3 CC
9 7 6 BC

10 7 8 BC
11 10 9 CC

(v) Test data

Pedigree A was a simulated 11 individual pedigree,

with a number of inbreeding loops. A marker locus

with 4 alleles (A, B, C and D) was simulated, with

genotype assigned to all individuals (Table 1). From

this pedigree, 100 datasets were generated. In each of

these datasets four individuals were randomly chosen

to be ‘genotyped’. The genotypes of the other seven

individuals genotype were treated as unknown.

For datasets from pedigree A, it was possible to

compare the estimated genotypic probabilities with

exact probabilities obtained using the software pack-

age MENDEL (Lange et al., 1988). The accuracy of

the genotypic probability estimates was assessed using

the summary statistic χ#¯3
Ekl1

!

((O
kl
®E

kl
)#}E

kl
),

where k relates to the individual, l is the genotype (e.g.

AA, AB, AC, … ), E
kl

is the expected number of

samples to occur for genotype l in individual k

(calculated from the probabilities obtained using

MENDEL and the effective number of samples) and

O
kl

is the effective number of samples which were

observed for genotype l in individual k. This statistic

has an approximate χ# distribution, with n®11 degrees

of freedom, where n is the number of non-zero E
kl

in

the sum.

Four larger pedigrees were also simulated. Dataset

B is modelled on the simulated pedigrees described by

Heath (1998). Twenty generations were simulated,

with 16 individuals selected to produce 80 offspring

each generation. A 16 allele marker locus was

simulated, with genotype records made available on

the individuals in the first two generations and the last

two generations. Dataset C is similar to dataset B,

differing only in that in each generation 32 individuals

were selected to produce 160 offspring. Datasets D

and E differed from datasets B and C respectively only

in that genotype records were not made available for

the first two generations, that is, genotype records

were only available for individuals in the last two

generations.

3. Results

(i) Small dataset

For datasets from pedigree A with 11 individuals,

10000 LDG samples were obtained using the modified

GEIC algorithm. Prior allele frequencies for alleles A,

B, C and D were assumed to be 0±5, 0±25, 0±2 and 0±05

in the base population. The effective number of

samples ranged from 112 to 10000, with a mean of

2703. The results were compared with exact proba-

bilities obtained using MENDEL (Lange et al., 1988).

Fig. 2 plots the values of the summary statistic against

the degrees of freedom. In only 1% of replicates is the

test statistic significant at the 5% level, if a χ#

distribution is assumed. The results for the worst

replicate, with a test statistic of 61±4, 41 degrees of

freedom and 7562 effective samples, are displayed in

Table 2. For this dataset, genotypes were known for

individuals 2, 3, 5 and 7. Although significant at the

5% level, the genotypic probability estimates in

Table 2 appear sufficiently accurate for most purposes.

(ii) Large datasets

The modified GEIC algorithm described in this article

was used to produce 1000 LDG samples from datasets

B, C, D and E. Table 3 contains the percentage of

legal samples obtained, and lists for comparison the

relevant results published by Heath (1998). For dataset

B, legal samples took on average less than 4 seconds

on a Pentium II 350 MHz computer. This appears to

compare favourably with the 1 to 2 minutes reported

by Heath but, as the computers used differ, no direct

comparison is available.
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Fig. 2. Test statistics obtained from analysis of 100
datasets sampled from pedigree A, with weights applied.
In each analysis, 10000 legal samples were drawn. Also
shown are the 5% and 1% significance thresholds for a
χ# distribution.
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Table 2. Genotypic probability estimates for the worst analysis from pedigree A, with exact probabilities

obtained through peeling in brackets

ID Allele A B C D

1 A 0±173 (0±167) 0±326 (0±333) 0±131 (0±133) 0±036 (0±033)
B – 0±121 (0±125) 0±133 (0±133) 0±034 (0±033)
C – – 0±030 (0±027) 0±013 (0±013)
D – – – 0±003 (0±002)

4 B 0±340 (0±333) 0±328 (0±333) 0±138 (0±133) 0±193 (0±200)

6 B 0±085 (0±083) 0±336 (0±333) 0±037 (0±033) 0±376 (0±383)
D 0±082 (0±083) – 0±033 (0±033) 0±050 (0±050)

8 A – – 0±247 (0±250) 0±249 (0±250)
C – – 0±255 (0±250) 0±249 (0±250)

9 B 0±046 (0±042) 0±298 (0±292) 0±312 (0±308) 0±141 (0±150)
C 0±039 (0±042) – 0±017 (0±017) 0±147 (0±150)

10 B 0±121 (0±125) – – 0±121 (0±125)
C 0±122 (0±125) 0±249 (0±250) 0±259 (0±250) 0±129 (0±125)

11 A 0±005 (0±005) 0±076 (0±078) 0±055 (0±054) 0±021 (0±024)
B – 0±128 (0±135) 0±349 (0±338) 0±104 (0±105)
C – – 0±134 (0±133) 0±112 (0±108)
D – – – 0±017 (0±019)

Genotypes are unordered; rows and columns do not indicate parental origin. There were four alleles in the pedigree A, B,
C and D, with prior probabilities 0±5, 0±25, 0±2 and 0±05 respectively. Estimates for individuals 2, 3, 5 and 7 are omitted as
genotypes are known with certainty to be AB, CD, BB and BC respectively.

Table 3. Percentage of samples drawn which were

legal using the modified GEIC algorithm, for datasets

B, C, D and E. The equi�alent results from Heath

are also shown

Heath’s results

Dataset Method 1 Method 2 Modified GEIC

B 68±5 16±5 99±0
C na na 80±8
D na na 98±9
E na na 79±1

In Heath’s method 1 the individual to be constrained was
chosen to be the individual with the fewest feasible
genotypes, while in Heath’s method 2 the individual to be
constrained was chosen at random.

4. Discussion

When applied to small complex pedigrees, for which

exact genotypic probabilities can be obtained using

peeling, the difference between the exact genotypic

probabilities and those estimated with the modified

GEIC algorithm is statistically significant no more

frequently than would be expected by chance. This

suggests that the LDG samples obtained using the

modified GEIC algorithm are close to the equilibrium

distribution. This should also be the case for larger

pedigrees, provided that the use of importance

sampling remains valid.

With importance sampling, genotypic and IBD

probabilities are estimated as the weighted means of a

number of independent samples. The weights have

two components : the posterior density and the

importance sampling density. It is important that the

importance sampling density mimics the posterior

density for the method to be effective (Geweke, 1989).

For a descent state sampled using the method

described here there are two parts to the importance

sampling density. The first of these, due to variation in

the probability with which a descent graph sample is

found, is determined by the algorithm and the data,

and can potentially diverge significantly from the

posterior density. The second part, due to sampling

base alleles, is chosen to be in accord with the

posterior density.

In practice, as noted by many authors including

Hastings (1970) and Geweke (1989), poor behaviour

occurs when a small number of samples have

associated with them very large weights. For very

large pedigrees, where significant variation in the

number of steps required to obtain a sample can be

expected, there is indeed a risk that the estimates will

be dominated by a small number of samples. This is

exactly what happened when the algorithm was

applied to the larger pedigrees B, C, D and E, for

which the effective number of samples after 1000

samples was less than 2. As there are a finite number

of possible descent graphs for any pedigree, in theory

if the algorithm is left running, sufficient effective

samples will eventually be obtained. However, the
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required number of samples may be very large,

making this approach infeasible. For pedigree B,

increasing the number of samples to 10000 only

changed the number of effective samples to a little

over 2.

As samples are independent, some speedup can be

achieved by running multiple processors in parallel.

Another way of increasing the number of samples

obtained is suggested by noting that the main cost of

the algorithm is in sampling the primary descent

graph. Sampling base genotypes is relatively fast, and

sampling secondary descent graphs is very fast, when

compared with the process of obtaining the primary

descent graph sample. This makes it feasible to obtain

a modest number of base genotype samples and many

secondary descent graph samples for each primary

descent graph sample. However, this does not over-

come the fundamental problem of a small number of

primary descent graph samples having very high

weights associated with them.

A partial solution to the problem of small numbers

of effective samples exists if one is prepared to accept

some potential bias in estimates obtained from the

weighted samples. Inflating the importance sampling

density of the samples with the smallest density

increases the effective number of samples, but may

cause some bias. For example, with the 10000 samples

from pedigree B mentioned above, setting the im-

portance sampling density for the 50 samples with

smallest importance sampling density to the density of

the 51st ranked sample increased the effective number

of samples to 89±5. That is, 9950 samples with correct

weights relative to each other contributed 39±5 to the

effective number of samples, and 50 unweighted

samples contributed another 50 to the effective number

of samples.

The degree of bias introduced through manipulating

the importance sampling density will be pedigree-

dependent. Potential exists to minimize the bias

through the application of algorithms more soph-

isticated than setting a floor on the importance

sampling density as described above. Whether the bias

described here is more significant than the bias caused

by the pedigree simplification or iteration in peeling

algorithms is unknown, and worthy of further

research. For large complex pedigrees, it is also

possible that genotypic and IBD probabilities pro-

duced by MCMC algorithms have poor character-

istics, due to difficulties in traversing the parameter

space. Running multiple chains with different starting

values is of benefit, but if the chains truly do not

communicate, then the sampling density of the starting

values is relevant, and the problems described above

are equally applicable.

Despite the limitations of the algorithm when

applied to the problem of estimating IBD and

genotypic probabilities for large pedigrees, it remains

a fast and efficient method for producing descent

graphs for use as starting values for other algorithms.

The algorithm produces a lower proportion of invalid

solutions for dataset B than reported by Heath (1998),

and appears to be competitive with regard to time per

sample.

5. Conclusion

The modified GEIC algorithm is able to obtain LDG

samples for large and complex pedigrees. For small

pedigrees it has been shown that with importance

sampling, these samples have been drawn from a

distribution which approximates the equilibrium

distribution very well. Where the pedigree size is such

that importance sampling is not effective, then the

algorithm is ideal for producing legal descent graphs

for use as starting values in other algorithms. No

pedigree simplification is required for large complex

pedigrees, and, where feasible, obtaining genotypic

probabilities as the average of a large number of

independent samples is preferable to the MCMC

approach of exploring the space surrounding a small

number of starting values.

Appendix

Using the algorithm to identify a primary descent

graph sample for the population in Table 1, with

genotype known for individuals 1, 5, 6 and 10

Step 1 : A list of informative gametes in reverse order:

10p(B,C), 10m(B,C), 6p(B), 6m(B), 5p(C,D), 5m-

(C,D), 1p(A,D), 1m(A,D) where 10p(B,C) and 10m-

(B,C) are individual 10’s paternal and maternal

gametes, each of which has either allele B or allele C.

Step 2 : A list of feasible ordered genotypes for each

individual, paternal followed by maternal (9 and 11

are ignored as they are not required for the primary

set ; * indicates any allele) :

1 [AD,DA], 2 [BC,CB,BD,DB], 3 [C*,*C,D*,*D],

4 [BA,BD], 5 [CD,DC], 6 [BB], 7 [CA,CD,CB,DB],

8 [C*,DB,DC], 10 [BC,CB].

Step 3 : Link informative gametes to founders. The

sequence of choices for step 3 is shown by the

numbered paths between parents and progeny in

Fig. A1.

Gamete 10p(B,C):

Step 3(c) : Choose 10p to be from 7m. (i)

Step 3(d) : 7 is constrained to [CB,DB], 8 to

[C*,DC] and 10 to [BC].
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p 1 m

D B

p 2

D
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* C

p 3 m

(viii)
(ix)

(v)

(iii)

(vi) p 4 m p 5 m

p 6 m p 7 m

(vii) (ii)

p 8 m

p 10 m

(i) (iv)

Fig. A1. A primary descent graph sample for the
pedigree in Table 1, with genotype known on individuals
1, 5, 6 and 10. Paternal (p) and maternal (m) origin is
indicated, along with the allele (A, B, C, D or
unsampled*) for base individuals. The numerals (i to ix)
relate to the steps of the algorithm, given in the
Appendix.

Step 3(a) : 7m must be from 4p. (ii)

Step 3(c) : Choose 4p to be from 2p. (iii)

Step 3(d) : 2 is now constrained to [BC,BD].

Step 3(b) : Next informative gamete is 10m(C)

Step 3(c) : Choose 10m to be from 8m. (i�)

Step 3(d) : 3 is constrained to [C*,*C], and 8 to

[CC,DC].

Step 3(c) : Choose 8m to be from 3m. (�)

Step 3(d) : 3 is constrained to [*C].

Step 3(b) : Next informative gamete is 6p(B)

Step 3(a) : 6p must be from 2p(B). (�i)

Step 3(b) : Next informative gamete is 6m(B)

Step 3(a) : 6m must be from 4p(B). (�ii)

Step 3(b) : Next informative gamete is 5p(C,D)

Step 3(a) : 5p must be from 2m. (�iii)

Step 3(b) : Next informative gamete is 5m(C,D)

Step 3(c) : Choose 5m to be from 3m(C). (ix)

Step 3(d) : 2 is constrained to [BD], and 5 to [DC].

Now all informative gametes have been linked to

founders.

Step 4 : Not required for primary descent graph.

Step 5 : A list of base gametes with more than one

possible allelic type.

1p(A,D), 1m(A,D)

Step 6 : Choose 1p(A) with consequence 1m(D).

Step 7 : In this descent graph sample, gamete 3p is

unobserved and therefore can be sampled without

checking for consequences.
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