
ON EUCLID'S ALGORITHM IN CYCLIC FIELDS 

H. HEILBRONN 

1. Introduction. In two papers I have proved that there are only 
a finite number of quadratic fields [6] and of cyclic cubic fields [7] in which 
Euclid's algorithm (E.A.) holds. Davenport has shown by a different method 
that there are only a finite number of quadratic fields [1, 2], of non-totally real 
cubic fields [3, 4] and of totally complex quartic fields in which E.A. holds. 

The object of this paper is to extend these results to cyclic fields of higher 
degree. I shall prove 

THEOREM 1. For every k ^ 4 there are only a finite number of cyclic fields K 
of degree k whose discriminant A is the power of a prime, in which E.A. holds. 

The methods employed in this paper could actually furnish a proof of a 
theorem dealing with a more general type of cyclic field. But the classical 
theory of abelian fields allows us to name a large number of cyclic fields in 
which the class-number is greater than 1, and in which therefore E.A. cannot 
hold. Since these results are difficult to find in the existing literature, they will 
be quoted and proved in some detail in this paper. 

To begin with we recall the two different definitions of the class-number of 
an algebraic field. H is the number of classes of ideals in an algebraic field if 
two ideals are considered equivalent provided their quotient is a principal 
ideal generated by a totally positive number; h is the number of classes of 
ideals in an algebraic field if two ideals are considered equivalent provided 
their quotient is any principal ideal. It is clear that H = h for complex 
abelian fields. 

We denote by w(N) the number of distinct rational primes dividing a 
rational integer N ^ 0. 

We call a cyclic field K a field of type T\ if it is the composite field of cyclic 
fields Kj of degrees kj and discriminants Ay where any two kj are relatively 
prime, where any two Ay are relatively prime, and where w(Aj) = 1. 

We call a cyclic field K of degree k a field of type T2 if it is the composition 
field of a field Ki of type T\ of odd degree, and of a cyclic field K2 of dis­
criminant A2 of degree 2l of the following type: w(A2) ^ k and the discriminant 
of the unique subfield of K2 of degree 2l~1 is a power of a prime, if / > 1. (For 
the purpose of this definition Ki or K2 may be the field of rational numbers.) 
We can now formulate 

THEOREM 2. (jfe, H) > 1 for a cyclic field K not of type T\. 

THEOREM 3. h > 1 for a cyclic field K not of type T2. 
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All results of this paper and of my two previous papers can be summarized as 

THEOREM 4. For each k ^ 2 E.A. holds only in a finite number of cyclic 
fields K of degree k and discriminant A, if only fields of the following types are 
considered. 

(1) k a prime. 

(2) w(k) = 1, k odd. 

(3) w(k) = 1, K complex. 

(4) w(A) = 1. 

(5) w(A)> w(k), k odd. 

(6) w(A) > w(k), K complex. 

(7) w(A) ^ k + w(k). 

(8) w(A*) > 1 for the discriminant A* of every non-rational subfield K* of K. 

(9) k odd, K not of type 7\. 

(10) K complex and not of type T\. 

(11) K not of type T2. 

Finally I should like to mention two types of cyclic fields for which E.A. 
may possibly hold in an infinity of cases. 

(a) The real quartic field 

p(Vj(5 + &)p) 
of discriminant 125£2, where p = 3 (mod 20) is a prime. 

(b) The complex sextic field 

p ( ( e 2 W 9 + e -2^/9) , ( _ p)\) 

of discriminant — 38p3, where p = 3(mod 4) is a prime. 
We establish the following conventions. Small italics except e, i, and o 

denote positive rational integers, d, p and q denote positive rational primes. 
Ky K'', Kj etc. denote abelian fields of degrees k, k', kj etc. and discriminants 

A, A', Aj etc. 
Only absolutely abelian fields will be considered in this paper. 

2. Dirichlet characters and Abelian fields. Two Dirichlet characters x(w) 
(mod m) and x'(w) (mod m') are said to belong to the same train if and only if 
x(n) = x'{n) for all n with (n, mm') = 1. Then each train contains exactly 
one primitive character xo(w) ( m o d / ) ; / is called the conductor of the train, 
and also the conductor of all characters in the train. The product of two 
trains is defined in the obvious way, and it is clear that the trains form an infi­
nite abelian group with respect to multiplication. 

If x W is a character mod m and if 

m = mim2, (mu m2) = 1, 
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then x(n) can be written in the form 

where xi(n) and X2M are uniquely determined characters mod m\ and m2 

respectively. In particular, if xW is primitive, then xi(*0 and X2W are 
primitive. 

The principal results of class-field theory can easily be expressed in the 
following way. 

Between all finite groups © of trains and all abelian fields K there is a one-one 
relation [5, Theorem 1] which satisfies the following conditions: 

I. The group ® is isomorphic to the Galois group of the field K. [5, 
Theorem 2.] 

II. A field K' contains a field K if and only if the corresponding group ©' 
contains the corresponding group ©. [5, Theorem 10.] 

III. |A| equals the product of the conductors of the trains in ®. [5, 
Theorem 16.] 

IV. U(s) = ILL(5, x), 
X 

where f#(s) denotes the Dedekind f-function of K, and where x runs through 
the primitive characters of the trains in ©. [5, Theorem 14.] 

V. Ii A = ± pl, p becomes in K the &th power of a self-con jugate prime 
ideal of the first order. 

VI. If (A, p) = 1, pl is the norm of an integral ideal in K if and only if 
x(pl) — 1 for all primitive characters of the trains in ©. 

VII. If (A, n) = 1, n is the norm of an integral ideal in K if and only if in 
the canonical representation 

n = p!li. . .ps
ls 

each factor pjlj is the norm of an integral ideal in K. 

VIII. If n is the norm of an integral ideal in K, then x W ^ 0 for all 
characters of the trains in ®. 

IX. If Kr is an abelian extension of K of relative discriminant 1, then the 
class-number H of K is divisible by k'/k. More precisely, the class-group 
of K contains a subgroup whose quotient group is isomorphic to the Galois 
group of K' over K. [5, Theorems 2 and 16.] 

In addition we require two lemmas about discriminants. 

LEMMA 1. / / the fields K\ and K2 have discriminants Ai and A2 and if 
(Ai, A2) = 1, then the composition field K0 = Ki, K2 has discriminant 

Ao = Ai*2A2
fcl 

and degree kQ = kik2. [8, Theorem 88.] 
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LEMMA 2. If Kr is an abelian extension field over K, then 

|A'| = | A | * ' / * 

if and only if Kr has relative discriminant 1 over K. [8, Theorem 39.] 

3. Proof of Theorem 2. Let x(n) be the primitive character in one of the 
trains which generate the group © corresponding to K, so that k is the order of 
x(ft). Then we can write 

xW = xiO) . . . x«(w), 

where x iW, . . . , Xs(n) are primitive characters mod p\l{, . . . , ps
ls re­

spectively, all the pj being distinct. Let fei, . . . , ks denote the order of 
XiM, . . . , x«W respectively; then the smallest common multiple 

[ki, . . . , ks] = k. 

Let Pj denote the product of the conductors of the characters 

X;M, X;2W, • • • ,XSkj-Kn) (1 ^ J ^ 5). 

Then the product of the conductors of the characters 

xW, x20), • • • , xk(n) 
equals P ^ / * 1 . . . Ps

k/ks = |A| 

by III . 
Let us now consider the group @; of all trains generated by 

XiO), . . . , Xs(n). 

®' contains the train x(n)> a n d the order k' of ©' equals 

The product of the conductors of all trains in ©' equals 

/ p ft/ fc« ^ ^ p ft/ fts\ ftl • • • ks — U ft// ftl _ U ' l 

where A' is the discriminant of the field Kf corresponding to ©'. 
It follows by I, II, and Lemma 2 that K' is an extension field of relative 

discriminant 1 over K. Hence by IX 

H = 0(mod k'/k). 

Hence, if k' > k, then (k, H)> 1. If k' = k, then any two of the numbers 
ki, . . . , ks are relatively prime, and the field K is of type 7\. This proves 
Theorem 2. 

4. Proof of Theorem 3. We prove first: 

LEMMA 3. If K is complex, then H = h. If K is real, then h > 1 unless 
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the class group of K {in the narrow sense) is the direct product of not more than 
k — 1 abelian groups of order 2. 

Proof. The first part of the lemma is trivial. 
If K is real, then — 1 is a non-totally positive unit in K. Therefore the group 

of all numbers in K, which are products of a unit in K, and of a totally positive 
number in K, is a subgroup of the group of all numbers ( ^ 0) in K of index 
<^2Jc~1. More precisely, the quotient group is the direct product of at most 
k — 1 groups of order 2. Since this quotient group is isomorphic to the 
quotient group of the two class groups in K, the lemma follows. 

Assuming the notation used in the proof of Theorem 2, it suffices by virtue 
of IX and Lemma 3, to prove that, if the Galois group of K' over K is the 
direct product of at most k — 1 groups of order 2, then K is of type T2. 

Let Ko be the field of largest odd degree ko which is contained in K, and let 
Ke be the field of largest degree ke = 2l which is contained in K. Then 
Ko and Ke are uniquely determined and we have 

K = Ko,Ke , k = koke. 

Let Kt be the unique subfield of Ke of degree k = \ke- Then we have to prove 

(i) Ko is of type 7\. 

(ii) w(Ae) ^ k. 

(iii) w(At) = 1 if k€> 1. 

We construct the extension field K'o over Ko by the same process which gave 
us the extension field K' over K. If Ko were not of type Tlf then k'o/h> 1 
and odd. Since K'o is a subfield of K', we should have 

(k'/k'o) (&'oA>) = (k'/k) (k/h), 

which is a contradiction, because each factor on the right is a power of 2. 
This proves (i). 

Next we construct the extension field K'e by the same process. Again K'e 

is a subfield of K' and we have 

(k'/k'e) (kfe/ke) = (*'/*) (k/ke). 
Here 

k/ke s 1 (mod 2), 2*"1 = 0 (mod k'/k). 

If w(Ae) > k, then 
2k ^ 0 (mod k'e/ke) 

which gives a contradiction. This proves (ii). 
Finally if ke ^ 4, w(A() ^ 2, then the absolute Galois group of K'e would 

have a subgroup of type (4, 4) by virtue of I. A fortiori the absolute Galois 
group of K' would have a subgroup of type (4, 4). Since the absolute Galois 
group of K is cyclic, the Galois group of Kf over K would contain an element 
of order 4, which contradicts our hypothesis. This proves (iii). 
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5. Conventions and notations. We start by proving 

LEMMA 4. If K is cyclic, w(A) = 1, |A| ^ ¥{k~l\ then 

|A| = dk~\ d s 1 (mod k). 

Proof. Let xM be the primitive character in one of the trains which 
generate the group © corresponding to K. By I and III x W is a primitive 
character mod da (say) of order k. Hence 

k\<p(da) = da~\d - 1), 

which means that either d\k or k/d — 1. In the latter case, if a > 1, we should 
have a number n such that 

x(n) ?£ l,n = l(mod da _ 1). 
For this value of n 

nd = l(mod da), 
1 = x(nd) = xd(n) = x ( w ) ^ l f 

which is a contradiction. Hence x M is a character mod d; x'(w) is a fortiori a 
character mod d for 1 <j< k, and it follows from III that 

|A| = dk~\ 

If d/ky we proceed as follows. We assume that 

k = dhm, (m, d) = 1. 

Then, for d > 2, the group of all characters mod da is cyclic of order <p(da). 
Hence the number of characters mod da of order k equals <p(k) if k/(p(da) and 0 
otherwise. Hence there exists a primitive character mod da of order k if and 
only if 

<p(da) = 0 (mod *), vid*-1) jà 0 (mod k). 

This implies 
m\(d - 1), a = b + 1, 

d ° ^ d i ^ &2, |A| ^ k^k~l). 

If d = 2, d|&, the argument is similar. We may assume at once that a> 3. 
Then the group of characters mod da is abelian of type (2, 2a~2), and the 
number of characters of order k = 2b equals 3 if b = 1, 2b if 2 ^ & ^ a — 2, 
0 if &> a - 2. 

Hence there exists a primitive character mod 2a of order k if and only if 

b = a - 2. 
This implies 

da = d2k^ k\ |A| ^ k*(k-l). 

For the rest of the paper excluding the last paragraph we assume k ^ 4, 
i£ cyclic; hence by virtue of Lemma 4 
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d = 1 (mod k), |A| = dk~\ 

x(n) is again the primitive character mod d of order k in a train which generates 
the group © corresponding to K. xiv) will n o w be fixed. 

Let A j denote the class of integers n for which 

x(n) = e*'W* ( 0 ^ i ^ * - 1). 

Let B denote the subclass of integers b in AQ for which 

b = 6162, (6i, h) = 1 

implies &i in A0. Let C denote the sub-class of integers c in AQ which can be 
decomposed in the form 

c = cic2, (cu c2) = 1, xtei) ^ 1. 

Clearly every number in AQ lies either in B or in C. It follows from VI and 
VII that a number n is norm of an integral ideal in K prime to d if and only if 
n lies in B. 

Also qi< q2 are the two smallest primes not in A0 which do not equal d; 
and r is the smallest number in C which is prime to qi and which satisfies 

(1) r = - d (mod 4) if qx = 2, 

(2) r = - < 2 2 - l ( m o d 9 ) if q1 = 3. 

For #i ^ 5 no additional condition is imposed upon r. 
Let e be a positive number which will be fixed later; it may be arbitrarily 

small. The constants involved in the symbols 0 and 0 will depend on k only. 
Unless the contrary is stated the symbol 0 will refer to the limit as d —• 00. 
We put 

X = [rf*+«], y = [d*+«]. 

6. Further lemmas. 

LEMMA 5. X P~l= log log s + 7 + 0(1) as z —» 00, where y is an absolute 

constant. [9, Theorem 7]. 

LEMMA 6. For each non-principal character x(w) mod m 
z 

IL x W = 0 {m* log m) [10]. 
n = l 

LEMMA 7. q^^ y if d is sufficiently large. 

Proof. We assume g2 > y. Then all primes ^ y, with the possible ex­
ception of 0i, belong to A0. Hence, if 

n ^ x, («, gi) = 1, #|», ;y< />, 

then x(w) = x(P) unless n is divisible by the product ppf of two primes in the 
interval y < p ^ x, y< p' ^ x. 
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Therefore we have for 1 ^ j ^ k — 1 

£ xKn) = É i + É (x5'(«) - i) 

= (l - f f l - i )* + 0(i)+ E (xy(/»)-D I H E ZO(x/pp') 
y<p^x m^x/p p >y p'' >y 

pjéqi (m,qi) = l pp'^x 

= (i - gr1)* + 0(1) + E {(x''(/>) - i) (i - gr1)*/» -^ 0(i)} 

+ 0(*y-i) +0(x( £ p'1)2) 
y<p<di+2c 

= (1 - 21->)*{1 + Z (x*(/>) - I)/»-1} + 0(T(X)) 

y <P^% 

+ oUlog XL±1± + 0 ( i ) V | (Lemma 5) 

= (1 - g r O x f l + E (xJ'(£) - l ) ^ 1 } + 0(e2.r) + o(x). 
y <p^x 

Applying Lemma 6, this gives, after division by (1 — q{~l)x, 

0 = 0(e2) + o(l) + 1 + E (x''(P) - l ) ^ 1 . 

Summing this over j = 1, . . . , k — 1 we obtain 

0 ^ 0(e2) + o(l) +k - 1 - k E />_1. 
y<P<x 

Hence 

E £_1 ^ 1 ~ &_1 + 0(e2) + o(l). 
y <p^x 

But by Lemma 6 

E £ _ 1 = log log x — log log 3/ + o(l) 
y^p^x 

= log i ± - € + 0(1) = log 2 + 0(€) + o(l). 
i - € 

Hence 
log 2 ^ 1 - k~l + 0(e), 

which is not true if e is sufficiently small. This proves the lemma. 
From now on e is fixed as a function of k. 

LEMMA 8. Q\r < dl~€
y ifd is sufficiently large. 

Proof. We assume that d is so large that Lemma 7 applies. If q2 lies in 
Aj (1 ^ j ^ k — 1), we choose for u the smallest number in Ak-j wThich 
satisfies 
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0 , gig2) = 1, 
uq2 = — d (mod 4) if qi = 2, 

uq2= — d2 — 1 (mod 9) if gi = 3. 

If d is sufficiently large, it is easily deduced from Lemma 6 that 

u< x. 

(The detailed argument is explicitly developed in [7].) Since uq2 lies in C 
it follows from the definition of r that 

r ^ ^ 2 < xq2, 
and by Lemma 7 that 

qiX < Çi(xq2) < xq2
2 ^ xy2 ^ d1-6. 

LEMMA 9. If qi ^ 5, s < gi, we azw ̂ wd a prime po such that 

(po, s) = l,po< qu Po ^ log d 

provided d is sufficiently large [7, Lemma 4]. 

LEMMA 10. For sufficiently large d we can write 

d = sr + tqh 

where s in B, (/, gi) = 1. 

Proof. We distinguish three cases. 

Firs/ case, qi = 2. We have 

d = r + 2t, 

and it follows from (1) that / is odd. 

Second case, qi = 3. Then we have with s = 1 or s = 2 

d = sr + 3/. 

Clearly s lies in B, since q\ = 3 is the smallest positive integer not in A0. If / 
were divisible by 3, we should have by (2) 

sr = - s(d2 + 1) = d (mod 9), 
(±2s - l)d= s(d ± l ) 2 (mod 9), 

( - 4 s 2 + l)d2 = s2(d2 - l ) 2 (mod 9), 

- 4 s 2 + 1 = 0 (mod 9), 

which is not true for s = 1 or s = 2. 

Third case, qi ^ 5. Again, by Lemma 8, we can find s and / such that 

d = sr + tqh s < qx. 

Clearly, s lies in B, as it is not divisible by a prime ^ q\. 
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But qi may possibly divide t. If qi\t, we use the prime po of Lemma 9 and 
denote by n the smallest positive solution of the congruence 

s -f- nqi = 0 (mod po). 

Then 

(3) s + nqi< qi + (po - l)qi = Mi -

We consider the representation 

d = (s + nqx)r + (t - nr)qx. 

Since n< qu t — nr is prime to q±. Since by (3), Lemma 9 and Lemma 8, for 
sufficiently large d 

(s + nqx)r < p0qir ^ (log d)dl~€ < d, 
it follows that 

t - nr > 0. 

Finally it follows from (3) and Lemma 9 that no prime ^ qi divides 5 + nq\. 
Hence 5 + nqi lies in B, and our lemma is proved in all cases. 

LEMMA 11. If d is sufficiently large, 

d = c + g, 

where c lies in C, and g does not lie in B. 

Proof. We assume that d is so large that Lemma 10 applies, and put 

c = sry g = tqi. 

Clearly g does not lie in B, since 

g = tqi, (/, qi) = 1, qi not in A0. 

Since r lies in C, we have a decomposition 

r = rir2f (ri, r2) = 1, 

where rx does not lie in A0. It follows from the fundamental theorem of 
arithmetic that we have a decomposition of 5 such that 

5 = Sis2, (si, s2) = 1, (ru s2) = (r2, 5i) = 1. 

Since 5 lies in B, S\ lies in A0. We have a decomposition 

c = sr = fori) for2), (5iri, s2r2) = 1, 

where V i does not lie in ^40. Hence c, lying in ^40, lies in C. 

7. Proof of Theorem 1. We assume that E.A. holds in K. Then, by 
condition V, there exists in K a self-con jugate principal prime ideal (5) of 
norm d. 
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We assume that d is so large that Lemma 11 applies. Since c lies in A0l the 
congruence 

nk = c (mod d) 

has a solution. Since E. A. holds in K, we can find an integer 7 in K such that 

n = y (mod 5), |iV(7)| < \N(ô)\ = <*. 

Since (5) is self-conjugate, the congruence 

n = 7' (mod 5) 

holds for each conjugate Y' of Y- Multiplying these & congruences we obtain 

c = nk = N(y) (mod Ô), 
c s f f ( T ) (mod J) . 

Hence 
either iV(Y) = c or -W(Y) = c — d — — g. 

This means that the norm of the ideal (Y) equals c or g, which is impossible by-
Lemma 11 and condition VII. 

8. Proof of Theorem 4. We take each individual assertion in Theorem 4, 
starting from the end. 

(11) follows from Theorem 3. 

(10) follows from Theorem 2, since H = h if K is complex. 

(9) follows from Theorem 3, since for odd k a field of type T2 is a field of 
type Ti. 

(8) If k is divisible by an odd prime, KQ is not of type Tu and therefore K 
is not of type TV If k = 2l, I ^ 2, the field Ke has discriminant A« with 
w(A€) > 1, hence K is not of type TV If k = 2, the result follows from my 
first paper [6]. 

(7) If X were of Type TV then 

w(A0) ^ w(k0) 
and 

w(Ae) ^ k for even &. 
Hence 

w(*o) < * + w(fc) for odd fe. 
w(A) ^ w(A0) + w(Ae) ^ < 

w(k0) + k = k — 1 + w(k) for even k. 

(6) X is not of type TV and h = H> 1. 

(5) Since for odd k a field of type T2 is a field of Type TV K is not of type 
TV 
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(4) follows from Theorem 1 for k ^ 4, and from my older results if 
k = 2 or k = 3. 

(3) follows from (4) and (6). 

(2) follows from (4) and (5). 

(1) follows from (2) if k is odd, and from my older results if k = 2. 
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