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1. Introduction

In connection with algebras of unbounded operators, Lassner showed in [4] that, if T
is a densely defined, closed linear operator in a Hilbert space such that its domain is
contained in the domain of its adjoint T* and is globally invariant under T and T*,
then T is bounded. In the case of a Banach space (in particular, a C*-algebra) we
showed in [6] that a densely defined closed derivation in a C*-algebra with domain
containing its range is automatically bounded (see the references in [6] and [7] for the
theory of derivations in C*-algebras).

In general there exists a densely defined, unbounded closed linear operator with
domain containing its range (see Example 3.1). Therefore it is of great interest to study
the boundedness and properties of such an operator.

We show in Section 2 that a dissipative closed linear operator in a Banach space with
domain containing its range is automatically bounded.

In Section 3, we deal with a densely defined, closed linear operator in a Hilbert space.
Using the result in Section 2, we first show that a closed operator which maps its
domain into the domain of its adjoint is bounded and, as a corollary, that a closed
symmetric operator with domain containing its range is automatically bounded.
Furthermore we study some properties of an unbounded closed operator with domain
containing its range and show that the numerical range of such an operator is the whole
complex plane.

2. Dissipative operators in Banach space

Let 9C be a Banach space with dual space 9C*. For aeSC, we denote by 9C*{d) the set
of all tangent functional at a; that is, #"*(a) = {<£e#"*:<a,(/>> = ||a|| ||0||}.

Let T be a densely defined (linear) operator in 3C. In this paper, we assume that all
operators are linear. We denote by 3i{T) the domain of T. If, for each aeS>(T), there
exists a non-zero 4>eSC*(a) such that Re<Ta, <£>^0 then T is called dissipative.

It is well-known [5] that if T is dissipative then T is closable and its closure is also
dissipative. Batty recently showed in [1] that if T is dissipative then for all aeS>{T) and
all 4> e SC*{a) Re < To, 0> g 0.

Theorem 2.1. Let T be a densely defined, dissipative closed operator in a Banach space
SC. If there is a positive integer n such that 3>{T") is dense in SC and is globally invariant
under T, then T is bounded on SC.

In particular, if the range of T is contained in 3>(T) then T is automatically bounded.
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Proof. For each non-negative integer m, we define a norm on <3>(Tm) by

M-« I \\T*(a)\\
OSkgm

for ae3i{Tm). Here T° is the identity operator / and | |0 = || ||. Since T is closed it
follows that 3>(Tm) equipped with | |m turns out to be a Banach space, which is denoted
by (®(Tm), | | J .

It is clear that T is also closed as an operator on {@{T"), | |n) by our assumption.
Therefore T is continuous on {3>{T"), | |n) by the closed graph theorem.

Since T is dissipative, we have, by standard computations,

for all X>0 and aeS>(T), so that

\ka-Ta\n^k\a\n

for all X>0, aeS>(T"). It follows from the semi-group theory that the restriction of T on
3>{Tn) generates the uniformly continuous one-parameter semi-group of contractions on

| |n), and therefore

We show that 3){T") is dense in (3>{T"~l), \ | n_ t) . To see this, let x be in 2)(T"~i).
Since 3>{T") is dense in 3C and ( / - T)S>(T") = S)(Tn), there is a sequence {x,} in 9(T")
such that \l — T)n~lxl-+(I — T)"~lx as /->oo. By using the inequality (#), we get
elements ylk) (0^ fe^n- l ) such that

(I-T)kx,-*(I-T)k/k) as

and

Since T is closed it follows that yw = Tkx (0^k^n-l). Thus x,-»x in (^(r"-1), | |B_j).
We next show that {I — T)S>(Tn) is closed in (^(T""1), | ^ . J . Take a sequence {x,}

in ®(7"") and x in ^(T1"1) satisfying (/-T)x,-»x as n->oo with respect to | |n_t. It
follows from the inequality | | n_!^ | | || and the dissipativeness of T that there is an
element y in 3C such that xt->-y as /-»oo, so that Tx, ->y — x. Since T is closed, it follows
that y belongs to ®{T) and (I-T)y = x. This means that y belongs to 2>(T") and x
belongs to ( / - T)3{T") = ®{Tn). Thus 2>(Tn) =(I-T)®(Tn) = @(T"-1), and hence

By repeating the above arguments, we obtain
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Since T is closed it follows that T is bounded on 3C. This completes the proof of the
theorem.

3. Operators in Hilbert space

We first give an example of a densely defined, unbounded closed operator such that
its range is contained in its domain.

Example 3.1. Let 3E = l2 be the Hilbert space of sequences {x(ri)}n=12,... for which
£™=i |x(n)|2< + oo. Define a subspace S> of I2 by

n2\x{2ri)\2 <+oo}.

We introduce an operator with domain S> as follows;

Tx = (x(2), 0,2x(4), 0,..., nx(2n), 6"...

for xs&, that is;

and

(Tx)(2n)=0

for n=l ,2, . . . .
Then T is a densely defined operator in /2. Since

for unit vectors u(2l) =(0,0,...,0,1,0,0...), T is unbounded. It is easily seen by direct
computations that T is closed and leaves its domain invariant (in particular T2 = 0). We
remark that the numerical range of T coincides with the whole complex place C, as
cited below.

Let T be a densely defined operator in a Hilbert space. We put

ir(T) = {(Tx,x); xe@{T) with ||x|| = l}.

The set iV{T) is said to be the numerical range of T. It is well-known that W(T) is a
convex set in C and if i^(T)^C then T is closable (see [3] and [8]). Furthermore if T
is symmetric, W(T) lies on the real axis. There exists a (closed) symmetric operator such
that W(T) equals the entire axis of reals (see [8] for its construction).
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Proposition 3.2. Let T be a densely defined, closed operator in a Hilbert space.
Suppose the range of T is contained in its domain. If T is unbounded, then the numerical
range iV(T) is the whole complex plane C.

Proof. If if~(T)j=C, then there is constants a^O and P in C such that

Clearly, <xT + p leaves its domain invariant and is dissipative. Hence, by Theorem 2.1,
ocT + p is bounded; that is, T is bounded. This is a contradiction.

As seen in Example 3.1, a closed operator with range contained in its domain is not
always bounded. We next show that some special operator with this range property is
bounded. To see this, we present the following theorem.

Theorem 3.3. Let T be a densely defined, closed operator in a Hilbert space. Suppose
T maps its domain into the domain &>(T*) of its adjoint T*. Then T is bounded.

Proof. Let T= V\T\ be its polar decomposition. Our assumption implies that

Hence \T\ leaves its domain invariant. It follows from Theorem 2.1 that \T\ is bounded
and so T is bounded.

Corollary 3.4. Let T be a densely defined, closed symmetric operator in a Hilbert
space. Suppose the domain 2>(T) is globally invariant under T. Then T is bounded.

Let T be a densely defined, closed operator in a Hilbert space. Define the scalar
product on 3)(T) by

(x,y)T = (x,y)+(Tx,Ty)

for x, yeS>(T). Then 3)(T) becomes a Hilbert space, which is denoted by {2{T), ( , )r).
We denote by M{T) the range of T.

Proposition 3.5. Let T be a densely defined, closed linear operator in a Hilbert space
JV. If the domain 3)(T) of T is globally invariant under T; that is, @{T)c2>(T), then the
intersection <2)(T)c\3){T*) is a core for T.

Proof. Suppose T satisfies the condition. By the same argument as in the proof of
Theorem 2.1, one can choose a real constant y. (greater than the norm of T as an
operator on {@>(T), ( , )T)) such that //— T is an invertible operator with range equal to
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2>{T). Put k = n-T. Then K2l{K) = S>{K). Since \K\ is self-adjoint, 3>{\K\2) is a core for
\K\. Therefore, 9){K * K) = 9(\K\2) is a core for K. It follows that

\K@(K*K)'

where K denotes the closure in the Hilbert space (®(K) = @(T), ( , )K) induced by K.
Since the above topologies induced by T and K on ^(T) coincide, it follows that
@(T)n3>{T*) is a core for T.
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