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CATEGORICAL SEMANTICS OFMETRIC SPACES

AND CONTINUOUS LOGIC

SIMON CHO

Abstract. Using the category of metric spaces as a template, we develop a metric analogue of the

categorical semantics of classical/intuitionistic logic, and show that the natural notion of predicate in this

“continuous semantics” is equivalent to the a priori separate notion of predicate in continuous logic, a logic

which is independently well-studied by model theorists and which finds various applications. We show this

equivalence by exhibiting the real interval [0, 1] in the category of metric spaces as a “continuous subobject

classifier” giving a correspondence not only between the two notions of predicate, but also between the

natural notion of quantification in the continuous semantics and the existing notion of quantification in

continuous logic.

Along the way, we formulate what it means for a given category to behave like the category of metric

spaces, and afterwards show that any such category supports the aforementioned continuous semantics.

As an application, we show that categories of presheaves of metric spaces are examples of such, and in fact

even possess continuous subobject classifiers.

§1. Introduction. In categorical semantics of classical or intuitionistic logic, if the
interpreting category is sufficiently nice then one has a subobject classifier, which is
an object Ω with a monomorphism ⊤ : 1 →֒Ω such that for every object X, there is
a natural correspondence between maps f :X →Ω and monomorphisms i :A →֒X ,
obtained by pulling back ⊤ across f as below:

A 1

X Ω

i
y

⊤

f

in particular yielding a well-behaved notion of characteristic function.
Having a subobject classifier is an important part of the categorical perspective

on sets as the premier model of classical logic. Now the fact that sets are the “best”
model of this logic is something that, for example, model theorists feel “in their gut”
without having to refer to the categorical viewpoint; but this latter viewpoint has
been valuable in identifying the underlying structure that allows categories such as
(but not limited to) that of sets to interpret classical logic to various degrees, see,
for example, [7, 8, 10].
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CATEGORICAL SEMANTICS OF METRIC SPACES AND CONTINUOUS LOGIC 1045

On the other hand, continuous logic is a metric analogue of the usual logic; models
of continuous logic are metric spaces, and the equality predicate is now replaced
with a distance function. Strikingly, most model theoretic concepts have a well-
behaved continuous analogue—see [15] for a detailed reference. Due to its richness,
continuous logic is catalyzing an ongoing flurry of activity that is seeing to both the
rapid development of the subject itself [13, 14] and also applications to, for example,
operator algebras [4, 5] or proof mining [1, 3].
Just as with classical logic and the category of sets, we might ask for a category

theoretic reason that metric spaces exhibit such rich logical structure. We examine
the category of metric spaces with this question in mind; after some preliminaries in
Section 2, we identify relevant features of the category of metric spaces and use them
to develop a “categorical semantics of metric spaces” in Section 3. One fruit of this
approach is that we are able to identify a natural and general notion of “continuous
subobject”, and show that the real (unit) interval in the category of metric spaces—
the object of truth values of continuous logic—is a “continuous subobject classifier”,
in the sense that maps into the real interval naturally correspond via pullback to
continuous subobjects.
Now in continuous logic, predicates on a space X are just maps from X into the

real interval, that is, they are continuous real-valued features of (points in) the space
X. The result of Section 3 shows that using continuous subobjects ofX works equally
well; indeed,maps into the real interval are exactly just the characteristic functions of
these continuous subobjects. One practical advantage of the continuous subobjects
approach is that we are able to make sense of this idea of “continuous real-valued
feature” in other categories where theremight not be an obvious “object of real truth
values”. In particular, we are able to apply the machinery we develop in Section 3
without modification in Section 4 to the category of presheaves of metric spaces,
automatically making sense of the notion of “metric” and “continuous subobject”
in this more general setting. Using this we show that the category of presheaves
of metric spaces possesses a continuous subobject classifier, and therefore has a
well-behaved notion of characteristic function for continuous real-valued features
of presheaves of metric spaces.
The author is indebted to Andreas Blass for helpful discussions and suggestions.

§2. Preliminaries.

2.1. The basic model. We work in the category pMetu1 of diameter ≤ 1
pseudometric spaces (metric spaces whose distances can be 0 for distinct points)
and uniformly continuous maps. A comprehensive reference for such spaces is [2].
We allow these slightly more general spaces for technical convenience, and we work
with uniformly continuous maps because they are the maps in continuous logic. (We
will simply call these metric spaces.)
Essentially all that follows works equally well for the categories pMetL1 (resp.

pMet11), which have the same objects as pMet
u
1 but with only Lipschitz (resp. 1-

Lipschitz) maps between them. Moreover, we may even remove the requirement
that the diameter of our spaces be bounded, as long as we take the appropriate
corresponding quantale to be (R≥0,+,0) instead of ([0,1],+,0) (refer to Section 3
of this paper).
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1046 SIMON CHO

Keeping in mind this flexibility in our choice of variants of metric spaces, let us
simply write pMet even though we are ostensibly working in pMetu1, to emphasize
the fact that all of our analysis goes through essentially unchanged for the other
variants. That is, strictly speaking we work with the choice pMet = pMetu1, but
whenever pMetu1 is not explicitly mentioned then it is fine to choose pMet= pMet

L
1

or pMet= pMet11 instead. In the few places where this is not the case, we will say so
explicitly.

2.2. Categorical semantics. We briefly recall some of the structure required of a
category to support an interpretation of first order logic. A standard reference is,
for example, [7].
Given an object X ∈ C, recall that a subobject of X is an appropriate equivalence

class of monomorphisms intoX. These objects form a poset category SubmX which
can be seen as a skeleton of the full subcategory of C/X on the monomorphisms
with codomain X.
Furthermore, if C has pullbacks, then (since pullbacks preserve monomorphisms

and the equivalence relation mentioned above) any morphism f : X → Y induces
via pullback a functor f ∗ : SubmY → SubmX .
On the other hand, wemight ask for a well-behaved notion of image ofmorphisms

f : X → Y , so that any such morphism has a (necessarily unique, up to unique
isomorphism) factorization f =me where m is the “smallest” mono through which
f factors, in the sense that for any other factorization f = m′e′ with m′ monic, we
have a commutative diagram

X ·

· Y

e

e′ m

m′

where the dotted diagonal is necessarily both monic and unique. We say that C has
images when every morphism f has a factorization as above.

Definition 1.

1. A category C is called regular when it has finite limits and images, and pulling
back across morphisms preserves images.

2. A regular category C is called geometric when for each X ∈ C, SubmX is a
small-complete lattice (i.e., has all small joins and meets) and pulling back
across any f : X → Y preserves this structure.

In the definition above we can ignore issues of size (i.e., replace “small-complete”
with “complete”) if we assume that the objects of SubmX form an honest set. This
is referred to as wellpoweredness in the literature, and in practice this is not an overly
stringent condition.
The importance of the above structures lies in the fact that they conveniently

describe sufficient conditions for a category to interpret first order logic, in which
“predicates of type X” are interpreted as “subobjects of X”.
The problem is that subobjects tend to be poorly behaved in topologically

flavored categories like pMet; there are easy examples of X ∈ pMet with many
inequivalent subobjects which nevertheless should represent the same subspace.

https://doi.org/10.1017/jsl.2020.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.44


CATEGORICAL SEMANTICS OF METRIC SPACES AND CONTINUOUS LOGIC 1047

We may circumvent this problem by passing to a variation of the “monomorphisms
are subobjects” viewpoint, by considering regular monomorphisms as subobjects.
The precise modifications required for this are well-known, but for completeness’
sake we record them below.

Definition 2. A regular monomorphism in a category C is a monomorphism
which occurs as the equalizer of some parallel pair of morphisms.

In exceedingly nice categories such as Set, all monomorphisms are regular. The
facts below support the idea that regular monomorphisms give the correct notion
of subobject in pMet.

Lemma 3.

1. The monomorphisms in pMet are precisely the maps which are injective as
functions.

2. The epimorphisms in pMet are precisely the maps which are surjective as
functions.

Proof. That injective (resp. surjective) implies monic (resp. epi) is obvious. For
the other directions, notice that ifm :A→X fails to be injective, then maps from the
one-point space into A witness the failure of m to be monic. Similarly, if e : E→ B
fails to be surjective, then maps from B into the space of two points at distance 0
witness the failure of e to be epi. ⊣

Let us call two monos m1 : A1 → X and m2 : A2 → X equivalent when they are
isomorphic as objects of the slice category pMet/X . In light of the characterization
of regular monos in terms of slice categories, we see that ifm1 andm2 are equivalent
then m1 is regular iff m2 is.

Proposition 4. A mono m :A→X in pMet is regular if and only if it is equivalent
to an isometric embedding.

Proof. To prove the left-to-right direction, we start by showing that for any

parallel pair of maps X Y
f

g
there is an isometric embedding i : A→ X

giving an equalizer to the pair f ,g.
Let A ⊆ X have the set of points {x ∈ X | f (x) = g(x)}, and let the metric on

A be the restriction of the metric on X. Clearly the inclusion i : A→ X , which is
an isometric embedding, is an equalizer for f and g. Note that any other mono
m : A′→ X occurring as an equalizer for f ,g must be equivalent to i.
Now given any regular mono m which equalizes some parallel pair f ,g, by the

above we can find an isometric embedding i also equalizing f ,g, therefore showing
that m is equivalent to an isometric embedding.
For the right-to-left direction, let i : A→ X be an isometric embedding, that is,

an inclusion A ⊆ X . Let Y be the space with two points at distance 0 from each
other, and label them a,b. Define f : X → Y to be f (x) = a for all x ∈ X , and
define g : X → Y to be g(x) = a iff x ∈ A, and g(x) = b otherwise. Clearly i must
be an equalizer for f ,g, so that any mono equivalent to i must also be an equalizer
for f ,g. ⊣
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Henceforth, any time we speak of “subobject” we mean the equivalence classes
defined above of regular monomorphisms:

Definition 5. Let C be a category.

1. Given X ∈ C:
(a) Let S̃ubX denote the full subcategory of C/X on the regular monomor-
phisms of C with codomain X.

(b) Let SubX denote the (necessarily posetal) category whose objects consist
of isomorphism classes of objects of S̃ubX , and whose morphisms are the
induced equivalence classes of morphisms in S̃ubX . Equivalently, SubX
is any skeleton of S̃ubX . By a subobject of X we mean an object of SubX .

2. Given f :X →Y , we say that i : f (X)→Y is the r-image of f when i is a regular
mono factoring f = ie such that for any other factorization f = me′ with m a
regular mono, we have a commutative diagram

X ·

· Y

e

e′
∃! i

m

We say that C has r-imageswhen everymorphism f has a factorization as above.

As was the case with monomorphisms, it is an easy fact that regular monos are
preserved under pullback. Therefore, any f : X → Y induces a pullback functor
f ∗ : SubY → SubX .
We make the following definition:

Definition 6.

1. A category C is called r-regular when it satisfies the following:
(a) C has finite limits;
(b) C has r-images;
(c) Pulling back across morphisms in C preserves r-images;
(d) The composition of two regular monomorphisms in C is again a regular
monomorphism in C.

2. An r-regular category C is called r-geometric when for each X ∈ C, SubX is
a small-complete lattice and pulling back across any f : X → Y preserves this
structure.

We assume that our categories are r-wellpowered, which is to say that for each
X ∈ C the objects of SubX form a set instead of a proper class.
As is the case with regular and geometric categories, r-regular and r-geometric

categories automatically yield the following structure:

Proposition 7. Let C be a category.

1. If C is r-regular, the following hold:
(a) For each f : X → Y, the pullback functor f ∗ : SubY → SubX has a left
adjoint ∃f : SubX → SubY.

(b) ∃f (A∧ f
∗B) = ∃fA∧B for each A ∈ SubX and B ∈ SubY.
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(c) Given a commutative square

X Y

W Z

f

h g

k

,

the induced square

SubY SubX

SubZ SubW

f ∗

∃g ∃h

k∗

commutes.
2. If in addition C is r-geometric, then the following hold:
(a) For each f : X → Y, the pullback functor f ∗ : SubY → SubX also has a
right adjoint ∀f : SubX → SubY.

(b) For each X ∈ C and A ∈ SubX, the “meet-with-A” functor A∧ –: SubX →
SubX has a right adjoint A⇒–: SubX → SubX (“Heyting implication”)
which is contravariant in A.

Proof. The proofs of (1a) and (1b) are essentially the same as for regular
categories, and can be found in for example, A1.3 of [7]. (1c) follows easily by
pullback stability of r-images.
(2a) is an easy consequence of the definition of r-geometric category and the

adjoint functor theorem. The construction that gives (2b) is found in, for example,
1.7 of [6]. ⊣

In particular, the above imply that for an r-geometric category C withX ∈ C, finite
meets in SubX commute with arbitrary joins.
The structures/results described in Proposition 7 above are important features

of categorical semantics of usual first order logic, as described in, for example,
[7, 8]. The point emphasized by Proposition 7 is that, just as well as geometric
categories, r-geometric categories support the interpretation of first order logic,
where we interpret predicates to be regular subobjects. Later in this paper we will
have occasion to study the adjoints given by (1a) and (2a) of Proposition 7.

2.3. Categorical semantics in pMet. The relevance for us of the preceding
exposition of r-geometric categories is that pMet is an example of such. As a point of
terminology, whenever wemention “modulus of continuity” it should be understood
that we are referring to a modulus of uniform continuity.
We first establish the following lemma:

Lemma 8. pMet has finite limits.
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Proof. pMet clearly has a terminal object, so it suffices to show that it has
pullbacks. Given a diagram

B

X Y

j

f
(1)

there is a set-theoretic pullback X ×Y B, which we take to be the set of points of a
spaceA. All the points ofA are thus uniquely of the form (x,b) for x ∈X and b ∈ B;
we take the distance between (x1,b1) and (x2,b2) to be max

(
dX (x1,x2),dB(b1,b2)).

There are evidentmaps i :A→X and h :A→B given by i : (x,b) 7→ x and h : (x,b) 7→
b. It is easily verified that this is the required pullback. ⊣

Remark 9. In case j in the diagram (1) is an isometric embedding, there is a
choice of pullback

A B

X Y

h

i
y

j

f

such that i is also an isometric embedding; let the points of A be the same as before,
but take the distance between (x1,b1) and (x2,b2) to be dX (x1,x2) (one can check
that the resulting space is isomorphic to the one constructed above). We still have
the maps i : A→ X and h : A→ B, where we can take the modulus of continuity of
h to be the same as that of f.

The below lemma shows that regular monos are closed under composition in
pMet (which is trivial to verify for pMet11, since isomorphisms are isometries there).

Lemma 10. Let l,m be composable regular monos in pMet, that is, the domain of
m and the codomain of l are the same. Then their composition ml is again a regular
mono in pMet.

Proof. Proposition 4 gives us that both l and m are equivalent (in the sense
of the paragraph preceding Proposition 4) to isometric embeddings, giving us the
following commutative diagram:

A Y

· X ·

l′ m′f

l

g

m
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where f ,g are isomorphisms and l′,m′ are isometric embeddings. We now construct
a space B, with an isomorphism g′ : A→ B and an isometric embedding k : B→ Y
which extends the previous diagram to the following commutative diagram:

B

A Y

· X ·

k

l′

g′

m′f

l

g

m

which would then exhibitml as equivalent (via g′f ) to an isometric embeddingm′k,
therefore a regular mono.
Since l′ :A→X is an isometric embedding we may considerA to be a subspace of

X, with l′ being the inclusion. LetB be the image of the restriction g |A of g toA⊆X .
Clearly, since B is a subspace of Y, there is an isometric embedding (the inclusion)
k : B → Y . Moreover the isomorphism g : X → Y restricts to an isomorphism
g′ :A→ B, since B is the image of the restriction of g to A. By construction we have
that gl′ = kg′. ⊣

Proposition 11. pMet is an r-geometric category.

Proof. Since regular monos are (without loss of generality) isometric embed-
dings in pMet, r-images are just the images—in the traditional sense—of functions
between spaces. If f = ie is an r-image factorization of a map f : X → Y , then we
must show that for any map g : Z→ Y , the map g∗i in the following diagram

g∗X X

· ·

Z Y

g∗e e

g∗i i

g

is an r-image for g∗f .
Now the proof of Lemma 8 (or the existence of an obvious forgetful functor

pMet→ Set) shows that pullbacks in pMet agree with the underlying pullbacks in
Set. Therefore g∗i at least has the correct underlying set. But pullbacks preserve the
property of being a regular mono, so g∗i is (equivalent to) an isometric embedding.
This is enough to conclude that g∗f = (g∗i)(g∗e) is an r-image factorization.
Moreover, Lemma 10 shows that regular monos are closed under composition.
In this way, pMet inherits the regular category structure of Set as an r-regular
category structure.
Proposition 4 gives us that for each X ∈ pMet, SubX is naturally isomorphic to

the powerset of the underlying set ofX, so pMet automatically inherits the geometric
category structure of Set as an r-geometric category structure. ⊣
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Henceforth when we refer to the image of a map f : X → Y in pMet we mean
the r-image of f, which coincides with what is traditionally meant by “image of a
map”.
In the case of pMet, we have the following explicit descriptions of the adjoints to

the pullback functor referred to in Proposition 7:
Given f : X → Y ,

1. The left adjoint ∃f : SubX→ SubY to the pullback functor f
∗ takesA∈ SubX

to ∃fA ∈ SubY , where ∃fA has the set of points given by the image of f.
Functoriality of ∃f is immediate.

2. The right adjoint ∀f : SubX → SubY takes A ∈ SubX to ∀fA ∈ SubY , where

∀fA is {y ∈ Y | A contains all x for which f (x) = y }. Again, functoriality of
∀f is immediate.

It is straightforward to verify that the above indeed give left and right adjoints
to f ∗.
That these constructions are the same as in the category of sets is not coincidence;

since pMet directly inherits its r-geometric structure from the geometric structure
of Set, we should expect the various logical operations that may involve (strong)
subobjects of spaces X ∈ pMet should agree with those same operations performed
on the subobjects of the underlying sets of those spaces.

§3. Indexed subobjects as predicates of continuous logic. Wecontinue investigating
the categorical properties of pMet, with the intermediate goal of showing that pMet
possesses a “continuous subobject classifier”, where by “continuous subobject”
we mean a real-valued predicate satisfying appropriate continuity conditions. The
motivation for our specific approach in this section is as follows.
Lawvere’s insights in [9] made concrete the idea that the notion of distance

is an immediate generalization of the equality predicate to the setting of [0,1]-
valued logic (thinking of 0 as “true” and 1 as “false”), where, for example, the
triangle inequality is the transitivity of equality. Specifically, monoidal categories
(V ,⊗,unit) may be thought of as giving either truth values for the equality predicate
in appropriate corresponding logics, or values for appropriate notions of distance.
From this perspective,V-categories, that is, categorieswhose hom-objects are objects
of V , are “metric spaces” with distances valued in V , where the objects of the V-
category are points and the hom-objects between them are distances; equivalently,
the “degree of equality” between two objects in a V-category is given by their hom-
object. The monoidal product of V—which governs composition of hom-objects
in V-categories—thus gives the notion of composition of “distance” or “equality”.
This perspective concretely manifests as the following.
Depending on the choice of V , these V-categories are actual metric spaces

(if V = R≥0 or I; see below), where:

◦ distance/equality is real-valued;
◦ with composition given by (truncated, if V = I) addition;
◦ the composition axioms for V-categories yield the triangle inequality;

or simply just sets (if V = 2; see below), where

◦ distance/equality is {0,1}-valued;
◦ with composition given by conjunction;
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CATEGORICAL SEMANTICS OF METRIC SPACES AND CONTINUOUS LOGIC 1053

◦ the composition axioms for V-categories yield transitivity of equality.

The prototypical example of a monoidal category relevant to logic is (2,max,0),
where 2 is the poset category 0← 1, and we think of 0 as “true” and 1 as “false”
because we think of these as values for the “distance”, that is, equality predicate.
(This notational convention, while sensible from our “metric” perspective, suffers
the unfortunate side effect that 0 is the terminal object and 1 is the initial object.) As
mentioned above, 2-categories are essentially just sets, and the corresponding logic
is the usual one where equality is {0,1}-valued.
The relevant monoidal category for metric spaces and continuous logic is either

(R≥0,+,0) or (I,∔,0), where R≥0 is the poset category with:

◦ set of objects the set [0,∞];
◦ morphisms a← b iff a≤ b as real numbers;

and I is the poset category with:

◦ set of objects the set [0,1];
◦ morphisms a← b iff a≤ b as real numbers;
◦ a∔b=min(a+b,1).

To minimize notational clutter we will simply use + to mean ∔ when it is clear
that we are working with I. The obvious inclusion of monoidal categories 2 →֒ I

induces a functor turning each 2-category into an I-category, which corresponds to
regarding every set as a metric space with the discrete metric.
The lesson embedded in [9] is that taking an appropriately formulated aspect of

categorical semantics of the usual {0,1}-valued logic—which describes categories
in terms of how similar they are to the category of sets, the quintessential model of
{0,1}-valued logic—and carefully replacing occurrences of 2= {0,1}with I= [0,1]
should yield an analogous aspect of categorical semantics of [0,1]-valued logic,
which should describe categories in terms of how similar they are to the category
of metric spaces. This is the heuristic that underpins the approach we take in this
section.
In what follows, V will always denote a (complete) posetal monoidal category

with appropriate structure, two important examples of which are 2 and I; such a
category is called a quantale, whose definition we recall below. In accordance with
these main examples, for any r,s ∈ V when we say r ≤ s we mean that r← s in V ,
and moreover by inf

i
ri (resp. sup

i
ri) we mean the join (resp. meet) of the ri taken in

V (but A ≤ B in SubX still means A B ). The point is that the framework
we will describe applies in this more general setting; in particular everything that
follows in the rest of the paper works equally well when we replace I (i.e., [0,1]) with
R≥0 (i.e., [0,∞]).

Definition 12. By a quantale we mean a (small) posetal monoidal category
(V ,⊗,unit) which possesses all meets and joins, such that ⊗ preserves joins. We
further require that the terminal object of V is the unit for ⊗ (these are sometimes
called affine quantales).

3.1. Continuity from indexed subobjects. In the case of classical logic and the
category Set, a predicate on X may equivalently be considered as a subobject R ∈
SubX , or a function ÷R : X → Ω= |2|, where |2| is the underlying set {0,1} of the
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monoidal category 2 of classical truth values, and ÷R(x) = 0 iff x ∈ R⊆ X . (In the
reverse direction we have that any function ÷ : X → |2| gives a subobject R÷ given
by x ∈ R÷ iff ÷(x) = 0.)
Now each subobject A ∈ SubX may alternatively be thought of as an object

R ∈ [2op,SubX ] of a special form, by setting R(0) = A and R(1) to be the terminal
object in SubX , that is, the whole set X. By this trivial change in perspective, in
the classical case (with 2-valued logic) we have a correspondence between maps
X → |2| and (objects of) the full subcategory Sub2X ⊆ [2

op,SubX ] on the objects
R ∈ [2op,SubX ] for which R(1) is terminal.
Let |I| be the real interval [0,1], that is, the “underlying space” of the monoidal

category I, considered as an object of pMet (with the obvious metric). We will see
that by suitably extending the above perspective, we get a correspondence between
maps X → |I| in pMet and (the objects of) an appropriate full subcategory of
[Iop,SubX ].
Each X ∈ pMet comes with a distinguished object DX ∈ [I

op,Sub(X ×X)] which
encodes the metric; we define DX (r) as giving all the pairs (x,y) ∈ X ×X for
which the distance dX (x,y) between x and y is ≤ r. Here we are implicitly making
a choice of product X ×Y given X ,Y ∈ pMet; we are taking X ×Y to be the
space with the obvious set of points and metric given by dX×Y ((x1,y1), (x2,y2)) =
max(dX (x1,x2),dY (y1,y2)).
Categorically, the important properties of DX (whose straightforward proofs are

left to the reader) are as follows:

Proposition 13. For each X ,Y ∈ pMet there is a choice of product X ×Y, well-
behaved in the evident sense with respect to symmetry and associativity, such that there
is a distinguished object DX ∈ [I

op,Sub(X ×X)] satisfying:

1. DX (0) contains the diagonal;

2. The functor [Iop,Sub(X ×X)]
∼=
−→ [Iop,Sub(X ×X)] induced by the symmetry

isomorphism X ×X
∼=
−→ X ×X interchanging the factors takes DX to itself;

3. Let ði,j : (X×X×X)→ (X×X) denote the projection onto the i
th and jth factors,

respectively. Then ði,j
∗DX (r)∧ðj,k

∗DX (s)≤ ði,k
∗DX (r+ s) for every r,s ∈ I.

4. If r= inf
i
ri for some r,ri ∈ I, then DX (r) =

∧
i
DX (ri);

5. LetðX×X : (X×Y×X×Y)→ (X×X) andðY×Y : (X×Y×X×Y)→ (Y×Y)
denote the projections preserving the ordering of the factors. Then DX×Y (r) =
ðX×X

∗DX (r)∧ðY×Y
∗DY (r) for all r ∈ I.

Henceforth when we say “the product X ×Y” for some X ,Y , we are referring to
this choice of product for X ×Y . (For any of the variations of pMet, this choice is
just the maximum metric.)

Remark 14. These are the beginnings of our framework, but we make an
observation that maymake us uncomfortable, namely that aspects of our framework
fail to be isomorphism invariant (unless we work only in pMet11). That is, in pMet

u
1

or pMetL1 we may have an isomorphism f : X
∼=
−→ X ′, but will not in general have

that f × f ∗DX ′(r) =DX (r) for any given r ∈ I.
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Indeed, the price we pay for translating the metric dX on each X ∈ pMet
into categorical data DX ∈ [I

op,Sub(X ×X)] is that we must keep track of the
actual values of the metric on X, whereas isomorphisms do not necessarily respect
the metric (again, unless we are in pMet11 where isomorphisms are necessarily
isometries). This is the reason for the somewhat peculiar phrasing at the beginning
of Proposition 13 above. The upshot is that as long as we are sufficiently careful this
does not end up being a problem.

NowmapsX→Y in pMetu1 are just set functionswhich have (and obey) amodulus
of continuity, which is an increasing function å : [0,1]→ [0,1] that preserves infima
and satisfies å(0) = 0. That is, a map f : X → Y is just a set function f between
the underlying sets such that dY (f (x), f (x

′)) ≤ å
(
dX (x,x

′)) for all pairs of points
x,x′ ∈ X , where å is as above. It is important that being a modulus of continuity
is preserved under composition: if å1 and å2 are moduli of continuity, then å2 ◦ å1 is
again a modulus of continuity.
More categorically, this amounts to the following. Each modulus of continuity å

as above is equivalently an endofunctor å : I→ I which fixes 0 and is cocontinuous
(preserves joins). Considering the endofunctor category End(I) as a monoid with
the multiplication given by composition, the set E = Eu of all å satisfying the above
gives a submonoid E ⊆ End(I). Changing our choice of E corresponds to changing
our choice of the variant of pMetwe are working with, since our choice of E dictates
which moduli of continuity are allowed; see Example 16 and Lemma 17 below.
We note that this perspective generalizes to any quantale V in place of I. We thus

formalize the discussion above as follows.

Definition 15. Let V be a quantale. A functor å : V → V which preserves joins
and the monoidal unit is called a V- modulus .
A (full) subcategory E of the functor category End(V) on a set of V-moduli

containing the identity 1V and which is closed under functor composition, that is, a
submonoid of End(V), is called a V- moduloid .

Depending on context, we consider V-moduli å : V → V equivalently as functors
å : Vop → Vop; this will always be clear from context. Moreover, we refer to joins
(resp. meets) in V as minima/infima (resp. maxima/suprema) so V-moduli are
functors which preserve infima and the monoidal unit. We extend our notational
convention by saying that å1 ≤ å2 when å1← å2 in the functor category [V ,V]. Thus
max(å1,å2) refers to the meet of å1 and å2 as objects of [V ,V].
Important examples of quantales are the Lawvere real numbersR≥0 = (R≥0,+,0)

and their truncation I = (I,+,0), both of which we have seen at the beginning of
the current section. Although we continue to focus on the latter, all of our analysis
applies equally well using the former instead.

Example 16. We may consider the following I-moduloids:

1. Let Eu contain all I-moduli. This collection certainly includes 1I and is closed
under composition, so it is the maximal I-moduloid.

2. LetEL contain all the I-moduli given by “multiplication by a (finite) constant”,
that is, all åK : I→ I of the form

r 7→min(Kr,1)
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for a finite constant K ≥ 1. Then åK2 ◦ åK1 = åK2K1 , so that EL is a I-moduloid.
3. Let E1 contain only 1I, so that it is the trivial I-moduloid.

In this light, we have the following alternate characterization of continuity:

Lemma 17.

1. (a) For any map f : X → Y in pMetu1, there is some å : I→ I in Eu such that å is
a modulus of continuity for f.

(b) A map f : X → Y in pMetu1 is continuous with respect to a modulus å : I→ I

in Eu iff for every r ∈ I, DX (r)≤ f × f
∗DY (å(r)).

2. (a) For any map f : X → Y in pMetL1 , there is some å : I→ I in EL such that å
is a modulus of continuity for f.

(b) A map f :X →Y in pMetL1 is continuous with respect to a modulus å : I→ I

in EL iff for every r ∈ I, DX (r)≤ f × f
∗DY (å(r)).

3. (a) For any map f :X→Y in pMet11, the only object 1I : I→ I of E1 is a modulus
of continuity for f.

(b) A map f : X → Y in pMet11 is continuous with respect to the only modulus
1I : I→ I in E1 iff for every r ∈ I, DX (r)≤ f × f

∗DY (r).

Proof. These follow easily from the definitions of pMetu1, pMet
L
1 , pMet

1
1 and the

I-moduloids Eu, EL, and E1, as well as the statement that f : X → Y is continuous
with respect to a modulus å : I → I iff for all r ∈ I, dX (x,y) ≤ r =⇒ dY (f (x),
f (y))≤ å(r). ⊣

As we did with taking pMet= pMetu1, we make the choice of I-moduloid E = Eu
just to be precise, while keeping in mind that most of what follows works equally
well if we choose (pMet = pMetL1 and) E = EL or (pMet = pMet

1
1 and) E = E1

instead. Thus when we speak of E without mentioning Eu specifically, or when we
speak of “an I-modulus å : I→ I” without specifying å ∈ Eu specifically, it should
be understood that everything applies equally well for EL and E1. In the cases where
the choice of E makes a difference, we will say so explicitly.

Proposition 18. Only the formal properties—in fact, just (5)—of the metric listed
in Proposition 13 are already sufficient to imply the following properties of pMet:

1. For X
f
−→ Y

g
−→ Z such that f and g have moduli åf and åg respectively, we have

that gf : X → Z has modulus åg ◦ åf .
2. For any X ,Y, ðX : X ×Y → X satisfies

DX×Y (r)≤ ðX ×ðX
∗DX (r)

for all r ∈ R.
3. Each pair of maps f : X → Y, g : X → Z (with moduli åf and åg respectively)
canonically corresponds to the obvious map (f ,g) : X → (Y ×Z), with modulus
å(f ,g) =max(åf ,åg).In the other direction, if å(f ,g) is a modulus for (f ,g) then it is
also a modulus for both f and g.
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Proof.

(1):DX (r) ≤ f × f
∗DY (åf (r)) ≤ f × f

∗g×g∗DZ(åg(åf (r))) = gf ×gf
∗DZ(åg ◦

åf (r)).
(2): ðX ×ðX : X ×Y ×X ×Y → X ×X is just ðX×X . We have

DX×Y (r) = ðX×X
∗DX (r)∧ðY×Y

∗DY (r)≤ ðX×X
∗DX (r) = ðX ×ðX

∗DX (r).

(3): Ignoring moduli, there is obviously a correspondence between pairs of maps
f : X → Y , g : X → Z and (f ,g) : X → (Y ×Z). Now assume that DX (r) ≤
f × f ∗DY (åf (r)) and DX (r)≤ g×g

∗DZ(åg(r)) for all r ∈ R.
We want to show

DX (r)≤ (f ,g)× (f ,g)
∗
DY×Z(å(f ,g)(r))

where å(f ,g) =max(åf ,åg). For convenience denote å(f ,g)(r) = s.

(f ,g)× (f ,g)
∗
DY×Z(s) = (f ,g)× (f ,g)

∗
(
ðY×Y

∗DY (s)∧ðZ×Z
∗DZ(s)

)

We have f = ðY (f ,g) and g= ðZ(f ,g) and ðY×Y = ðY ×ðY (resp. ðZ×Z = ðZ×ðZ),
so the above turns into

(f ,g)× (f ,g)
∗
(
ðY×Y

∗DY (s)∧ðZ×Z
∗DZ(s)

)
= (f × f ∗DY (s))∧ (g×g

∗DZ(s))

but DX (r)≤ (f × f
∗DY (s))∧ (g×g

∗DZ(s)).

The same proof shows that in the other direction (i.e., given (f ,g) with modulus
å(f ,g)), we can take åf = åg = å(f ,g). ⊣

In the case that Y = |I| = [0,1], with D|I| corresponding to the obvious metric
on |I|, we can specify the continuity of a map f : X → Y in terms of (the metric
on X and) indexed subobjects of X. The rest of this subsection is motivated by the
following key observation:

Lemma 19. Let TI ∈ [I
op,Sub |I|] be defined by TI(r) = [0,r], and let X ∈ pMet.

Let ð1,ð2 : (X ×X)→ X denote the projection onto the first and second factors,
respectively.
A map f :X → |I| is continuous with respect to a modulus å : I→ I iff for all r,s ∈R,

we have that
(
ð1

∗f ∗TI(r)
)
∧DX (s)≤ ð2

∗f ∗TI(r+ å(s)).

Proof. Unpacking the left hand side,
(
ð1

∗f ∗TI(r)
)
∧DX (s) consists of all pairs

(x,y) ∈ X ×X such that f (x)≤ r and dX (x,y)≤ s. The right hand side is the set of
all pairs (x,y) ∈ X ×X such that f (y)≤ r+ å(s).
Continuity of f :X → |I| with respect to a modulus å : I→ I obviously implies the

inequality.
Conversely, assume that the inequality holds, that is, that for all x,y ∈ X and

r,s ∈ I, whenever f (x)≤ r and dX (x,y)≤ s, we also have f (y)≤ r+ å(s).
Let s ∈ I be arbitrary, and let x,y ∈X be any pair of points satisfying dX (x,y)≤ s.

Without loss of generality, let r = f (x) ≤ f (y). By assumption we have that r ≤
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f (y) ≤ r+ å(s), therefore the distance between f (x) and f (y) is bounded above by
å(s). ⊣

3.2. Continuous subobjects. The preceding lemma suggests that the following is
the appropriate notion of “continuous subobject”.

Definition 20. Let X ∈ pMet, and let å : I→ I be an I-modulus.
We call R ∈ [Iop,SubX ] an å- predicate on X when:

1. Given r,ri ∈ I such that r= inf
i
ri, R(r) =

∧
i
R(ri), and;

2. For each r,s ∈ I,
(
ð1

∗R(r)
)
∧DX (s)≤ ð2

∗R(r+ å(s)).

We denote by SubåX the full subcategory of [I
op,SubX ] on the å-predicates.

Let us call R ∈ [Iop,SubX ] a predicate on X when there exists some å ∈ E for
which R is an å-predicate.

Clearly, for å1 ≤ å2 any å1-predicate is also an å2-predicate, so we have a full
inclusion Subå1X →֒ Subå2X .
The point of Definition 20 above is to consider å-predicates on X as an intrinsic

notion of a uniformly continuous mapX → |I|with modulus å. Now given a map f :
X →Y we have that the pullback functor f ∗ : SubY → SubX acts pointwise to give

a functor f
∗
: [Iop,SubY ]→ [Iop,SubX ], so that by definition (f

∗
R)(r) = f ∗

(
R(r));

we are to think of this as precomposition by f.
Thus if we have R ∈ SubåY and a map f : X → Y with modulus åf , we should

hope that f
∗
R (where f

∗
acts on R considered as an object of [Iop,SubX ]) is an

(å ◦ åf )-predicate, which we now show:

Proposition 21. Given f : X → Y with modulus of continuity åf , and given

R ∈ [Iop,SubY ] which is an å-predicate, we have that f
∗
R ∈ [Iop,SubX ] is an

(å ◦ åf )-predicate.

In particular, f
∗
: [Iop,SubY ]→ [Iop,SubX ] descends to a functor f ∗ : SubåY →

Sub(å◦åf )X for which iå◦åf f
∗ = f

∗
iå .

Proof. For r,ri ∈ R with r= inf
i
ri, f

∗
R(r) =

∧
i
f
∗
R(ri) since f

∗
preserves meets.

For any r,s ∈ R,
(
ð1

∗f ∗R(r)
)
∧DX (s)≤

(
ð1

∗f ∗R(r)
)
∧ f × f ∗DY (åf (s))

=
(
f × f ∗ð1

∗R(r)
)
∧ f × f ∗DY (åf (s))

≤ f × f ∗ð2
∗R(r+ å(åf (s)))

= ð2
∗f ∗R(r+ å ◦ åf (s)). ⊣

Example 22. TI ∈ [I
op,Sub |I|] as defined in Lemma 19, that is, TI(r) = [0,r], is a

1I-predicate.

https://doi.org/10.1017/jsl.2020.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.44


CATEGORICAL SEMANTICS OF METRIC SPACES AND CONTINUOUS LOGIC 1059

We give a more substantial example of predicates, namely,DX itself is a predicate
onX for eachX ∈ pMetu1 orX ∈ pMet

L
1 . For this wemustmake use of a condition on

our setE ofmoduli (which holds inEu andEL, but notE1). Themonoidal product⊗
of V is inherited by the functor category [V ,V] just by pointwise application, and so
we can ask that our set E of moduli, in addition to being closed under composition,
also be closed under ⊗, that is, that if å1,å2 ∈ E then å1⊗ å2 ∈ E; for now we stick to
V = I for concreteness, so in this case ⊗ is just +.
The reason that this condition is desirable is that for any X, we have that DX ∈

[Iop,Sub(X ×X)] is in general a (1I+1I)-predicate on X ×X :

Proposition 23.

1. DX is a (1I+1I)-predicate on X ×X.
2. Let f ,g : X → Y be maps with moduli åf , åg respectively. Then (f ,g)

∗DY is an
(åf + åg)-predicate on X.

Proof.

(1): We automatically have that for any r,ri ∈ Iwith r= inf
i
riDX (r) =

∧
i
DX (ri) since

DX is a metric.
We want to show that for all r,s ∈ I, we have

ð1
∗DX (r)∧DX×X (s)≤ ð2

∗DX (r+(1I+1I)(s)) = ð2
∗DX (r+ s+ s).

In order to avoid notational confusion, let us denote by ði,j : (X ×X ×X ×X)→
(X ×X) the projection onto the ith and jth factors respectively. Then the above
becomes

ð1,2
∗DX (r)∧DX×X (s)≤ ð3,4

∗DX (r+ s+ s).

Now DX×X (s) = ð1,3
∗DX (s)∧ð2,4

∗DX (s) by Proposition 13, so we need to show

ð1,2
∗DX (r)∧ð1,3

∗DX (s)∧ð2,4
∗DX (s)≤ ð3,4

∗DX (r+ s+ s).

But by Proposition 13 again we have

ð1,2
∗DX (r)∧ð1,3

∗DX (s)≤ ð2,3
∗DX (r+ s)

and

ð2,3
∗DX (r+ s)∧ð2,4

∗DX (s)≤ ð3,4
∗DX (r+ s+ s)

so we are done.
(2): By (1) we at least have that (f ,g)∗DY is a (max(åf ,åg)+max(åf ,åg))-predicate

on X, so it only remains to show that it admits åf + åg as a modulus of continuity;
we thus want

ð1
∗(f ,g)

∗
DY (r)∧DX (s)≤ ð2

∗(f ,g)
∗
DY (r+ åf (s)+ åg(s))

for all r,s ∈ I (recall that
(
(f ,g)∗DY )(r) is just (f ,g)

∗ (
DY (r))).
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Now we have the commutative diagrams

X ×X Y ×Y ×Y ×Y

X Y ×Y

(f ,g)×(f ,g)

ð1 ð2 ð1,2 ð3,4

(f ,g)

so the above is equivalent to showing

(f ,g)× (f ,g)
∗
ð1,2

∗DY (r)∧DX (s)≤ (f ,g)× (f ,g)
∗
ð3,4

∗DY (r+ åf (s)+ åg(s)).

Now DX (s) ≤ f × f
∗DY (åf (s)) and DX (s) ≤ g×g

∗DY (åg(s)), while f × f = ð1,3 ◦(
(f ,g)× (f ,g)) and g×g = ð2,4 ◦

(
(f ,g)× (f ,g)).

We thus have

(f ,g)× (f ,g)
∗
ð1,2

∗DY (r)∧DX (s)

≤ (f ,g)× (f ,g)
∗
ð1,2

∗DY (r)∧ (f ,g)× (f ,g)
∗
ð1,3

∗DY (åf (s))

∧ (f ,g)× (f ,g)
∗
ð2,4

∗DY (åg(s))

from which the desired conclusion follows via the same argument as for (1). ⊣

We are ready to state the main result of this first half of the paper. The theorem
below applies equally well to any of the choices for pMet (pMetu1, pMet

L
1 , or pMet

1
1),

but then only with the corresponding choices of E (Eu, EL, or E1 respectively).

Theorem 24. There is a correspondence between maps X → |I| with modulus of
continuity å ∈ E and å-predicates on X ∈ pMet:

1. Given f : X → |I| with modulus of continuity å ∈ E, Rf = f
∗TI is an å-predicate

on X, that is, is an object of SubåX, and;
2. Given R ∈ SubåX, the function fR : X → |I| defined by fR(x) = inf{r ∈ I | x ∈
R(r)} (where the infimum is taken in Iop, that is, the usual ordering of the unit
interval ) is a uniformly continuous map fR : X → |I| with the same modulus å.

These operations are inverse to each other, and they are moreover natural in X in the
sense that for each g : Y → X, we have Rf◦g = g

∗Rf and fg∗R = fR ◦g.

Proof.

(1) is immediate by Proposition 21 and the observation that TI is a 1I-predicate.
(2): By Lemma 19 it suffices to show that R = (fR)

∗TI. Now (fR)
∗TI(r) =

f –1R ([0,r]) = {x ∈ X | fR(x) ≤ r}. This last set is the set of all points x ∈ X
such that inf{s ∈ I | x ∈ R(s)} ≤ r.

Then clearly we must have that R(r)≤ (fR)
∗TI(r) in SubåX . Now x ∈ (fR)

∗TI(r),
that is, fR(x) ≤ r iff there is some (weakly) decreasing sequence {ri} converging to
r such that x ∈ R(ri) for all i. By assumption we have R(r) = R(inf

i
ri) =

∧
i
R(ri) so

x ∈ R(r); thus we also have (fR)
∗TI(r)≤ R(r) in SubåX .
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To show that these operations are inverse to each other, we first show that f = fRf .

For each x ∈ X , we have that fRf (x) = inf{r ∈ I | x ∈ Rf (r)}. But each Rf (r) =

f –1([0,r]), so fRf (x) is the infimum of all r ∈ I such that f (x) ≤ r, which must thus

be the original value f (x). Thus f = fRf .

In the other direction, the proof of (2) above already shows that R= (fR)
∗TI.

Rf◦g = g
∗Rf easily follows from the fact that g

∗f ∗ = (f ◦g)∗. Lastly, since

Rfg∗R = g
∗R= g∗(RfR) = RfR◦g

(and since f 7→ Rf is injective) we must have that fg∗R = fR ◦g. ⊣

We will later refer to the data Ω = |I| and TI as a predicate classifier for pMet; see
Definition 34. The name “predicate classifier” (or “continuous subobject classifier”)
is justified by the observation that for any r-geometric category C (such as Set or
any presheaf category), if instead of I we take 2 and make all the obvious resulting
simplifications:

◦ For every X ∈ C, define DX ∈ [2
op,SubX ] by setting DX (0) to be the diagonal

(and DX (1) is automatically terminal in SubX);
◦ Define E to be the 2-moduloid {12};

then a predicate on X is exactly just a subobject of X, so an object Ω ∈ C and
T2 ∈ SubΩ satisfying the evident analogue of the results of Theorem 24 (i.e., for 2
instead of I, and Ω in place of |I|) exhibit precisely a (regular) subobject classifier
for C.

3.3. Some adjoints. The correspondence of Theorem 24 is well-behaved with
respect to the relevant logical operations; to describe what we mean by “relevant
logical operations” we must first establish some facts.
For each å, the property of being an å-predicate is preserved under taking limits

(meets):

Proposition 25. Let å ∈ E, and Ri ∈ SubåX.
Then

∧
i
Ri (where the meet is taken in [I

op,SubX ]) is again an object of SubåX.

Proof. Let Ri ∈ SubåX , which we consider as objects of [I
op,SubX ], and take

their meet
∧
i
Ri in this latter category. Let rj ∈ V such that inf

j
rj = r. We show that

(∧

i

Ri

)
(r) =

∧

j

(
(
∧

i

Ri)(rj)

)
.

Because limits are taken pointwise in functor categories, for each r ∈ I we have that

(∧

i

Ri

)
(r) =

∧

i

(
Ri(r))
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where the meet of the right hand side is taken in SubX . By assumption, we have
that Ri(r) =

∧
j
(Ri(rj)). Lastly, limits commute with limits, giving us

(∧

i

Ri

)
(r) =

∧

i

(
Ri(r)) =

∧

i


∧

j

(Ri(rj))




=
∧

j

(∧

i

(Ri(rj))

)
=
∧

j

((∧

i

Ri

)
(rj)

)
.

Now let r,s ∈ I be arbitrary. We have that (ð1
∗
∧
i
Ri(r)) ∧ DX (s) =

∧
i

(
ð1

∗Ri(r)∧DX (s)
)
≤
∧
i
ð2

∗Ri(r+å(s)) = ð2
∗
∧
i
Ri(r+å(s)) (recall that (co)limits

are taken pointwise in functor categories). ⊣

Therefore we have that the inclusion SubåX →֒ [I
op,SubX ] preserves meets, and

thus has a left adjoint by any of the adjoint functor theorems. Proposition 25 also
shows that for any å1 ≤ å2, the inclusion Subå1X →֒ Subå2X also preserves meets
(since meets in either category are computed in [Iop,SubX ]). Now any left adjoint
to an inclusion of a full subcategory into a skeletal (e.g., posetal) category must also
be a left inverse for formal reasons. We thus have the following:

Corollary 26.

1. For each å ∈E, we have a left adjoint (and left inverse) Lå : [I
op,SubX ]→ SubåX

to the inclusion SubåX →֒ [I
op,SubX ].

2. For each å1 ≤ å2, we have a left adjoint (and left inverse) L
å2
å1 : Subå2X → Subå1X

to the inclusion Subå1X →֒ Subå2X.
3. These left adjoints are natural in å, in the following sense:
(a) Låå1 ◦Lå = Lå1 .

(b) L
å2
å1 ◦L

å3
å2 = L

å3
å1 .

4. L
å2
å1 : Subå2X → Subå1X is equal to Lå1 : [I

op,SubX ]→ Subå1X restricted along
the inclusion Subå2X →֒ [I

op,SubX ].

Proof. We only have left to prove (3) and (4).
(3) is immediate by the fact that the compositions of inclusions

Subå1X →֒ SubåX →֒ [I
op,SubX ],

Subå1X →֒ Subå2X →֒ Subå3X

are respectively equal to the inclusions

Subå1X →֒ [I
op,SubX ],

Subå1X →֒ Subå3X .

(4) follows from (3) and the fact that the left adjoints are left inverses. Denote by
iå2 : Subå2X →֒ [I

op,SubX ] the inclusion. Then Lå1 iå2 = L
å2
å1Lå2 iå2 = L

å2
å1 . ⊣
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Remark 27. The proof of the adjoint functor theoremactually gives us an explicit
description of the left adjoints above. For å ∈ E, Lå takes any R ∈ [I

op,SubX ] and
returnsLåR=

∧
{P∈ SubåX |R≤P}. In light of Theorem 24 above, we see that this

is the category theoretic solution to the problem of finding the closest approximation
of an arbitrary real-valued function from below by a uniformly continuous function.

The significance of these left adjoints is that for each å ∈ E and each map f :
X → Y with modulus of continuity åf , we have a left adjoint ∃f to the pullback
f ∗ : SubåY → Sub(å◦åf )X , as well as (for certain kinds of f ) a right adjoint ∀f ; these

are the “relevant logical operations” we mentioned previously.
Note that just as pointwise application of f ∗ : SubY → SubX yielded a functor

f
∗
: [Iop,SubY ]→ [Iop,SubX ], pointwise application of ∃f : SubX → SubY (resp.

∀f ) yields a left (resp. right) adjoint ∃f : [I
op,SubX ]→ [Iop,SubY ] (resp. ∀f ) to f

∗
.

Proposition 28. Let å ∈ E and f : X → Y with modulus of continuity åf ∈ E. Let
f ∗ : SubåY → Sub(å◦åf )X be as given in Proposition 21.

1. ∃f =Lå∃f i(å◦åf ) :Sub(å◦åf )X→SubåY is left adjoint to f
∗ :SubåY→Sub(å◦åf )X.

2. Let f = ðX :Y×X →X be the projection, so that åf = 1I. Also assume that Y is

inhabited. We have that ∀ðX = Lå∀ðX iå : Subå (Y ×X)→ SubåX is right adjoint
to ð∗X : SubåX → Subå (Y ×X)

where i(å◦åf ) : Sub(å◦åf )X →֒ [I
op,SubX ] is the inclusion.

Proof. Let iå : SubåY →֒ [I
op,SubY ] denote the inclusion. The way Proposition

21 gave f ∗ : SubåY → Sub(å◦åf )X was to show that f
∗
iå : SubåY → [I

op,SubX ]

actually lands inside Sub(å◦åf )X , so that f
∗
iå = i(å◦åf )f

∗ for some f ∗ : SubåY →

Sub(å◦åf )X .

Then by Corollary 26 we must have that f ∗ = L(å◦åf )f
∗
iå , as well as

i(å◦åf )L(å◦åf )f
∗
iå = f

∗
iå .

To show (1) we need to show

Lå∃f i(å◦åf )R≤ P⇐⇒ R≤ L(å◦åf )f
∗
iåP

for all R ∈ Sub(å◦åf )X and P ∈ SubåY . Because iå◦åf is a full inclusion we have

R≤ L(å◦åf )f
∗
iåP⇐⇒ iå◦åfR≤

(
iå◦åfL(å◦åf )f

∗
iåP= f

∗
iåP
)
.

By composing adjoints we have that Lå∃f is left adjoint to f
∗
iå , so we have

iå◦åfR≤ f
∗
iåP⇐⇒ Lå∃f iå◦åfR≤ P.

To show (2), it suffices to show thatP≤∀ðXð
∗
XP for allP∈ SubåX , and ð

∗
X∀ðXR≤

R for all R ∈ Subå (Y ×X).
P ≤ ∀ðXð

∗
XP = Lå∀ðX iåLåðX

∗iå follows immediately by adjointness and the fact
that Lå iå is the identity.
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To show that ð∗X∀ðXR = LåðX
∗iåLå∀ðX iåR ≤ R for all R ∈ Subå (Y ×X), we first

show that LåðX
∗iåLåR= LåðX

∗R for all R ∈ SubåX .
LåðX

∗R ≤ LåðX
∗iåLåR is immediate by adjointness, so it remains to show

LåðX
∗iåLåR ≤ LåðX

∗R. By Remark 27, the left hand side is
∧
{P | ðX

∗iåLåR ≤
iåP and P∈ SubåX}, while the right hand side is

∧
{P | ðX

∗R≤ iåP and P∈ SubåX}.
Thus it suffices to show that any P ∈ SubåX for which ðX

∗R ≤ iåP also satisfies
ðX

∗iåLåR≤ iåP.
Now ðX

∗R ≤ iåP means that iåP = ðX
∗P′ for some P′ ∈ [Iop,SubX ]. We also

have that
(
ð1

∗ðX
∗P′(r)

)
(r)∧DY×X (s)≤ ð2

∗ðX
∗P′(r+ å(s)). Recall thatDX×Y (s) =

ðY×Y
∗DY (s)∧ðX×X

∗DX (s), and also that we commutative squares

Y ×X ×Y ×X Y ×X

X ×X X

ði

ðX×X ðX

ði

for i = 1,2, giving us that
(
ðX×X

∗ð1
∗P′(r)

)
(r)∧ðY×Y

∗DY (s)∧ðX×X
∗DX (s)≤ ðX×X

∗ð2
∗P′(r+ å(s))

which is equivalent to

ðX×X
∗
(
ð1

∗P′(r)∧DX (s)
)
=
(
ðX×X

∗ð1
∗P′(r)

)
(r)∧ðX×X

∗DX (s)

≤ ðX×X
∗ð2

∗P′(r+ å(s)).

Now since Y is inhabited, ðX×X
∗ : Sub(X ×X)→ Sub(Y ×X ×Y ×X) is a full

embedding for formal reasons, so we finally get
(
ð1

∗P′(r)
)
∧DX (s)≤ ð2

∗P′(r+ å(s)).

Moreover we have that for any r,ri ∈ I such that r = inf
i
ri, ðX

∗P′(r) =
∧
i
ðX

∗P′(ri) = ðX
′
∧
i
P′(ri). Again by injectivity of ðX

∗ : SubX → Sub(Y ×X) we

have that P′(r) =
∧
i
P′(ri).

We have thus verified that P′ is an å-predicate on X, and therefore is of the form
iåP

′′ for some P′′ ∈ SubåX . Then iåP= ðX
∗iåP

′′, so that ðX
∗R≤ iåP= ðX

∗iåP
′′. By

injectivity of ðX
∗ (since ðX

∗ is injective), we have that R ≤ iåP
′′ which implies that

iåLåR≤ iåP
′′ by adjointness, and therefore we conclude that ðX

∗iåLåR≤ ðX
∗iåP

′′ =
iåP.
Thereforewe have thatLåðX

∗iåLå∀ðX iåR=LåðX
∗∀ðX iåR≤R for allR∈ Subå (Y×

X), completing the proof. ⊣

The “relevant logical operations” mentioned earlier refers to the adjoints ∃ðX
(resp. ∀ðX ) to the pullback ð

∗
X , for the projection ðX : Y ×X → X . A standard

paradigm in categorical semantics is that these adjoints should correspond to
“existential (resp. universal) quantification over Y” in some appropriate sense;
we show that in our case, these adjoints—which we arrived at purely formally—
correspond precisely to those quantification operations prescribed by continuous
logic, in the following sense.
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Proposition 29. For each X ,Y ∈ pMet, and each R ∈ Subå (Y ×X) with ðX :
Y ×X → X, the correspondence R 7→ fR of Theorem 24 gives correspondences

1. ∃ðXR ∈ SubåX 7→ infy∈Y
fR(y,–) : X → |I|.

2. If Y is inhabited: ∀ðXR ∈ SubåX 7→ sup
y∈Y
fR(y,–) : X → |I|.

Proof. (1): Recall that ∃ðXR= Lå∃ðX iåR, or in other words ∃ðXR is the smallest

å-predicate on X containing ∃ðX iåR. Denote ϕ = infy∈Y
fR(y,–). We will show that

Rϕ = ϕ
∗TI must necessarily be the smallest å-predicate containing ∃ðX iåR, which

will imply that Rϕ = ∃ðXR and so f∃ðX R = fRϕ = ϕ.

First notice that x ∈ ∃ðX iåR(r) iff there is some y ∈Y such that (y,x) ∈ iåR(r). On
the other hand, x ∈ ϕ∗TI(r) iff inf

y∈Y
fR(y,x) = inf

y∈Y
inf{s | (y,x) ∈ iåR(s)} ≤ r. Clearly

∃ðX iåR(r)≤ ϕ
∗TI(r).

For the other direction, assume x ∈ ϕ∗TI(r). That is, there are sequences yi ∈ Y
and ri,j,ri ∈ I such that (yi,x) ∈ iåR(ri,j) for all i, j and ri,j is weakly decreasing and
converges to ri for each i, with ri weakly decreasing and converging to r. Now
because R is an å-predicate, we must have that (yi,x) ∈ iåR(ri) for all i. Then we
have that x ∈ ∃ðX iåR(ri) for all i. Then if P is any å-predicate containing ∃ðX iåR

then x ∈ P(r). Therefore ϕ∗TI must be the smallest å-predicate containing ∃ðX , and
f∃ðX = infy∈Y

fR(y,–).

(2): x ∈ ∀ðX iåR(r) iff (y,x) ∈ iåR(r) for all y ∈ Y . On the other hand, let ø =
sup
y∈Y
fR(y,–), so that x ∈ ø

∗TI(r) iff sup
y∈Y
fR(y,x) = sup

y∈Y
inf{s | (y,x) ∈ iåR(s)} ≤ r.

Clearly ∀ðX iåR≤ ø
∗TI.

In the other direction, if x ∈ ø∗TI(r) then for every y ∈ Y there is some sequence
ri which is weakly decreasing and converging to r, with (y,x) ∈ iåR(ri) for all i.
Again because R is an å-predicate, we must have that (y,x) ∈ iåR(r). Therefore
ø∗TI(r) ≤ ∀ðX iåR, thus ∀ðX iåR was an å-predicate to begin with and is equal to
ø∗TI(r), so that f∀ðX = sup

y∈Y
fR(y,–). ⊣

§4. Presheaves of metric spaces. Thus far we have isolated features of the category
pMet giving rise to much of the structure (pertaining, e.g., to continuous logic)
present in pMet. The upshot is that we may identify the same structures in more
general categories. A natural example to consider is categories of presheaves of
metric spaces; not only do they mirror the generalization from sets to presheaves
of sets, they also find application in highly practical contexts [11, 12] pertaining to
data integration.
We will see that the material developed in this section exhibits categories of

presheaves of metric spaces as having much of the same essential structure as pMet,
to be described in a precise sense.

4.1. Setup. We first set up some general categorical machinery that will allow us
to apply our preceding analysis of the category pMet to the category of presheaves.
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Recall Definition 6 of an r-geometric category as one having suitable structure on
its subobject posets.
The below is essentially a restatement of Proposition 13 and Lemma 17 together;

we take the features of pMet that Proposition 13 and Lemma 17 guarantee and turn
them into a definition which we may ask any r-geometric category to satisfy.

Definition 30. Let C be an r-geometric category, and E an I-moduloid.

1. A metrization of C is a choice
◦ for each X ,Y ∈ C, of product X ×Y ∈ C, well-behaved in the evident sense
with respect to symmetry and associativity, and;
◦ for each X ∈ C, of DX ∈ [I

op,Sub(X ×X)] satisfying the following:
(a) DX (0) contains the diagonal;

(b) The functor [Iop,Sub(X × X)]
∼=
−→ [Iop,Sub(X × X)] induced by the

symmetry isomorphism X ×X
∼=
−→ X ×X interchanging the factors takes

DX to itself;
(c) Let ði,j : (X×X×X)→X denote the projection onto the i

th and jth factors,
respectively. Then ði,j

∗DX (r)∧ðj,k
∗DX (s)≤ ði,k

∗DX (r+s) for every r,s∈ I.

(d) If r= inf
i
ri for some r,ri ∈ I, then DX (r) =

∧
i
DX (ri);

(e) Let ðX×X : (X ×Y ×X ×Y)→ (X ×X) and ðY×Y : (X ×Y ×X ×Y)→
(Y×Y) denote the projections preserving the ordering of the factors. Then
DX×Y (r) = ðX×X

∗DX (r)∧ðY×Y
∗DY (r) for all r ∈ I.

2. Given a metrization of C, we say that it is compatible with E when for each
morphism f :X →Y in C, there is some å ∈ E such that for every r ∈ I, we have
that

DX (r)≤ f × f
∗DY (å(r))

and in this case we say that f : X → Y is continuous with respect to å, or that f
has modulus å.

Recall from Example 16 the various I-moduloids Eu,EL,E1. From Lemma 17 in
Section 3, we can see that

1. pMetu1 has a metrization compatible with Eu;
2. pMetL1 has a metrization compatible with EL;
3. pMet11 has a metrization compatible with E1.

The point is that as soon as a category C has a metrization compatible with
E ⊆ End(I) as in Definition 30, we immediately get results about C that make
precise the idea that it behaves like a category of metric spaces. Specifically:

Proposition 31. Let E be an I-moduloid and C have a metrization compatible with
E. Then the following holds:

1. For X
f
−→ Y

g
−→ Z a composition of morphisms in C such that f and g have moduli

åf and åg respectively, we have that gf : X → Z has modulus åg ◦ åf .
2. For any X ,Y ∈ C, ðX : X ×Y → X satisfies

DX×Y (r)≤ ðX ×ðX
∗DX (r)

for all r ∈ R.

https://doi.org/10.1017/jsl.2020.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.44


CATEGORICAL SEMANTICS OF METRIC SPACES AND CONTINUOUS LOGIC 1067

3. Each pair of maps f : X → Y, g : X → Z (with moduli åf and åg respectively)
canonically corresponds to the obvious map (f ,g) : X → (Y ×Z), with modulus
å(f ,g) =max(åf ,åg).In the other direction, if å(f ,g) is a modulus for (f ,g) then it is
also a modulus for both f and g.

Proof. The same proof as for Proposition 18 goes through unchanged. ⊣

We repeat the definition of an å-predicate, now in the general case.

Definition 32. Let E be an I-moduloid and C have a metrization compatible
with E.
Let X ∈ C, and let å : I→ I be an object of E.
We call R ∈ [Iop,SubX ] an å- predicate on X when:

1. Given r,ri ∈ I such that r= inf
i
ri, R(r) =

∧
i
R(ri), and;

2. For each r,s ∈ I,

(
ð1

∗R(r)
)
∧DX (s)≤ ð2

∗R(r+ å(s)).

We denote by SubåX the full subcategory of [I
op,SubX ] on the å-predicates.

Let us call R ∈ [Iop,SubX ] a predicate on X when there exists some å ∈ E for
which R is an å-predicate.

Again as before, for å1 ≤ å2 any å1-predicate is also an å2-predicate, so we have a
full inclusion Subå1X →֒ Subå2X .
å-predicates in this more general context exhibit the same nice properties as they

did in the category pMet, as we now detail below.

Proposition 33. Let E be an I-moduloid and C have a metrization compatible
with E.

1. Given f : X → Y a morphism in C with modulus of continuity åf , and given

R ∈ [Iop,SubY ] which is an å-predicate, we have that f
∗
R ∈ [Iop,SubX ] is an (å ◦

åf )-predicate.In particular, f
∗
: [Iop,SubY ]→ [Iop,SubX ] descends to a functor

f ∗ : SubåY → Sub(å◦åf )X for which iå◦åf f
∗ = f

∗
iå .

2. Let å ∈ E, X ∈ C, and Ri ∈ SubåX.Then
∧
i
Ri (where the meet is taken in

[Iop,SubX ]) is again an object of SubåX.
3. Let X ∈ C.
(a) For each å ∈ E, we have a left adjoint (and left inverse) Lå : [I

op,SubX ]→
SubåX to the inclusion SubåX →֒ [I

op,SubX ].
(b) For each å1 ≤ å2, we have a left adjoint (and left inverse) L

å2
å1 : Subå2X →

Subå1X to the inclusion Subå1X →֒ Subå2X.
(c) These left adjoints are natural in å, in the following sense:
i. Låå1 ◦Lå = Lå1 .

ii. L
å2
å1 ◦L

å3
å2 = L

å3
å1 .

(d) L
å2
å1 : Subå2X → Subå1X is equal to Lå1 : [I

op,SubX ]→ Subå1X restricted
along the inclusion Subå2X →֒ [I

op,SubX ].
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4. Let å ∈ E and f :X →Y a morphism in C with modulus of continuity åf ∈ E. Let
f ∗ : SubåY → Sub(å◦åf )X be as given in (1) above.

(a) ∃f = Lå∃f i(å◦åf ) : Sub(å◦åf )X → SubåY is left adjoint to f
∗ : SubåY →

Sub(å◦åf )X.

(b) Let f = ðX : Y ×X → X be the projection, so that åf = 1I.We have that

∀ðX = Lå∀ðX iå : Subå (Y ×X)→ SubåX is right adjoint to ð
∗
X : SubåX →

Subå (Y ×X)
where i(å◦åf ) : Sub(å◦åf )X →֒ [I

op,SubX ] is the inclusion.

Proof.

(1): Same proof as for Proposition 21.
(2): Same proof as for Proposition 25.
(3): Same proof as for Corollary 26.
(4): Same proof as for Proposition 28. ⊣

Finally, for C equipped with a metrization compatible with an I-moduloid E, we
may make sense of the notion of a “continuous subobject classifier” as follows:

Definition 34. Let E be an I-moduloid and C have a metrization compatible
with E.
A predicate classifier is given by an object Ω ∈ C (and its associated DΩ ∈

[Iop,Sub(Ω×Ω)]) along with a 1I-predicate TI ∈ Sub1IΩ such that:
For any R ∈ SubåX where å ∈ E, there is a unique f : X →Ω such that R= f

∗TI,
and moreover this f has modulus of continuity å.

With this definition, Theorem 24 is just the statement that pMet has a predicate
classifier.
Given that the framework laid out by Proposition 31, Definition 32, Proposition

33, and Definition 34 wholly depends on the category C having a metrization
(compatible with some E) as in Definition 30, it is appropriate to ask whether there
are any interesting examples of such categories apart from the obvious examples
pMet11, pMet

L
1 , and pMet

u
1.

We will see over the remainder of this section that categories of presheaves of
metric spaces provide an affirmative answer to this question, and furthermore that
each such category even exhibits a predicate classifier as described in Definition 34.

4.2. The category of presheaves. For technical ease, we impose some conditions
on the kind of presheaves we consider. Recall that pMet11 refers to the category of
diameter ≤ 1 pseudometric spaces and 1-Lipschitz maps between them.

Definition 35. Let C be a small category. We call a functor F : Cop→ pMet11 a
metric presheaf on C, and the functor category [Cop,pMet11] the category of metric
presheaves on C, which we also denote by PSh(C).

Lemma 36. PSh(C) has finite limits.

Proof. pMet11 has finite limits, and so we can take limits in PSh(C) pointwise. ⊣
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Now isomorphisms in pMet11 are isometries, and for every parallel pair of
morphisms their equalizer can be chosen to be an isometric embedding, so we
must have that in fact every equalizer (and thus every regular monomorphism) is
an isometric embedding.
We have the following convenient description of regular monomorphisms in

PSh(C).

Lemma 37. Let F ,G ∈ PSh(C). A natural transformation ì : F → G is a regular
monomorphism in PSh(C) if and only if each component ìa : Fa→ Ga is a regular
monomorphism in pMet11 for each object a ∈ C.

Proof. The forward direction is clear, since limits are taken pointwise in functor
categories. We show that given a natural transformation ì : F → G such that for
every a ∈ C the component ìa : Fa→ Ga is a regular mono (and thus an isometric

embedding), ì is in fact an equalizer F G H
ì í

í′
for some parallel

natural transformations í,í ′ : G→H (for some H).
Define the values ofH ∈ PSh(C) on each a∈ C to be the set of sieves on a equipped

with the indiscrete metric (every distance is 0), and for each morphism f : b→ a in
C, we defineHf :Ha→Hb to be the evident pullback action on sieves. That is, given
S ∈Ha, Hf (S) ∈Hb is the sieve

Hf (S) = f ∗S = {h : b′→ b | fh ∈ S}

and Hf is clearly 1-Lipschitz since every distance is 0.
Since each component ìa : Fa → Ga is an isometric embedding, we may

equivalently think of each Fa as a subspace of Ga, with ìa being the inclusion.
We define í : G→H componentwise as follows. ía : Ga→Ha is the map that sends
each point x ∈ Ga to the sieve

ía(x) = {f : b→ a | Gf (x) ∈ Fb}.

Now given x ∈ Fa⊆ Ga and f : b→ a in C, we verify that Hf ◦ ía(x) = íb ◦Gf (x).
íb(Gf (x)) is the sieve on b consisting of all those morphisms h : b

′→ b such that
Gh(Gf (x)) = G(fh)(x) ∈ Fb ⊆ Gb. But this is exactly Hf (ía(x)), so í : G→H is a
natural transformation.
We now define í ′ : G → H componentwise as follows. For each a ∈ C and for

each x ∈ Ga, í ′a(x) is the maximal sieve on a. This is easily verified to be a natural
transformation (pulling back the maximal sieve on a across f : b→ a yields the
maximal sieve on b).
We take an equalizer of í and í ′, call itì′ :F ′→G. Each componentì′a :F

′a→Ga
is an isometric embedding, and is an equalizer of ía and í

′
a. But this means that ìa

and ì′a are isometric embeddings with the same image for each a ∈ C, since a sieve
is maximal iff it contains the identity morphism. It is easy to see that this forces F
and F ′ to be naturally isomorphic, so ì is an equalizer of í and í ′, as desired. ⊣

By our previous discussion, regular monos in PSh(C) are thus natural transfor-
mations whose components are isometric embeddings. We formalize this discussion
as the following lemma:
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Lemma 38. Given a functor F : Cop → pMet11, a subobject ì ∈ SubF uniquely
determines the following data:

1. For each object a ∈ C, a subspace ì(a)⊆ Fa such that;
2. For each morphism f : a→ b in C, the map Ff : Fb→ Fa restricts to a map
ì(f ) = Ff : ì(b)→ ì(a).

Conversely, the above data uniquely determines a regular monomorphism with
codomain F, and therefore a subobject ì ∈ SubF.

The above lemma enables us to think of subobjects of F interchangeably
with “compatible” assignments of subspaces of Fa for each a ∈ C, that is,
natural transformations into F with each component an isometric embedding. We
henceforth reserve the right to abuse notation by speaking of subobjects of F as if
they were functors whose values on each object a ∈ C are subspaces of Fa.
For any F ∈ PSh(C), we know what the poset structure of SubF is, since we know

what regular monomorphisms look like. We give a useful equivalent description in
the following lemma.

Lemma 39. Given ì,í ∈ SubF, we have ì ≤ í iff for all a ∈ C, ì(a) ≤ í(a) in
SubFa.

Proof. The “only if” direction is clear. We show that ì(a) ≤ í(a) for all a ∈ C
implies ì≤ í. Having ì,í ∈ SubF and ì(a)≤ í(a) for all a ∈ C gives us each arrow
of the following diagram

ì(b) ì(a)

í(b) í(a)

Ff

Ff

which we a posteriori conclude is commutative. This gives us ì≤ í. ⊣

Proposition 40.

1. PSh(C) has r-images.
2. These r-images are preserved under pullback.
3. Regular monos in PSh(C) are closed under composition.

Therefore, PSh(C) is an r-regular category.

Proof. (1): pMet11 itself has r-images, with every morphism f : X → Y in pMet
1
1

factoring as f = ie for some epi X A
e

and a regular mono A Y
i

serving as the r-image.
Now given F ,G ∈ PSh(C) andϕ : F→G, for each a∈ C we can factorizeϕa : Fa→

Ga as ϕa = eaia for some epi Fa Da
ea

and a regular mono Da Ga
ia

serving as the r-image.
This determines the values of a hypothetical functor D : Cop → pMet11 on the

objects of C; we show that this extends to an honest functorD : Cop→ pMet11 so that
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there are natural transformations F D
e

and D G
i

with components
ea and ia respectively for each a ∈ C.
We specify the values of D : Cop → pMet11 on morphisms f : a→ b of C by the

following diagram:

Fa Ga ·

Da

Fb Gb

Db

ϕa

ea

h

kia

Ff

ϕb

eb

Gf

∃! Df

ib

where h and k were chosen to be a pair of parallel morphisms for which ia is an
equalizer, and we argue for the unique existence of the dotted morphism (which we
suggestively call Df ) as follows.
The unique existence of Df :Db→Da is guaranteed if we show that h◦Gf ◦ ib =

k ◦Gf ◦ ib. Since eb is epi, it suffices to show that h◦Gf ◦ ib ◦ eb = k ◦Gf ◦ ib ◦ eb. But
we have that

Gf ◦ ib ◦ eb = Gf ◦ϕb = ϕa ◦Ff = ia ◦ ea ◦Ff

so h◦Gf ◦ ib ◦ eb = k ◦Gf ◦ ib ◦ eb is true.
The uniqueness of Df for each f : a→ b guarantees functoriality, so therefore

we have specified the data of a functor D : Cop → pMet11. Moreover, we have that

ia ◦Df =Gf ◦ ib for each f : a→ b, so the components Da Ga
ia

for each a∈ C

assemble into a natural transformation D G
i

To see that the components Fa Da
ea

for each a ∈ C also assemble into

a natural transformation F D
e

, we note that by construction (and by
naturality of ϕ) we have ia ◦ ea ◦Ff = ia ◦Df ◦ eb, so that ea ◦Ff =Df ◦ eb since ia is
monic.
We have thus factored ϕ : F → G into ϕ = ie where F D

e
is pointwise epi

and D G
i

is pointwise an r-image (in particular a regular mono) in pMet11.

We now show that in this factorization, i is actually an r-image in PSh(C).
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For any other factorization ϕ =me′ where D′ G is a regular mono (and

therefore pointwise a regular mono), we have the following diagram:

D′a

Fa Ga

Da

D′b

Fb Gb

Db

ma

D′f

e′a

ea
ia

∃! øa

mb

Ff

e′b

eb

Gf

ib

Df

∃! øb

where we have unique existence of the dotted morphisms because ia and ib are
r-images, and where the solid morphisms all commute and the top and bottom
faces (including the dotted morphisms) individually commute. To check that the

morphisms Da D′a
øa

for each a ∈ C assemble into a natural transformation

D D′ø
, we check that øa ◦Df = D

′f ◦øb, which is equivalent to ma ◦øa ◦
Df =ma ◦D

′f ◦øb since ma is monic. But this last equality is true since

ma ◦øa ◦Df = ia ◦Df = Gf ◦ ib = Gf ◦mb ◦øb =ma ◦D
′f ◦øb.

The resulting natural transformation D D′ø
is both a regular mono and

unique for formal reasons.
Also, for the same reasons, r-image factorizations are unique up to isomorphism

so that all r-image factorizations arise in thewaydescribed above, that is, as pointwise
r-images following pointwise epis.
(2): Let ϕ : F → G have an r-image factorization ϕ = ie, and let ø : H → G be

some natural transformation. We want to show that when we pull back across ø as
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in the diagram below

ø∗F F

· ·

H G

ø∗e e

ø∗i i

ø

we have that ø∗ϕ = (ø∗i) ◦ (ø∗e) is an r-image factorization. Now pullbacks in
PSh(C) are just pointwise pullbacks in pMet11, and we know that pullbacks in pMet

1
1

preserve r-images and epis in pMet11. Therefore for each a ∈ C, we have that ø
∗ϕa =

(ø∗ia)◦ (ø
∗ea) is an r-image factorization in pMet

1
1 with ø

∗ia a regular mono and
ø∗ea an epi (since all r-image factorizations in PSh(C) arise as pointwise r-image
factorizations in pMet11).
The (second half of the) proof of (1) shows that when we factorize ø∗ϕ = (ø∗i)◦

(ø∗e) such that componentwise ø∗ϕa = (ø
∗ia)◦ (ø

∗ea) is an r-image factorization
in pMet11 with ø

∗ia a regular mono and ø
∗ea an epi, then ø

∗ϕ = (ø∗i)◦ (ø∗e) itself
is an r-image factorization in PSh(C).
(3): Regularmonos in PSh(C) are just natural transformations whose components

are isometric embeddings, and clearly these are closed under composition. ⊣

Proposition 41. PSh(C) is an r-geometric category.

Proof. Let F ∈ PSh(C). We show that SubF is a small-complete lattice and that
pulling back across any ϕ : G→ F preserves this structure.
Given ìi ∈ SubF , we have the data ìi(a) ∈ Sub (Fa) for each a ∈ C. We verify

that setting (
∧
i
ìi)(a) =

∧
i
(ìi(a)) defines the meet of the ìi; the verification that

(∨
i
ìi

)
(a) =

∨
i
(ìi(a)) defines the join of the ìi is entirely analogous.

Therefore given ìi ∈ SubF , we define ì ∈ SubF by ì(a) =
∧
i
(ìi(a)). Certainly

ì(a) ∈ SubFa. Given a morphism f : a→ b in C, we certainly have that Ff : Fb→ Fa
restricts to a map ì(f ) : ì(b)→ ì(a). We thus have a subobject ì ∈ SubF which is
the pointwise meet of the ìi.
Now given any í ∈ SubF such that í ≤ ìi, we need to verify that í ≤ ì. We have

that í(a)≤ ìi(a) for all a ∈ C, so we have that í(a)≤ ì(a) for all a ∈ C. By Lemma
39 we conclude that í ≤ ì.
We have shown that meets (and joins, by an analogous argument) in SubF

are pointwise meets (and pointwise joins). Pullback across ϕ : F → G is given by
pointwise pullback, which preserves pointwise meets and joins. Therefore pullbacks
preserve meets and joins in PSh(C). ⊣

We now have all the basic structure on PSh(C) to repeat our setup from pMetu1 in
defining a metrization. Since each F ∈ PSh(C) takes values in pMet11, our discussion
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following Definition 30 suggests that we should take E1 = {1I} ⊆ [I,I] to be our
I-moduloid.

Proposition 42. PSh(C) has a metrization compatible with E1.

Proof. pMet11 already has a metrization compatible with E1. To any F ,G ∈
PSh(C), we can make the choice of product F ×G given by (F ×G)a= Fa×Ga for
each a ∈ C where the latter product is the choice of product given by the metrization
of pMet11.
Now for each F ∈ PSh(C), we define DF ∈ [I

op,Sub(F×F)] as follows.
For each r∈ Iop, setDF(r)∈ Sub(F×F) to be the subobject ofF×F which assigns

DFa(r) to each a ∈ C. For any morphism f : a→ b of C we have that Ff : Fb→ Fa
is 1-Lipschitz, so certainly we have that Ff ×Ff : (Fb×Fb)→ (Fa×Fa) restricts to
Ff ×Ff : DFb(r)→ DFa(r). Therefore by Lemma 38 at least each DF(r) as we have
defined it is actually a subobject of F×F .
To see that r 7→ DF(r) defines a functor DF : I

op → Sub(F ×F), we check that
whenever r ≤ s, we also have DF(r) ≤ DF(s). But if r ≤ s we have that DF(r)(a) ≤
DF(s)(a) for each a ∈ C, therefore by Lemma 39 we have that DF(r)≤DF(s).
It is a straightforward verification that this construction satisfies all of the

conditions of Definition 30; the main idea is that all of the structure involved is
inherited pointwise from pMet11, and thus already satisfies the conditions, which can
also all be checked pointwise. ⊣

We have therefore established a notion of “metric” on each F : Iop→ pMet11 with
attendant notions of continuity, (continuous) predicates, (continuous) quantifica-
tion, etc. As a corollary Definitions 32 and 34 make sense in PSh(C), and also the
results of Proposition 31 and 33 apply to PSh(C).
Note that since our I-moduloid E is trivial (E only contains 1I : I→ I), we have

no need to specify moduli of continuity å; it is always just 1I. Thus in our case, for
any predicate R on X we have that R is a 1I-predicate on X, that is, R ∈ Sub1IX .
Since no confusion may result, for tidiness of notation we henceforth write Sub1IX
as SubIX .
We now show that PSh(C) in fact has a predicate classifier, in the sense of

Definition 34.

Theorem 43. PSh(C) has a predicate classifier.

Proof. To give a predicate classifier, we must specify an object Ω∈ PSh(C)—and
therefore also its metricDΩ ∈ [I

op,Sub(Ω×Ω)]—along with a specified TI ∈ SubIΩ
such that for any R ∈ SubIF there is a unique ϕ : F →Ω such that R= ϕ

∗TI.
For each a∈ C, denote by Sa the poset of sieves on a, partially ordered by inclusion

(sieves are just sets of morphisms) and regarded as a category. Let us define the set
|Ωa| to be the set of functors S : Iop→Sa satisfying the following property:
For r,ri ∈ I with inf

i
ri = r,

S(r) =
∧

i

(S(ri)).
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Now given a,b ∈ C and f : b→ a, we define |Ωf | : |Ωa| → |Ωb| as the evident
pullback action on sieves. That is, given S ∈ |Ωa|which is thus a functor S : Iop→Sa,
we specify the functor |Ωf |(S) : Iop→Sb by

|Ωf |(S)(r) = f ∗(S(r)) = {h : b′→ b | fh ∈ S(r)}.

So far we have specified the values, at the Set level, of a hypothetical functor
Ω : C → pMet11. What remains is to put a metric on |Ωa| for each a ∈ C so that the
set function |Ωf | : |Ωa| → |Ωb| for each f : b→ a is 1-Lipschitz with respect to these
metrics, and then to check that Ω is a classifier.
We define a (set) function ía : |Ωa| → [0,1] by

ía(S) = inf{r | S(r) is the maximal sieve on a}

and a (set) function d–a : |Ωa|× |Ωa| → [0,1] by

d–a (S1,S2) = |ía(S1) – ía(S2)|.

(Note that, by construction of |Ωa|, ía(S)≤ r iff S(r) is the maximal sieve on a.)
We now define da : |Ωa|× |Ωa| → [0,1] by

da(S1,S2) = sup
f :b→a

d–b
(
|Ωf |(S1), |Ωf |(S2))

where the supremum is taken over all morphisms f : b→ a in C with codomain a.
We claim that da gives a metric on each |Ωa|. Clearly d

–
a is a metric for each

a ∈ C. Reflexivity and symmetry of da are also clear; we check the triangle inequality
for da.
Let S1,S2,S3 ∈ |Ωa|. Let ä = da(S1,S3) = supf :b→a d

–
b (|Ωf |(S1), |Ωf |(S3)). For

every äi < ä, there is some fi : bi → a such that d
–
bi
(|Ωfi|(S1), |Ωfi|(S3)) > äi. By the

triangle inequality for d–bi , we have that

d–bi
(
|Ωfi|(S1), |Ωfi|(S2))+d

–
bi

(
|Ωfi|(S2), |Ωfi|(S3))≥ d

–
bi

(
|Ωfi|(S1), |Ωfi|(S3))> äi.

This shows that da(S1,S2)+da(S2,S3)≥ ä = da(S1,S3).
Now for each a ∈ C, we define Ωa to be the metric space whose underlying set is

|Ωa| and whose metric is da. It is easy to see that for each f : b→ a, the function
|Ωf | : |Ωa| → |Ωb| is the underlying set function of a 1-Lipschitz map Ωf : Ωa→Ωb.
It is clear that the assignment f 7→ |Ωf |, and therefore also f 7→ Ωf , is functorial.
Thus we have a functor Ω : C → pMet11. Proposition 42 tells us that the “pointwise
metric” da on each Ωa gives us DΩ ∈ [I

op,Sub(Ω×Ω)].
We now specify TI ∈ SubIΩ. We first define TI ∈ [I

op,SubΩ], and then show
that TI satisfies the conditions to be a (1I-)predicate on Ω. For each r ∈ I, we
specify (a hypothetical) TI(r) ∈ SubΩ by the assignment a 7→ í

–1
a ([0,r]) ⊆ Ωa for

each a ∈ C. Given f : b→ a, Ωf : Ωa→ Ωb takes í–1a ([0,r]) into í
–1
b ([0,r]) since the

pullback along f : b→ a of the maximal sieve on a is the maximal sieve on b, so
we indeed have TI(r) ∈ SubΩ. Clearly TI(r) ≤ TI(s) whenever r ≤ s, thus we have
defined TI ∈ [I

op,SubΩ].
We show that TI as given above satisfies

https://doi.org/10.1017/jsl.2020.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.44


1076 SIMON CHO

1. For r,ri ∈ I with inf
i
ri = r,

TI(r) =
∧

i

(
TI(ri)) .

2. For r,s ∈ I,
(
ð1

∗TI(r)
)
∧DΩ(s)≤ ð2

∗TI(r+ s)

thereby showing that TI ∈ SubIΩ.
(1): Let r,ri ∈ I with inf

i
ri = r. For any a ∈ C, we have that TI(r)(a) = í

–1
a ([0,r]),

therefore the set of functors S : Iop→Sa such that S(r) is the maximal sieve on a.
Clearly TI(r)(a) = í

–1
a ([0,r]) ≤

∧
i
(TI(ri)(a)). Now if S ∈

∧
i
(TI(ri)(a)) then S(ri)

is the maximal sieve on a for all i, and therefore ía(S) ≤ r. Therefore we have∧
i
(TI(ri)(a))≤ TI(r)(a) for all a ∈ C.

(2): It suffices to check this condition pointwise, where it turns into
(
ð1

∗TI(r)(a)
)
∧DΩa(s)≤ ð2

∗TI(r+ s)(a)

where DΩa is just the object of [I
op,Sub(Ωa×Ωa)] naturally given by the metric da

of Ωa. Thus the above condition translates into

x ∈ TI(r)(a) and da(x,y)≤ s=⇒ y ∈ TI(r+ s)(a).

x ∈ TI(r)(a) means that x is a functor x : I
op→Sa such that x(inf

i
ri) =

∧
i
x(ri) and

x(r) is the maximal sieve on a. Now

da(x,y)≤ s⇐⇒ sup
f :b→a

|íb(|Ωf |x) – íb(|Ωf |y)| ≤ s

so in particular, taking f to be the identity 1a : a→ a, we have ía(y) – ía(x) ≤ s.
Therefore y(r+ s) is the maximal sieve on a and y ∈ TI(r+ s)(a).
So far we have constructed Ω ∈ PSh(C) and TI ∈ SubIΩ. We now show that these

satisfy the conditions given in Definition 34 to be a predicate classifier. That is, for
any F ∈ PSh(C) and any R ∈ SubIF , there is a unique morphism ϕ : X → Ω such
that ϕ∗TI = R.
Specifically, this means the following. Any R ∈ SubIF is precisely the data

assigning a subspace R(r)(a)⊆ Fa to every r ∈ I and a ∈ C so that:

◦ For every r≤ s and a ∈ C, R(r)(a)⊆ R(s)(a);
◦ For every r ∈ I, and f : b→ a, Ff : Fa→ Fb restricts to a map Ff : R(r)(a)→
R(r)(b).

We need to show that there is a uniqueϕ :F→Ω forwhichϕ∗TI=R, whichmeans
specifying the data of maps ϕa : Fa→ Ωa for each a ∈ C satisfying the following
conditions:

◦ For each f : b→ a, ϕb ◦Ff =Ωf ◦ϕa;
◦ For each r ∈ I and a ∈ C,

ϕ–1a
(
í–1a ([0,r])

)
= R(r)(a).

https://doi.org/10.1017/jsl.2020.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.44


CATEGORICAL SEMANTICS OF METRIC SPACES AND CONTINUOUS LOGIC 1077

There is at least a set function ϕa for each a ∈ C satisfying the above conditions:
for each x ∈ Fa, we define ϕa(x) : I

op→Sa to be the functor such that, for all r ∈ I,

ϕa(x)(r) = {f : b→ a | Ff (x) ∈ R(r)(b)}.

Unwinding the definitions, we see that this definition of ϕa satisfies

x ∈ ϕ–1a
(
í–1a ([0,r])

)
⇐⇒ x ∈ R(r)(a),

since the former set is the set of points x ∈ Fa for which the sieve {f : b→ a | Ff (x) ∈
R(r)(b)} is the maximal one. Moreover, for any f : b→ a we have that ϕb(Ff (x)) :
I
op → Sb is the functor whose value at r ∈ I is the sieve {h : b′ → b | Fh(Ff (x)) =
F(fh)(x) ∈ R(r)(b′)}. But this sieve is exactly Ωf (ϕa(x)(r)). It is straightforward to
verify that that this is the only way to define the set functions ϕa which satisfy the
above conditions. Thus the proof will be finished once we show that this definition
of ϕa is 1-Lipschitz for each a ∈ C.
Given x,y ∈ Fa, we verify that da(ϕa(x),ϕa(y))≤ dFa(x,y).

da(ϕa(x),ϕa(y)) = sup
f :b→a

|íb(Ωf (ϕa(x))) – íb(Ωf (ϕa(y)))|

so it suffices to show that for any f : b→ a, we have

|íb(Ωf (ϕa(x))) – íb(Ωf (ϕa(y)))| ≤ dFa(x,y).

By construction, we have that ϕb ◦Ff =Ωf ◦ϕa, so the above is equivalent to

|íb(ϕb(Ff (x))) – íb(ϕb(Ff (y)))| ≤ dFa(x,y).

But we claim that

|íb(ϕb(Ff (x))) – íb(ϕb(Ff (y)))| ≤ dFb(Ff (x),Ff (y)) = ä,

which we now prove.Without loss of generality, we can assume rx = íb(ϕb(Ff (x)))≤
íb(ϕb(Ff (y))) = ry, so that the left hand side in the above is just ry – rx. By
construction, rx = inf{r | Ff (x) ∈ R(r)(b)}. Since R is a predicate, we have that
Ff (x) ∈ R(rx)(b). Again since R is a predicate, we must therefore have that
Ff (y) ∈R(rx+ä)(b), so that ry ≤ rx+ä and therefore ry – rx ≤ ä. Since ä ≤ dFa(x,y)
we are done. ⊣
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