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Abstract

Let {X(s, t) : s, t ≥ 0} be a centred homogeneous Gaussian field with almost surely
continuous sample paths and correlation function r(s, t) = cov(X(s, t), X(0, 0)) such
that r(s, t) = 1 − |s|α1 − |t |α2 + o(|s|α1 + |t |α2 ), s, t → 0,with α1, α2 ∈ (0, 2], and
r(s, t) < 1 for (s, t) �= (0, 0). In this contribution we derive an asymptotic expansion
(as u → ∞) of P(sup(sn1(u),tn2(u))∈[0,x]×[0,y] X(s, t) ≤ u), where n1(u)n2(u) =
u2/α1+2/α2�(u), which holds uniformly for (x, y) ∈ [A, B]2 with A, B two positive
constants and � the survival function of an N(0, 1) random variable. We apply our
findings to the analysis of extremes of homogeneous Gaussian fields over more complex
parameter sets and a ball of random radius. Additionally, we determine the extremal
index of the discretised random field determined by X(s, t).

Keywords: Gaussian random field; supremum; tail asymptoticy; extremal index; Berman
condition; strong dependence
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1. Introduction

One of the seminal results in extreme value theory of Gaussian processes is the asymptotic
behaviour of the distribution of the supremum of a centred stationary Gaussian process
{X(t) : t ≥ 0} with correlation function satisfying

r(t) = cov(X(t), X(0)) = 1 − |t |α + o(|t |α) as t → 0 with α ∈ (0, 2], (1)

over intervals of length proportional to

μ(u) = P

(
sup

t∈[0,1]
X(t) > u

)−1

(1 + o(1));

see, e.g. Leadbetter et al. [1, Theorem 12.3.4], Arendarczyk and Dȩbicki [2, Lemma 4.3], and
Tan and Hashorva [3, Lemma 3.3]. The following theorem gives a preliminary result concerning
the aforementioned asymptotics.
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55

https://doi.org/10.1239/jap/1429282606 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1429282606


56 K. DȨBICKI ET AL.

Theorem 1. Let {X(t) : t ≥ 0} be a centred stationary Gaussian process that satisfies (1), and
let 0 < A < B < ∞ and x > 0 be arbitrary constants. If r(t) log t → r ∈ [0, ∞) as t → ∞,
then

P

(
sup

t∈[0,xμ(u)]
X(t) ≤ u

)
→ E

(
exp

(−x exp(−r + √
2rW)

)) ∈ (0, ∞),

as u → ∞, uniformly for x ∈ [A, B], with W an N(0, 1) random variable (RV).

The main goal of this paper is to derive an analogue of the above result for Gaussian random
fields; see part (i) of Theorem 2 which constitutes a two-dimensional counterpart of Theorem 1.

As an application of our findings, we investigate asymptotics of the tail of the supremum
of a homogeneous Gaussian field over parameter sets that are approximable by simple sets
(part (ii) of Theorem 2) and a ball of random radius. Additionally, we analyse the existence of
the extremal index for discrete-parameter fields associated with homogeneous Gaussian fields
with a covariance structure satisfying some regularity conditions; see Proposition 2.

2. Preliminaries

Let {X(s, t) : s, t ≥ 0} be a centred homogeneous Gaussian field with almost surely (a.s.)
continuous sample paths and correlation function r(s, t) = cov(X(s, t), X(0, 0)) such that

A1: r(s, t) = 1 − |s|α1 − |t |α2 + o(|s|α1 + |t |α2) as s, t → 0 with α1, α2 ∈ (0, 2];
A2: r(s, t) < 1 for (s, t) �= (0, 0);

A3: sup(s,t)∈S(0,d) |r(s, t) log d − r| → 0 as d → ∞ with r ∈ [0, ∞),

where S(0, d) denotes the sphere of centre (0, 0) and radius d > 0 in R
2 with Euclidean metric.

We distinguish two separate families of Gaussian fields:

• weakly dependent fields, satisfying A3 with r = 0,

• strongly dependent fields, satisfying A3 with r ∈ (0, ∞).

Let Hα denote the Pickands’ constant (see [4]), i.e.

Hα := lim
T →∞

E(exp(max0≤t≤T χ(t)))

T
,

where χ(t) = √
2Bα/2(t) − |t |α , with {Bα/2(t) : t ≥ 0} being a fractional Brownian motion

with Hurst parameter 1
2α ∈ (0, 1]. We note in passing that Hα appears for the first time in

Pickands’ theorem [4]; a correct proof of that theorem was first given by Piterbarg [5].
For an N(0, 1) RV W we write �(u) = P(W ≤ u), �(u) = P(W > u). Recall that

�(u) = 1√
2πu

exp

(
−u2

2

)
(1 + o(1)) as u → ∞.

Following Piterbarg [6, Theorem 7.1] we recall that for a centred stationary Gaussian field
{X(s, t)} satisfying A1 and A2, for arbitrary g, h ∈ (0, ∞),

P

(
max

(s,t)∈[0,g]×[0,h] X(s, t) > u

)
= Hα1Hα2ghu2/α1u2/α2�(u)(1 + o(1)) as u → ∞.
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Let m1(u) → ∞ and m2(u) → ∞ be functions such that

m1(u) = a1(u)√
�(u)

and m2(u) = a2(u)√
�(u)

for some positive function a1(u), a2(u) satisfying a1(u)a2(u) = (Hα1Hα2u
2/α1u2/α2)−1,

log a1(u) = o(u2) and log a2(u) = o(u2). We note that

m(u) := m1(u)m2(u) = P

(
max

(s,t)∈[0,1]2
X(s, t) > u

)−1

(1 + o(1)) as u → ∞.

By B(0, x) we denote a ball in R
2 of centre at (0, 0) and radius x.

3. Main results

The aim of this section is to prove a two-dimensional counterpart of Theorem 1. Recall
that W denotes an N(0, 1) RV. For a given Jordan-measurable set E ⊂ R

2 with Lebesgue
measure mes(E) > 0 let Eu := {(x, y) : (x/m1(u), y/m2(u)) ∈ E}. One interesting example is
Eu = [0, xm1(u)]×[0, ym2(u)] for x, y positive, hence, E = [0, x]×[0, y] and mes(E) = xy.
For such Eu we shall show (below) an approximation which holds uniformly on compact
intervals of (0, ∞)2. If the structure of the set is not specified, then for the supremum of a
Gaussian field over some general-measurable set Tu ⊂ R

2, an ε-net (Lε, Uε) approximation
of Tu will be assumed. Specifically, the ε-net (Lε, Uε) here means that for any ε > 0 there
exist two sets Lε and Uε which are simple sets (i.e. finite sums of disjoint rectangles of the
form [a1, b1) × [a2, b2)) such that

lim
ε↓0

mes(Lε) = lim
ε↓0

mes(Uε) = c ∈ (0, ∞) (2)

and

Lε,u =
{
(x, y) :

(
x

m1(u)
,

y

m2(u)

)
∈ Lε

}
⊂ Tu ⊂ Uε,u

=
{
(x, y) :

(
x

m1(u)
,

y

m2(u)

)
∈ Uε

}
⊂ R

2.

Next, we formulate our main results for these two cases.

Theorem 2. Let {X(s, t) : s, t ≥ 0} be a centred homogeneous Gaussian field with covariance
function that satisfies A1, A2, and A3 with r ∈ [0, ∞). Then,

(i) for each 0 < A < B < ∞,

P

(
sup

(s,t)∈[0,xm1(u)]×[0,ym2(u)]
X(s, t) ≤ u

)
→ E

(
exp(−xy exp(−2r + 2

√
rW))

)
as u → ∞, uniformly for (x, y) ∈ [A, B]2.

(ii) for Tu ⊂ R
2, u > 0 such that there exists an ε-net (Lε, Uε) satisfying (2)

P

(
sup

(s,t)∈Tu

X(s, t) ≤ u

)
→ E

(
exp(−c exp(−2r + 2

√
rW))

)
as u → ∞.

The complete proof of Theorem 2 is given in Section 5.1.
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Remark 1. Following the same reasoning as given in the proof of Theorem 2, assuming that
A1–A3 hold, for each 0 < A < B < ∞, we have

P( sup
(s,t)∈B(0,x

√
m(u))

X(s, t) ≤ u) → E
(

exp(−πx2 exp(−2r + 2
√

rW))
)

as u → ∞, uniformly for x ∈ [A, B]; B(0, x) is a ball in R
2 of centre at (0, 0) and radius x.

4. Applications

In this section we apply our main results to the analysis of the asymptotic properties of
supremum of a Gaussian field over a random parameter set and to the analysis of the dependance
structure of homogeneous Gaussian fields.

4.1. Extremes of homogeneous Gaussian fields over a random parameter set

In this section we analyse the asymptotic properties of the tail distribution of

sup
(s,t)∈B(0,T )

X(s, t),

where T is a nonnegative, independent of the X RV. The one-dimensional counterpart of this
problem was recently analysed in [2] and [3].

Proposition 1. Let {X(s, t) : s, t ≥ 0} be a centred homogeneous Gaussian field with
covariance function that satisfies A1–A3 with r ∈ [0, ∞), and let T be an independent of
the X nonnegative RV.

(i) If E(T 2) < ∞, then, as u → ∞,

P

(
sup

(s,t)∈B(0,T )

X(s, t) > u

)
= πE(T 2)Hα1Hα2u

2/α1u2/α2�(u)(1 + o(1)).

(ii) If T has a regularly varying tail distribution at ∞ with index λ ∈ (0, 2), then, as u → ∞,

P

(
sup

(s,t)∈B(0,T )

X(s, t) > u

)
= 2πKP(T >

√
m(u))(1 + o(1)),

where K = ∫ ∞
0 x1−λ

E(exp(−πx2Wr + log Wr ))dx and Wr = exp(2
√

rW − 2r).

(iii) If T has a slowly varying tail distribution at ∞, then, as u → ∞,

P

(
sup

(s,t)∈B(0,T )

X(s, t) > u

)
= P(T >

√
m(u))(1 + o(1)).

The proof of Proposition 1 is given in Section 5.2; for details on regularly varying functions
see the classical monographs [7] and [8].

4.2. Extremal indices for homogeneous Gaussian fields

Following [9], we say that θ ∈ (0, 1] is the extremal index of a homogeneous discrete-
parameter stationary random field {Xj,k : j, k = 1, 2, . . .}, if

P

(
max

j≤an, k≤bn

Xj,k ≤ zn

)
− P(X1,1 ≤ zn)

anbn·θ → 0,

as n → ∞, for each sequence (zn) ⊂ R and all sequences (an), (bn) ⊂ N such that an → ∞
and bn → ∞, as n → ∞, and 1/C ≤ an/bn ≤ C for some fixed arbitrary constant C > 0.
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The notion of extremal index θ originated in the investigations concerning the relationship
between the dependence structure of discrete-parameter stationary sequences of RVs and their
extremal behaviour [1], [10]; see also [11]–[15]. For a given centred homogeneous Gaussian
field {X(s, t) : s, t ≥ 0} that satisfies A1–A3 introduce a discrete-parameter random field
{X̃j,k : j, k = 1, 2, . . .}, with

X̃j,k := sup
(s,t)∈[j−1,j ]×[k−1,k]

X(s, t).

In the following proposition we point out how the difference in the dependance structure between
weakly and strongly dependant Gaussian fields influences the existence of the extremal index
of the associated field {X̃j,k}.
Proposition 2. We assume that A1–A3 hold for a centred homogeneous Gaussian field where
{X(s, t) : s, t ≥ 0}.

(i) If r = 0 then the extremal index of {X̃j,k : j, k = 1, 2, . . .} equals to 1.

(ii) If r > 0 then {X̃j,k : j, k = 1, 2, . . .} does not have an extremal index.

The proof of Proposition 2 is deferred to Section 5.3.

5. Proofs

Before we prove Theorem 2, we need some auxiliary results. Lemma 1 is a two-dimensional
version of Lemma 12.2.11 of [1]. Lemma 2 combines a two-dimensional counterpart of
Lemma 12.3.1 of [1] for weakly dependent fields, and Lemma 3.1 of [3] for strongly dependent
fields. We omit the proofs of the first three lemmas, which are given in the full-length version
of this paper [17].

Lemma 1. Assume that A1 and A2 hold, and q1 = q1(u) = au−2/α1 and q2 = q2(u) =
au−2/α2 for some a > 0. Then, for any x, y ≥ 0, g, h > 0 and rectangle I = (x, y) + [0, g] ×
[0, h], as u → ∞,

P
(
X(jq1, kq2) ≤ u; (jq1, kq2) ∈ I

) − P(X(s, t) ≤ u; (s, t) ∈ I ) ≤ ghρ(a)

m(u)
+ o

(
1

m(u)

)
,

where ρ(a) → 0 as a → 0.

Next, let

ρT (s, t) :=
⎧⎨
⎩

1, 0 ≤ max(|s|, |t |) < 1,

|r(s, t) − r

log T
|, 1 ≤ max(|s|, |t |) ≤ T ,

(3)

�T (s, t) :=

⎧⎪⎨
⎪⎩

|r(s, t)| + (1 − r(s, t))
r

log T
, 0 ≤ max(|s|, |t |) < 1,

r

log T
, 1 ≤ max(|s|, |t |) ≤ T .
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Lemma 2. Let ε > 0 be given. Let q1 = q1(u) = au−2/α1 and q2 = q2(u) = au−2/α2 .
Suppose that T1 = T1(u) ∼ τm1(u) and T2 = T2(u) ∼ τm2(u) for some τ > 0, as u → ∞.
Then, providing that conditions A1, A2, and A3 with r ∈ [0, ∞) are fulfilled,

T1T2

q1q2

∑
C

ρTmax(jq1, kq2) exp

( −u2

1 + max(|r(jq1, kq2)|, �Tmax(jq1, kq2))

)
→ 0

as u → ∞, where Tmax = max(T1, T2) and C = {(jq1, kq2) ∈ [−T1, T1] × [−T2, T2] −
(−ε, ε)2} in the summation.

Lemma 3. Let q1 = q1(u) = au−2/α1 , q2 = q2(u) = au−2/α2 , and suppose that T = T (u) →
∞, as u → ∞. Then, providing that conditions A1 and A2 are fulfilled, there exists ε > 0
such that

m(u)

q1q2

∑
0<max(|jq1|,|kq2|)<ε

[
(1 − r(jq1, kq2))

r

log T

×
(

1 − (
r(jq1, kq2) + (1 − r(jq1, kq2))

r

log T

)2
)−1/2

× exp

(
− u2

1 + r(jq1, kq2) + (1 − r(jq1, kq2))(r/ log T )

)]
→ 0

as u → ∞.

5.1. Proof of Theorem 2

Proof of (i). Let {X(j,k)(s, t)}j,k be independent copies of X(s, t), and let η(s, t) be such
that η(s, t) = X(j,k)(s, t) for (s, t) ∈ [j −1, j)×[k−1, k). For a fixed T we define a Gaussian
random field YT as follows:

YT (s, t) :=
(

1 − r

log T

)1/2

η(s, t) +
(

r

log T

)1/2

W for (s, t) ∈ [0, T ]2,

where W is an N(0, 1) RV independent of η(s, t). Then the covariance of YT equals

cov(YT (s0, t0), YT (s0 + s, t0 + t))

=

⎧⎪⎨
⎪⎩

r(s, t) + (1 − r(s, t))
r

log T
when [s0] = [s0 + s], [t0] = [t0 + t],

r

log T
otherwise,

for all s0, t0, s, t ≥ 0.
Let nx := 
xm1(u)� and ny := 
ym2(u)�. Since

P

(
sup

(s,t)∈[0,nx+1]×[0,ny+1]
X(s, t) ≤ u

)
≤ P

(
sup

(s,t)∈[0,xm1(u)]×[0,ym2(u)]
X(s, t) ≤ u

)

≤ P

(
sup

(s,t)∈[0,nx ]×[0,ny ]
X(s, t) ≤ u

)
,

we focus on the asymptotics of P(sup(s,t)∈[0,nx ]×[0,ny ] X(s, t) ≤ u), as u → ∞. Let ε > 0.
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Divide [0, nx] × [0, ny] into nxny unit squares and then split them into subsets I ∗
l,m and Il,m as

follows,

Il,m = [(l − 1) + ε, l] × [(m − 1) + ε, m], I ∗
l,m = [l − 1, l] × [m − 1, m] − Il,m,

where l = 1, . . . , nx , m = 1, . . . , ny .
Step 1. We prove that

lim
u→∞

∣∣∣∣P
(

sup
(s,t)∈[0,nx ]×[0,ny ]

X(s, t) ≤ u

)
− P

(
sup

(s,t)∈⋃nx
l=1

⋃ny
m=1 Il,m

X(s, t) ≤ u

)∣∣∣∣ ≤ ρ1(ε), (4)

uniformly for (x, y) ∈ [A, B]2 with ρ1(ε) → 0 as ε → 0. This is a consequence of the
following sequence of inequalities:

0 ≤ P

(
sup

(s,t)∈⋃nx
l=1

⋃ny
m=1 Il,m

X(s, t) ≤ u

)
− P

(
sup

(s,t)∈[0,nx ]×[0,ny ]
X(s, t) ≤ u

)

≤ nxnyP

(
sup

(s,t)∈I∗
1,1

X(s, t) > u

)

≤ B2m(u)P

(
sup

(s,t)∈I∗
1,1

X(s, t) > u

)

= (2ε − ε2)B2(1 + o(1)),

as u → ∞, since

P

(
sup

(s,t)∈I∗
1,1

X(s, t) > u

)
= 2ε − ε2

m(u)
(1 + o(1)),

as u → ∞, by [6, Theorem 7.1 ].
Step 2. Let a > 0, q1 = q1(u) := au−α1/2, and q2 = q2(u) := au−α2/2. We show that

lim
u→∞

∣∣∣∣P
(

X(s, t) ≤ u; (s, t) ∈
nx⋃
l=1

ny⋃
m=1

Il,m

)

− P

(
X(jq1, kq2) ≤ u; (jq1, kq2) ∈

nx⋃
l=1

ny⋃
m=1

Il,m

)∣∣∣∣
≤ ρ2(a), (5)

uniformly for (x, y) ∈ [A, B]2, with ρ2(a) → 0 as a → 0. Indeed, (5) follows from the fact
that

0 ≤ P

(
X(s, t) ≤ u; (s, t) ∈

nx⋃
l=1

ny⋃
m=1

Il,m

)

− P

(
X(jq1, kq2) ≤ u; (jq1, kq2) ∈

nx⋃
l=1

ny⋃
m=1

Il,m

)

≤ nxny max
l,m

[
P

(
X(jq1, kq2) ≤ u; (jq1, kq2) ∈ Il,m

)
− P

(
sup

(s,t)∈Il,m

X(s, t) ≤ u

)]
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≤ nxny(1 − ε)2
(

ρ(a)

m(u)
+ o

(
1

m(u)

))
(6)

≤ B2ρ(a) + B2m(u)o

(
1

m(u)

)
→ B2ρ(a)

as u → ∞, with ρ(a) → 0 as a → 0. Inequality (6) is due to Lemma 1.
Step 3. We show that for T = T (u) := max(A∞m1(u), A∞m2(u)) we have

∣∣∣∣P
(

X(jq1, kq2) ≤ u; (jq1, kq2) ∈
nx⋃
l=1

ny⋃
m=1

Il,m

)

− P

(
YT (jq1, kq2) ≤ u; (jq1, kq2) ∈

nx⋃
l=1

ny⋃
m=1

Il,m

)∣∣∣∣
→ 0, (7)

as u → ∞, uniformly for (x, y) ∈ [A, B]2. For sufficiently large T we have∣∣ cov(X(jq1, kq2), X(j ′q1, k
′q2)) − cov(YT (jq1, kq2), YT (j ′q1, k

′q2))
∣∣

≤ ρT ((j − j ′)q1, (k − k′)q2)

and ∣∣ cov(YT (jq1, kq2), YT (j ′q1, k
′q2))

∣∣ ≤ �T ((j − j ′)q1, (k − k′)q2),

for functionsρT and�T defined by (5). Moreover, for small ε > 0 and (jq1, kq2), (j
′q1, k

′q2) ∈
∪nx

l=1 ∪ny

m=1 Il,m satisfying max(|j − j ′|q1, |k − k′|q2) < ε we obtain∣∣ cov(X(jq1, kq2), X(j ′q1, k
′q2)) − cov(YT (jq1, kq2), YT (j ′q1, k

′q2))
∣∣

= (1 − r((j − j ′)q1, (k − k′)q2))
r

log T

and

max(| cov(X(jq1, kq2), X(j ′q1, k
′q2))|, | cov(YT (jq1, kq2), YT (j ′q1, k

′q2)|)
= cov(YT (jq1, kq2), YT (j ′q1, k

′q2))

= r((j − j ′)q1, (k − k′)q2) + (1 − r((j − j ′)q1, (k − k′)q2))
r

log T
.

Let δT = sup{max(|r(s, t)|, �T (s, t)); max(|s|, |t |) ≥ ε. Observe that δT < δ < 1 for
sufficiently large T . Applying [1, Theorem 4.2.1] we obtain

∣∣∣∣ P

(
X(jq1, kq2) ≤ u; (jq1, kq2) ∈

nx⋃
l=1

ny⋃
m=1

Il,m

)

− P

(
YT (jq1, kq2) ≤ u; (jq1, kq2) ∈

⋃
l,m

Il,m

) ∣∣∣∣
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≤ 1

4π

nxny

q1q2

∑
D

[
(1 − r(jq1, kq2))

r

log T

×
(

1 −
(

r(jq1, kq2) + (1 − r(jq1, kq2))
r

log T

)2)−1/2

× exp

(
− u2

1 + r(jq1, kq2) + (1 − r(jq1, kq2))(r/ log T )

)]

+ 1

4π
(1 − δ2)−1/2 nxny

q1q2

∑
E

[
ρT (jq1, kq2)e

−u2/(1+max(|r(jq1,kq2)|,�T (jq1,kq2))

]

≤ 1

4π

B2m(u)

q1q2

∑
F

[
(1 − r(jq1, kq2))

r

log T

×
(

1 −
(

r(jq1, kq2) + (1 − r(jq1, kq2))
r

log T

)2)−1/2

× exp

(
− u2

1 + r(jq1, kq2) + (1 − r(jq1, kq2))(r/ log T )

)]

+ 1

4π
(1 − δ2)−1/2 B2m(u)

q1q2

×
∑
G

[
ρT (jq1, kq2) exp

(
− u2

1 + max(|r(jq1, kq2)|, �T (jq1, kq2))

)]

=: I1 + I2,

where D = {0 < max(|jq1|, |kq2|) < ε}, E = {(jq1, kq2) ∈ [−nx, nx] × [−ny, ny] −
(−ε, ε)2}, F = {0 < max(|jq1|, |kq2|) < ε}, and G = {(jq1, kq2) ∈ [−Bm1(u), Bm1(u)] ×
[−Bm2(u), Bm2(u)] − (−ε, ε)2} in the summations. By Lemma 3, I1 tends to 0 as u → ∞.
Analogously, by Lemma 2, I2 tends to 0 as u → ∞. Hence, we have shown (7).

Step 4. By the definition of the random field YT , we have

P
(
YT (jq1, kq2) ≤ u; (jq1, kq2) ∈

⋃
l,m

Il,m

)

= P

((
1 − r

log T

)1/2

η(jq1, kq2) +
(

r

log T

)1/2

W ≤ u; (jq1, kq2) ∈
⋃
l,m

Il,m

)

= P

((
1 − r

log T

)1/2

sup
(jq1,kq2)∈⋃

l,m Il,m

η(jq1, kq2) +
(

r

log T

)1/2

W ≤ u

)

=
∫ ∞

−∞
P

(
sup

(jq1,kq2)∈⋃
l,m Il,m

η(jq1, kq2) ≤ u − (r/ log T )1/2z

(1 − r/ log T )1/2

)
d�(z). (8)

Then, for any z ∈ R,

uz := u − (r/ log T )1/2z

(1 − r/ log T )1/2 = u + −2
√

rz + 2r

u
+ o

(
1

u

)
as u → ∞,
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and, thus,
1

m(uz)
= exp(−2r + 2

√
rz)

m(u)
(1 + o(1)).

Hence, we obtain

P

(
sup

(jq1,kq2)∈⋃
l,m Il,m

η(jq1, kq2) ≤ uz

)
=

∏
l,m

P

(
sup

(jq1,kq2)∈Il,m

X(jq1, kq2) ≤ uz

)

= P

(
sup

(s,t)∈[0,1]2
X(s, t) ≤ uz

)nxny

(1 + o(1))

=
(

1 − 1

m(uz)

)xym(u)

(1 + o(1))

= exp(−xy exp(−2r + 2
√

rz))(1 + o(1)), (9)

as u → ∞, uniformly for (x, y) ∈ [A, A∞]2. Combining (4), (5), (7), (8), and (9), and passing
with ε → 0 and a → 0, we conclude that the proof of (i) is complete.

Proof of (ii). Following line by line the same argument as given in the proof of part (i) of
Theorem 2, the assumption of the existence of the ε-net (Lε, Uε) implies that

P

(
sup

(s,t)∈Lε,u

X(s, t) ≤ u

)
→ E

(
exp(−mes(Lε) exp(−2r + 2

√
rW))

)
and

P

(
sup

(s,t)∈Uε,u

X(s, t) ≤ u

)
→ E

(
exp(−mes(Uε) exp(−2r + 2

√
rW))

)
,

as u → ∞. Thus,

P

(
sup

(s,t)∈Tu

X(s, t) ≤ u

)
→ E

(
exp(−c exp(−2r + 2

√
rW))

)
as u → ∞.

5.2. Proof of Proposition 1

Since the proof of Proposition 1 is analogous to the proofs of Theorems 3.1–3.3 of [2], see
also Theorem A of [3], we focus only on the arguments for (ii).

Let 0 < A < B. We have

P

(
sup

(s,t)∈B(0,T )

X(s, t) > u

)
=

∫ A
√

m(u)

0
P

(
sup

(s,t)∈B(0,x)

X(s, t) > u

)
dFT (x)

+
∫ B

√
m(u)

A
√

m(u)

P

(
sup

(s,t)∈B(0,x)

X(s, t) > u

)
dFT (x)

+
∫ ∞

B
√

m(u)

P

(
sup

(s,t)∈B(0,x)

X(s, t) > u

)
dFT (x)

= I1 + I2 + I3.
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Then, for each ε > 0, due to Remark 1, for sufficiently large u, with Wr = exp(2
√

rW − 2r),
we obtain

I2 ≤ (1 + ε)

∫ B

A

(1 − E
(
exp(−πx2Wr )

)
dFT

(
x
√

m(u)
)

= (1 + ε)

∫ B

A

2πxE
(
exp(−πx2Wr + log Wr )

)
P
(
T > x

√
m(u)

)
dx

− (1 + ε)
(
1 − E

(
exp

(−πB2Wr

)))
P
(
T > B

√
m(u)

)
+ (1 + ε)

(
1 − E

(
exp

(−πA2Wr

)))
P
(
T > A

√
m(u)

)
.

Hence, using the fact that T has a regularly varying tail distribution,

lim sup
u→∞

I2

P
(
T >

√
m(u)

) ≤ (1 + ε)2π

∫ B

A

x1−λ
E

(
exp

(−πx2Wr + log Wr

))
dx

− (1 + ε)
(
1 − E

(
exp

(−πB2Wr

)))
B−λ

+ (1 + ε)
(
1 − E

(
exp

(−πA2Wr

)))
A−λ.

In an analogous way it follows that

lim inf
u→∞

I2

P
(
T >

√
m(u)

) ≥ (1 − ε)2π

∫ B

A

x1−λ
E

(
exp

(−πx2Wr + log Wr

))
dx

− (1 − ε)
(
1 − E

(
exp

(−πB2Wr

)))
B−λ

+ (1 − ε)
(
1 − E

(
exp

(−πA2Wr

)))
A−λ.

Then, following the same argument as in the proof of Theorem 3.2 of [2], we conclude that
I1 + I3 = o(P(T >

√
m(u))) as u → ∞. Now, passing with A → 0, B → ∞, and ε → 0

yields

I2 = 2π

∫ ∞

0
x1−λ

E
(

exp(−πx2Wr + log Wr )
)
dxP

(
T >

√
m(u))(1+o(1)

)
, ≥ u → ∞.

5.3. Proof of Proposition 2

Proof of (i). Assume that A3 is satisfied with r = 0. Then, by the definition of {X̃j,k}, it
suffices to show that for the original Gaussian field {X(s, t) : s, t ≥ 0},

P

(
sup

(s,t)∈[0,f (u)]×[0,g(u)]
X(s, t) ≤ z(u)

)
− P

(
sup

(s,t)∈[0,1]2
X(s, t) ≤ z(u)

)f (u)g(u)

→ 0, (10)

as u → ∞, for each function z : R+ → R and all pairs of functions f, g : R+ → R+ such that
f (u) → ∞ and g(u) → ∞, as u → ∞, and 1/C ≤ f (u)/g(u) ≤ C for some fixed arbitrary
constant C > 0. Observe that it suffices to consider two cases: continuous z(u) ↗ ∞, as
u → ∞, and z(u) < C < ∞. We focus on the first case and suppose that z(u) increases to
infinity. Then (10) is equivalent to

P

(
sup

(s,t)∈[0,f ∗(u)]×[0,g∗(u)]
X(s, t) ≤ u

)
− P

(
sup

(s,t)∈[0,1]2
X(s, t) ≤ u

)f ∗(u)g∗(u)

→ 0,

as u → ∞, with z−1 being the inverse function for z and f ∗(u) := f (z−1(u)), g∗(u) :=
g(z−1(u)).
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By (i) of Theorem 2,

P

(
sup

(s,t)∈[0,x
√

m(u)]×[0,y
√

m(u)]
X(s, t) ≤ u

)
→ e−xy, (11)

as u → ∞, uniformly for (x, y) ∈ F (C) := {
(s, t) ∈ R

2+ : 1/C ≤ s/t ≤ C
} ∪ {0, 0}, for

C > 0.
Moreover, the uniform convergence

P

(
sup

(s,t)∈[0,1]2
X(s, t) ≤ u

)xy·m(u)

→ e−xy (12)

occurs on the set F (C).
Let f̄ (u) := f (z−1(u))/

√
m(u) and ḡ(u) := g(z−1(u))/

√
m(u). The fundamental obs-

ervation is that it is sufficient to prove (10) for f (u) and g(u) satisfying the additional assump-
tion: f̄ (u) → a ∈ [0, ∞] and ḡ(u) → b ∈ [0, ∞], as u → ∞.

Note that 1/C ≤ f (u)/g(u) ≤ C implies that 1/C ≤ f̄ (u)/ḡ(u) ≤ C. Since the
convergence in (11) is uniform, we obtain

P

(
sup

(s,t)∈[0,f ∗(u)]×[0,g∗(u)]
X(s, t) ≤ u

)
= P

(
sup

(s,t)∈[0,f̄ (u)
√

m(u)]×[0,ḡ(u)
√

m(u)]
X(s, t) ≤ u

)

→ e−ab

as u → ∞. On the other hand, by (12),

P

(
sup

(s,t)∈[0,1]2
X(s, t) ≤ u

)f ∗(u)g∗(u)

= P

(
sup

(s,t)∈[0,1]2
X(s, t) ≤ u

)f̄ (u)ḡ(u)·m(u)

→ e−ab,

as u → ∞, which gives (10).

Proof of (ii). Let us consider the case where r > 0. Note that for Wr = exp(2
√

rW − 2r)

it holds that

var
(
exp(−Wr )

) = E
(
exp

(−2Wr

)) − E
(

exp
(−Wr

))2

= P

(
max

j≤2
√m(u)�,k≤
√m(u)�
X̃j,k ≤ u

)
− P

(
max

j,k≤
√m(u)�
X̃j,k ≤ u

)2

+ o(1),

due to Theorem 2. By contradiction, assume that the extremal index exists and equals θ ∈ (0, 1].
Then for any sequence (zn) ⊂ R we have

P

(
max

j≤
2
√

m(zn)�,k≤
√m(zn)�
X̃j,k ≤ zn

)
− P

(
max

j,k≤
√m(zn)�
X̃j,k ≤ zn

)2

=
(

P

(
max

j≤2
√m(zn)�,k≤
√m(zn)�
X̃j,k ≤ zn

)
− P

(
X̃1,1 ≤ zn

)2m(zn)·θ)

−
(

P

(
max

j,k≤
√m(zn)�
X̃j,k ≤ zn

)2

−
(
P

(
X̃1,1 ≤ zn

)m(zn)·θ)2
)

= o(1)

as n → ∞, which implies that var(exp(−Wr )) = 0. Since r > 0 and W is an N(0, 1) RV we
obtain a contradiction.
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