
1 Basic Concepts

1.1 Introduction

In the description of any physical phenomenon, there always arises the question of
effectively separating the few relevant degrees of freedom from the myriad irrelevant
ones. One could even state that the very existence of physics as an exact science directly
hinges on the possibility of such a separation because, at any time, only a limited
amount of information about a given physical system is available.

Consequently the question arises, which criteria should be used to achieve such a
separation? A universal criterion is based on the comparison of the length (momen-
tum) scales that are inherent to any complex system. In the presence of multiple scales,
the physics at a low momentum (large-distance) scale is insensitive to the dynamics at
high momenta (short distances). This is called scale separation and should be consid-
ered as of one the cornerstones of the concept of effective field theory. A trivial example
is provided by Newtonian mechanics. In order to describe the free fall of a stone, the
knowledge of the structure of the stone (molecules, atoms, quarks and gluons, etc.) is
not needed. Another example is provided by the well-known multipole expansion in
electrodynamics. The electrostatic potential produced by an arbitrary static distribu-
tion of charges that are located in a small area near the origin (see Fig. 1.1) is given at
large distances by
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N
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qi
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=
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]

2r5 + · · · . (1.1)

Here, ri = |r−di| is the distance between the ith charge and the observer located at the
point P. Introducing the total charge, the dipole moment and the quadrupole moment,
in order,

Q =
N

∑
i=1

qi, P=
N

∑
i=1

qidi, Qαβ =
1
2

N

∑
i=1

qi
[
3diα diβ −δαβ d2

i
]
, (1.2)

one obtains

V (r) =
Q
r
+

P · r
r3 +

Qαβ rα rβ

r5 + · · · . (1.3)

This expansion converges if the distance r between the observer and the center of the
charge distribution is much larger than the size of the charge distribution itself, that is,
|di| � r.
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2 Basic Concepts

tFigure 1.1 An electrostatic potential produced by an arbitrary localized static distribution of charges. The observer is located at
pointP far away from the charge distribution. Figure courtesy of Serdar Elhatisari.

Equation (1.3) demonstrates that by choosing the appropriate degrees of freedom,
or variables, for describing the problem at large distances (i.e., choosing r instead of
the individual distances ri), the solution of the problem is considerably simplified and
can be described by a few parameters, here Q,P,Qαβ . These characterize the system
as a whole rather than its individual components. Equation (1.2) can be considered
as a matching condition, giving the expressions of these parameters in terms of the
underlying physics at short distances.

This separation of scales is encountered in any field of physics. In this chapter, we
consider the application of this idea in quantum field theory and demonstrate how the
physics at the heavy scales (at short distances) can be consistently integrated out from
the theory, leading to an effective theory, which contains the light degrees of freedom
only.

1.2 Warm-up: Effective Theory for Scattering on the Potential Well

1.2.1 Effective Range Expansion

Before addressing effective field theories, we would like to start from a more familiar
example and consider constructing an effective theory for quantum-mechanical scat-
tering on a short-range potential. This allows us to explainmany fundamental concepts
and notions of effective field theories in an intuitive and transparent fashion.1 Namely,
we shall consider a spherical potential well, depicted in Fig. 1.2. The potential of the
well is given by

U(r) =
{
−U0 for r ≤ b ,

0 for r > b .
(1.4)

1 A similar problem has been addressed, for example, in the beautiful lectures given by Lepage [1], which
we strongly recommend for further reading.
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U(r)

U0

b

r

tFigure 1.2 The spherical potential well.U0 and b are the depth and the range of the potential, respectively.

This choice has the advantage that the Schrödinger equation (note that throughout we
work in natural units h̄ = c = 1),(

− 1
2m

∇2 +U(r)
)

ψ(r) = Eψ(r), (1.5)

is exactly solvable, thus rendering our arguments explicit. Here, m denotes the mass of
the particle that moves in the potential U(r). Note that any short-ranged potential of
an arbitrary form, but with the same range b, should lead to a similar behavior of the
wave function at large distances r� b, since the details of the potential at short range
should not matter.

The solution of this quantum-mechanical problem is well known from textbooks,
and we display only those results here, which will be needed in the following. Due to
rotational symmetry, the wave function in Eq. (1.5) can be factorized into the radial
part Rℓ(r) and the angular part, given by the spherical harmonics with the angular
momentum ℓ and projection m:

ψ(r) = Rℓ(r)Yℓm(θ ,ϕ) , (1.6)

with θ and ϕ the polar and the azimuthal angle, respectively. For large values of r� b,
the asymptotic form of the solution with E > 0 is given by

Rℓ(r)→
Aℓ

r
sin
(

kr− πℓ
2

+δℓ(k)
)
. (1.7)

Here, Aℓ is a constant, k is the wave vector, related to the energy by E = k2/(2m), and
δℓ(k) is the scattering phase shift, which encodes all information about the behavior of
the wave function at asymptotically large distances. It is given by the expression

tanδℓ(k) =
k j′ℓ(kb) jℓ(Kb)−K jℓ(kb) j′ℓ(Kb)
kn′ℓ(kb) jℓ(Kb)−Knℓ(kb) j′ℓ(Kb)

, (1.8)

where jℓ(x) and nℓ(x) denote the spherical Bessel functions of the first and second
kind, respectively, and K2 = k2+2mU0. Further, the prime denotes differentiation with
respect to the argument.
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In the following, we restrict ourselves to S-wave scattering with ℓ= 0 and thus drop
the index ℓ. The S-wave scattering phase is given by

tanδ (k) =
k tan(Kb)−K tan(kb)
K + k tan(kb) tan(Kb)

. (1.9)

Using this expression, we may write down the effective-range expansion (ERE) for the
phase shift:

k cotδ (k) =−1
a
+

1
2

rk2 +v4k4 +O(k6) . (1.10)

Here, a is the scattering length, r is called effective range, and the higher coefficients
v4,v6, . . . are known under the name of shape parameters. Generally, a,r,v4,v6, . . . are
referred to as effective-range parameters. The explicit expressions for these parameters
are obtained by Taylor-expanding Eq. (1.9). It is convenient to express the results in
terms of b and the dimensionless parameter x = b

√
2mU0:

a = b f0(x) ,

r = b f2(x) ,

v2n = b2n−1 f2n(x) . (1.11)

Next, we display the first two coefficients explicitly:

f0(x) = 1− tanx
x

,

f2(x) =
3tanx−3x+3x tan2 x−6x2 tanx+2x3

3x(x− tanx)2 , (1.12)

and so on.
Next, let us consider the limit x→ π/2+πn. We can easily convince ourselves that

f2(x), f4(x), . . . stay finite in this limit. Concerning the first coefficient, matters are, how-
ever, different. As seen from Eq. (1.12), f0(x)→ ∞ as tanx→ ∞. Thus, we have two
distinct possibilities (we consider the magnitudes of the various parameters or scales):

1. All effective-range parameters are of natural size, which is determined by the
interaction range b. Namely, a∼ b, r ∼ b, v2n ∼ b2n−1.

2. We have an unnaturally large scattering length, namely, a� b. All other parameters
are of natural size, that is, we still have r ∼ b, v2n ∼ b2n−1.

Note also that the convergence of the effective range expansion is in both cases con-
trolled by the parameter b. In other words, the effective range expansion converges
when kb� 1. Physically, this means that for the large distances r ∼ 1/k� b, the scat-
tering on the short-ranged potential irrespective of its shape can be parameterized by
the first few coefficients in this expansion (just as any static charge distribution in clas-
sical electrodynamics at large distances can be characterized by the first few coefficients
in themultipole expansion of the electric field). At distances r ∼ 1/k∼ b this expansion
does not make sense anymore, since all terms become equally important.
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Finally, let us find out what the condition x→ π/2+ πn means. To this end, note
that the bound-state spectrum in the potential well is determined by the equation√

2mU0 +κ2 cot(b
√

2mU0 +κ2) = κ , (1.13)

where κ denotes the bound-state momentum, which is related to the energy by E =

−κ2/(2m). When the bound state emerges exactly at threshold (i.e., at κ = 0), from Eq.
(1.13) one gets cot(b

√
2mU0) = 0, that is, b

√
2mU0 = x = π/2+πn. This shows that the

scenario with the unnaturally large scattering length is realized when the parameters of
the potential are fine-tuned so that a very shallow bound state emerges. The existence
of a such zero-energy bound state does not affect the other effective range parameters.

1.2.2 Construction of the Effective Theory

At large distances r � b (or, equivalently, at small momenta kb � 1), one cannot
resolve the details of the potential. All short-ranged potentials at this distance should
look pretty much the same and similar to the potential with zero range. In the first
approximation, one can replace the exact potential with a local δ -function potential,
that is,

U(r)→C0δ (3)(r) , (1.14)

and adjust the single available coupling C0, so that the lowest-order term in the
effective-range expansion of the scattering phase (the scattering length) is the same
in the original theory and in the effective theory. Since the effective range expansion
encodes all physical information about the system at low energies, it is then intuitively
clear that the zero-range potential in Eq. (1.14) – in the lowest-order approximation – is
equivalent to the initial potentialU(r)with a finite range at low energies. The procedure
of adjusting C0 goes under the name of matching.

The issues, considered in what follows, have been addressed in the literature; see,
for example, Refs. [2, 3]. In order to find the scattering phase shift in the effective
theory, one writes down the Lippmann–Schwinger equation for the S-wave scattering
amplitude T (p,k):

T (p,k) =V (p,k)+
2
π

∫ q2dq
q2− k2− iε

V (p,q)T (q,k) , ε → 0+ , (1.15)

with V (p,k) the potential in momentum space. Further, k and p denote the magni-
tudes of the incoming and outgoing relative three-momenta, respectively. The on-shell
amplitude T (k,k) .

= T (k) obeys elastic unitarity,

ImT (k) = k|T (k)|2 , (1.16)

and can be expressed through the phase shift

T (k) =
1
k

eiδ (k) sinδ (k) . (1.17)
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We may also introduce the scattering R-matrix, which obeys the Lippmann–Schwinger
equation,

R(p,k) =V (p,k)+
2
π
P.V.

∫ q2dq
q2− k2 V (p,q)R(q,k) . (1.18)

Here, unlike Eq. (1.15), the integral is equipped with the principal value (P.V.)
prescription. The T - and R-matrices are related. On shell, this relation takes the form

T (k) =
R(k)

1− ikR(k)
, R(k) =

1
k

tanδ (k) . (1.19)

In the following, we prefer to work with the R-matrix. The Fourier transform of the
potential in Eq. (1.14) is given by

V (p,k) =C0 . (1.20)

The solution of the Lippmann–Schwinger equation, (1.18), is

R(k) =
C0

1−C0I2(k2)
, I2(k2) =

2
π
P.V.

∫ q2dq
q2− k2 . (1.21)

Here, we encounter the problem of an ultraviolet (UV) divergence. Since the δ -function
potential is singular at short distances, the integral I2 diverges at the upper limit and
should be regularized. The most straightforward way to do this is to introduce a
momentum cutoff, Λ. Then, the integral is equal to

I2(k2) =
2
π
P.V.

∫ Λ q2dq
q2− k2 =

2
π

Λ+O(1/Λ) . (1.22)

In the following, the terms of order 1/Λ are always neglected and never displayed
explicitly. The R-matrix at leading order, which is given by Eq. (1.21), turns out to
be constant. The matching condition then reads

R(0) =−a , C0 =−
a

1−aI2(0)
. (1.23)

It follows from Eq. (1.23) that C0 should be Λ-dependent in order to ensure that the
observable (the scattering length a) does not depend on the cutoff.

In order to illustrate the matching, let us do a simple numerical exercise. We arbi-
trarily choose the parameters of the square well as b = 1 and x = b

√
U0 = π/4. In

Fig. 1.3, we display the exact phase shift, given by Eq. (1.9), as well as the phase shift,
obtained in the effective field theory with a zero-range potential given in Eq. (1.14),
where the parameterC0 is determined from the matching to the exact scattering length.
The parameter Λ is set equal to 1/b (i.e., to the inverse of the short-range scale of the
model). It is seen that, up to the momenta k2/Λ2 ≤ 0.5, the phase shift is reproduced
in the effective theory rather well.

We are not going to stop here, however: we ask ourselves whether it is possible to
systematically improve the description of the phase shift. To this end, note that, using
the leading-order potential (with no derivatives), it is possible to adjust only the scat-
tering length in the effective theory. The higher-order coefficients of the effective-range
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tFigure 1.3 The phase shift obtained at leading order in the effective theory (dashed line). For comparison, we plot the exact
solution for the potential well given by Eq. (1.9) (solid line).

expansion at this order are all zero (because the R-matrix is constant at this order). To
reproduce these as well, we need more adjustable parameters. For example, the effec-
tive range also can be tuned, if we add a term with two derivatives to the potential, and
so on.

Let us now explicitly demonstrate how this can be done. We modify the potential in
Eq. (1.14):

U(r)→C0δ (3)(r)+C2∇2δ (3)(r) . (1.24)

We note that the first term in this expansion is referred to as leading order (LO),
whereas the second gives the next-to-leading order (NLO) contribution. Calculating
the Fourier transform, we get

V (p−k) =
∫

d3re−i(p−k)r(C0δ (3)(r)+C2∇2δ (3)(r)
)

=C0−C2(p−k)2 . (1.25)

Projecting onto the S-wave gives

V (p,k) =
1
2

∫ +1

−1
d cosθ V (p−k)

=C0−C2(p2 + k2) =
2

∑
i, j=1

vi(p)Ci jv j(k) , (1.26)

where

v1(k) = 1 , v2(k) = k2 , C =

(
C0 −C2

−C2 0

)
. (1.27)
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We look for a solution of the Lippmann–Schwinger equation using the ansatz:

R(p,k) =
2

∑
i, j=1

vi(p)Di j(k2)v j(k) . (1.28)

The matrix D obeys the following equations:

D(k2) =C+CΓ(k2)D(k2) , Γ(k2) =

(
I2(k2) I4(k2)

I4(k2) I6(k2)

)
,

I2n(k2) =
2
π
P.V.

∫ q2ndq
q2− k2 . (1.29)

I2(k2) is given by Eq. (1.22). The remaining integrals are equal to

I4(k2) =
2
π
P.V.

∫ Λ q4dq
q2− k2 =

2
π

(
1
3

Λ3 +Λk2
)
,

I6(k2) =
2
π
P.V.

∫ Λ q6dq
q2− k2 =

2
π

(
1
5

Λ5 +
1
3

Λ3k2 +Λk4
)
. (1.30)

The solution for the R-matrix is then given by

R(k) =
C0 +C2

2I6(k2)−2k2C2(1+C2I4(k2))+ k4C2
2I2(k2)

(1+C2I4(k2))2− I2(k2)(C0 +C2
2I6(k2))

. (1.31)

This expression can be expanded in powers of k2, and the first two coefficients can
be matched to the effective-range expansion for the scattering phase. Introducing the
dimensionless variables,

x0 =
ΛC0

π
, x2 =

Λ3C2

π
, (1.32)

we obtain two coupled equations for x0,x2:

h0
.
=

Λa
9π

=
5x0 +2x2

2

18(5x0 +2x2
2)−5(3+2x2)2 ,

h2
.
=

27πΛr
100

=
x2(3+ x2)(3+2x2)

2

(5x0 +2x2
2)

2 . (1.33)

It is possible to find an explicit solution to these equations:

x0 =
1
5
(αy−2x2

2) , x2 =
1
2
(
√

y−3) , y =
9

1−4α2h2
, α =− 5h0

1−18h0
. (1.34)

Substituting this solution in Eq. (1.32), one arrives at the values ofC0 andC2 that repro-
duce the first two terms in the effective-range expansion. It is clear that the description
can be improved systematically, adding terms with more derivatives to the potential.
All this makes sense for k2� 1/b2, for which the effective range expansion is justified.

In Fig. 1.4, the numerical solution for the phase shift at next-to-leading order is
depicted. It is seen that there is a systematic improvement as compared to the leading
order. The next-to-leading order phase shift almost follows the exact curve. Here, it

https://doi.org/10.1017/9781108689038.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108689038.002


9 1.2 Warm-up: Effective Theory for Scattering on the Potential Well

tFigure 1.4 The same as in Fig. 1.3. Shown is the phase shift in the effective theory obtained at the leading (dashed line) and the
next-to-leading order (dotted line), respectively, in comparison to the exact solution (solid line).

is worth mentioning that the effective range expansion is convergent very fast in the
simple case considered here: keeping only the first two terms in this expansion, one
obtains a phase shift which is indistinguishable from the exact solution by bare eye (in
the region where the effective theories are applicable).

1.2.3 Regularization

Let us now address the question how the results depend on the regularization. Up
to now, we have used cutoff regularization to tame the ultraviolet divergences. Here,
we consider the use of dimensional regularization [4, 5], where the expressions look
particularly simple.2 This happens because all “no-scale” integrals vanish by definition
in this scheme, that is, ∫

ddq(q2)α = 0 for all α , (1.35)

with d the number of space dimensions, which is set to three after the integral has been
evaluated. It is then immediately seen that in this regularization I2 = I4 = I6 = 0 and,
hence,

R(k) =C0−2C2k2 . (1.36)

Matching to the effective-range expansion is then straightforward:

C0 =−a , C2 =
1
4

ra2 , (1.37)

and so on. It is seen that, in this scheme, the couplings C0,C2, . . . do not depend on any
scale, except the one implicitly present in the effective-range expansion parameters,
that is, the scale b.

2 A good introduction to this method is given in the textbook [6].
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There has been discussion in the literature, whether certain physical results may
depend on the choice of the regularization in a non-perturbative setting, which we are
considering here; see, for example, Refs. [2, 3, 7, 8]. Of course, all results obtained
within perturbation theory should be strictly regularization independent. To under-
stand the argument, it suffices to look at Eq. (1.34). From this equation, it is clear that
the limit Λ→ ∞ exists only in the case h2 ≤ 0 (and, hence, the effective range r < 0),
whereas there is no restriction on the sign of the effective range in dimensional regular-
ization, and in nature this quantity obviously may have either sign. Further, it has been
shown in Refs. [9, 10] that this restriction can be obtained from the so-called Wigner
bound on the scattering phase shift [11], assuming that the interaction has zero range.

However, putting the argument differently, one could state that there is no justifica-
tion to consider the limit Λ→ ∞ in the preceding expansion, since the physical cutoff
scale for the system is given by 1/b. It is then seen that no problem emerges, if the low-
energy expansion is carried out in the presence of a finite cutoff on the order of 1/b.
We may also conclude that the physical results indeed do not depend on the regular-
ization chosen, as long as the regularization parameter is chosen within a reasonable
range.

1.2.4 Counting Rules

From the very beginning, our method is aimed at a systematic improvement of the
description of the scattering phase (any physical observables, in general) in the low
momentum region. This means that, for instance, the contributions to the phase shift
from the terms with more derivatives, which could be added to Eq. (1.24), will be sup-
pressed by a factor (kb)2 � 1, where k is a small momentum. Let us ask, however,
what is the meaning of the effective potential in the cutoff regularization. Of course,
since all couplings depend on the cutoff, one has to consider the potential at a single
cutoff. Following our intuition, we expect that there exists a string of effective cou-
plings, determining the effective potential to all orders, so that adding more terms
affects the observables less and less. The situation is, however, more subtle. If one
adds higher-order terms, one has also to readjust the lower-order terms because this is
required by matching. For example, comparing Eq. (1.34) to the solution at the lowest
order x0 =−9h0 and x2 = 0, we see that the change in the values of the dimensionless
parameters x0,x2 is of order one, since h0,h2 are of order one for Λ ∼ 1/b. The same
pattern holds at higher orders as well. Consequently, albeit a systematic improvement
of the precision in the description of physical observables can be achieved, the terms in
the effective potential, strictly speaking, cannot be ordered according to their relative
importance. Adding a formally higher-order term leads to a renormalization in the
lower-order terms as well. In other words, no consistent power counting scheme can be
defined in this case.

The situation is different in the dimensional regularization scheme where, for exam-
ple, C0 can be fixed through the scattering length and stays put for all orders. The same
is true for the higher-order couplings. The question about the size of these couplings is,
however, more subtle. If the scattering length is of natural size, we have, as expected,

https://doi.org/10.1017/9781108689038.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108689038.002


11 1.2 Warm-up: Effective Theory for Scattering on the Potential Well

C0 = O(b), C2 = O(b3) and so on, so that the Taylor expansion for R(k) converges for
k2 � 1/b2. As seen from Eq. (1.37), this is no more true in the case of the unnatu-
rally large scattering length, which renders the radius of convergence of this expansion
smaller.

The reason for the difference between the cutoff and dimensional regularization
is easy to understand. Consider, for simplicity, the case of natural-sized couplings.
In dimensional regularization, there is only one short-distance parameter b, the vari-
ous couplings have different dimensions (they are proportional to different powers of
b) and do not talk to each other. In contradistinction to this, there exist two short-
distance parameters in the cutoff regularization, and a dimensionless variable Λb can
be constructed. The couplings at different orders can then mix in the matching con-
dition, and this mixing differs with increasing orders. An analog to this phenomenon
emerges when a heavy particle is present in the loops of the effective theory (e.g., rela-
tivistic baryon Chiral Perturbation Theory and the breakdown of the counting rules).
We shall address this issue in the following.

We postpone the discussion of other regularization schemes to subsequent chapters.

1.2.5 Error Estimates

An important issue for any theoretical prediction is the precision that can be achieved.
Stated differently, similar to experimental measurements, theoretical predictions also
carry an uncertainty, also called the theoretical error. One of the main advantages of
effective theories is the possibility of estimating this uncertainty. Here, we briefly dis-
cuss the so-called naive dimensional analysis (NDA) and refer to later sections for more
precise and refined methods to deal with error estimates. Consider some observable O
that is expanded in a small parameter Q, with Q the ratio of small (soft) momenta to
the hard scale Λ (or a collection of small parameters as encountered in later sections),

O =OLO+ONLO+ · · ·= ∑
i=0

ci Qi , (1.38)

where the coefficients ci are assumed to be of order one, which is called naturalness.
Here, LO, NLO, . . ., denote the leading, next-to-leading, . . . order in the expansion
in Q. Note that the lowest order can start with some other power of Q, but this does
not invalidate the following considerations. If, for example, Q = 0.1, we expect that
the corrections at NLO to be on the order of 10% and at NNLO on the order of 1%.
Two remarks are relevant here. First, such NDA estimates have always to be taken
with a grain of salt. Often one encounters the situation that at a given order, some
symmetry might suppress the contributions or in a very different case, there can be a
remarkable enhancement of a given order due to some close-by state not accounted for
explicitly (like, e.g., the Delta resonance in pion–nucleon scattering). In such cases, the
NDA obviously will fail. Second, NDA does not allow us to estimate the sign of the
corrections. Note further that sometimes only even powers appear in the expansion;
the model just discussed is an expansion in powers of k2/Λ2, where the hard scale was
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identified with 1/b, and the observable under consideration is k cotδ . This important
issue will be taken up later in various places.

1.2.6 Renormalization Group Equations

As mentioned already, the couplings in the cutoff scheme should run with the cut-
off parameter, Λ, in order to ensure that the observables are cutoff-independent. The
renormalization group (RG) equations at leading order can be easily obtained by
differentiating Eq. (1.23) with respect to Λ:

Λ
d

dΛ
C0(Λ) =−

2
π

ΛC0(Λ)2 . (1.39)

The equations at next-to-leading order can be obtained by differentiating the solutions
given in Eq. (1.34) with respect to the scale Λ and taking into account the fact that
a and r are Λ-independent. The right-hand side of Eq. (1.39) gives the so-called β -
function that determines the running of the couplingC0(Λ)with respect to Λ. Recalling
the discussion in the previous section, we may expect that the beta functions in cutoff
regularization at different orders are different merely by a quantity of order one.

1.2.7 What Did We Learn from This Example?

• At low momenta (k� 1/b) a scattering process can be characterized by a small set
of effective range expansion parameters.

• The interaction range is implicitly encoded in the size of the effective range expansion
parameters. Namely, if the scattering length is of natural size, then we have a ∼ b,
r ∼ b, v4 ∼ b3 and so on. In case of an unnaturally large scattering length, only the
first of these relations is not valid.

• An unnaturally large scattering length is related to the formation of a near-threshold
bound state (or a virtual state).

• One may construct a low-energy effective theory, approximating the square well
potential by a series of the δ -function potential and derivatives thereof. The cou-
plings in front of these potentials are adjustable parameters and are used to
reproduce the effective-range expansion parameters order by order. This procedure
goes under the name of matching.

• Albeit the matching conditions may look different in different regularizations, the
resulting scattering amplitude, expressed in terms of the effective range parameters,
is the same in all regularizations up to terms of higher orders.

• Last but not least, it is interesting to mention that the matching fixes not only the
scattering amplitude at smallmomenta, but the spectrumof the shallow bound states
as well. To see this, it suffices to note that, according to Eq. (1.19), the poles of the
T -matrix (corresponding to the bound states) emerge for purely imaginary values of
k, corresponding to the solution of the equation
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13 1.3 Integrating out a Heavy Scale: a Model at Tree Level

R−1(k)− ik =−1
a
+

1
2

rk2 + · · ·− ik = 0 . (1.40)

If the effective theory reproduces the values of a,r, . . ., then the solution of this
equation will also be reproduced up to higher-order terms.

• Theoretical uncertainties can and should be estimated. A first estimate can be based
on naive dimensional analysis, but in general more sophisticated methods should be
used.

1.3 Integrating out a Heavy Scale: a Model at Tree Level

1.3.1 Matching at Tree Level

After this warm-up example, let us proceed with the construction of an effective
theory in a simple field-theoretical model. This model is described by the following
Lagrangian,3

L=
1
2
(∂ϕ)2 +

1
2
(∂Φ)2− m2

2
ϕ 2− M2

2
Φ2− g

2
ϕ 2Φ , (1.41)

with ϕ ,Φ denoting the light and heavy scalar fields with masses m,M, respectively, and
m�M. Further, the coupling constant g has dimension [mass] and ∂ is a shorthand
notation for ∂µ , where µ enumerates the space-time indices.

Let us consider processes involving light particles only (that means we only have
external legs made from the light particle species), with energies E much smaller that
the heavy mass M (i.e., assume that E ∼ m� M). For such energies we expect that
the presence of the heavy particle cannot lead to any observable consequence and the
system can be described by an effective Lagrangian containing the light degrees of
freedom only.4 The inverse of the heavy mass 1/M plays the role of the short-range
scale b in our case of the square well potential, and in the limit M→∞, a local potential
emerges.

Consider, in particular, the 2→ 2 scattering process ϕϕ → ϕϕ at low energies. The
momenta of the initial (final) particles are p1 and p2 (p3 and p4). The scattering ampli-
tude in perturbation theory is a series in the coupling constant g, so that the matching
to the effective field theory can be performed at each order independently. At tree level,
the scattering amplitude is given by the diagrams depicted in Fig. 1.5 and is equal to

3 In general, there will be an additional linear term cΦ present in the Lagrangian in Eq. (1.41), which is
needed to cancel tadpole diagrams with one external Φ-leg. Here, however, we work in tree approximation,
where it is possible to put c = 0.

4 There is a well-known example, which exactly follows the path outlined in this toy model. Namely, in the
Standard Model, the interactions between left-handed charged currents are mediated by the W± bosons
with a mass MW ' 80 GeV. If the momentum transfer in a process is much smaller than MW , the flavor-
changingweak interactions are described by the local four-fermionFermiLagrangian. TheFermi coupling
GF , which appears in the effective theory at tree level, is inversely proportional to M2

W .
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14 Basic Concepts

tFigure 1.5 The tree-level scattering amplitude for the processϕϕ → ϕϕ in the model described by the Lagrangian given in
Eq. (1.41). Single and double lines correspond to the light and heavy fields, respectively. Shown are the s-, t- and
u-channel contributions, in order.

Ttree =
g2

M2− s
+

g2

M2− t
+

g2

M2−u
, (1.42)

where s= (p1+ p2)
2, t = (p1− p3)

2, u= (p1− p4)
2 are the usualMandelstam variables.

On the mass shell, these variables obey the relation s+ t +u = 4m2.
In the limit of a large mass M, the amplitude in Eq. (1.42) can be expanded in a

Taylor series:

Ttree =
3g2

M2 +
g2

M4 (s+ t +u)+
g2

M6 (s
2 + t2 +u2)+ · · · . (1.43)

At low energies, each subsequent term in this expansion is suppressed by a factor
E2/M2 with respect to the previous one, where E is the characteristic energy of the
light particles.

Our aim is to find a Lagrangian that contains only ϕ -fields, andwhich reproduces the
expansion of the amplitude in Eq. (1.43). In general, such an effectiveLagrangian must
contain an infinite tower of quartic terms in the field ϕ . By analogy with Eq. (1.24) we
may try to use the Lagrangian of the following form:

Leff =
1
2
(∂ϕ)2− m2

2
ϕ 2−C0ϕ 4−C1ϕ 22ϕ 2−C2ϕ 222ϕ 2 + · · · , (1.44)

with2= ∂ µ ∂µ = ∂∂ . Note that at tree level themass parameters in both the underlying
and effective Lagrangians are equal. As we shall see, this is nomore the case at one loop
order.

The tree-level amplitude, obtained from this Lagrangian, takes the form

T eff
tree =−24C0 +8C1(s+ t +u)−8C2(s2 + t2 +u2)+ · · · . (1.45)

This amplitude is shown in Fig. 1.6. Demanding T eff
tree = Ttree leads to matching condi-

tions which enable one to express the couplings of the effective theory C0,C1,C2, . . . in
terms of the parameters of the underlying theory g, m and M.

+ · · ·+
C1C0tFigure 1.6 The tree-level scattering amplitude for the processϕϕ → ϕϕ in the effective theory described by the Lagrangian

given in Eq. (1.44). This amplitude can be obtained from the amplitude shown in Fig. 1.5 by contracting all heavy lines
to a point.
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15 1.3 Integrating out a Heavy Scale: a Model at Tree Level

1.3.2 Equations of Motion

Thematching condition is imposed on observables, that is, in our case, on the scattering
amplitude defined on shell, p2

i = m2. As is known, the Mandelstam variables on shell
obey the constraint

s+ t +u = 4m2 , (1.46)

and the tree-level amplitudes in the full theory and in the effective theory are given by
the expressions

Ttree =
3g2

M2 +
4g2m2

M4 +
g2

M6 (s
2 + t2 +u2)+ · · · (1.47)

and

T eff
tree =−24C0 +32m2C1−8C2(s2 + t2 +u2)+ · · · . (1.48)

The matching conditions, which enable one to express the couplings of the effective
theory in terms of the parameters of the underlying theory, take the form

−24C0 +32m2C1 =
3g2

M2 +
4g2m2

M4 , −8C2 =
g2

M6 , (1.49)

and so on.
Note that the mass-shell matching does not allow one to determine the couplings C0

and C1 separately. According to Eq. (1.49), only the combination−24C0+32m2C1 can
be determined from the matching condition. This is related to the fact that (acciden-
tally in this model) all second-order terms can be eliminated by using the equations of
motion (EOM). In order to prove this, note that on the one hand

ϕ 22ϕ 2 = 2ϕ 3(2+m2)ϕ −2m2ϕ 4 +2ϕ 2(∂ϕ)2 , (1.50)

and on the other hand,

ϕ 2(∂ϕ)2 =
1
3

∂ µ(ϕ 3∂µ ϕ)︸ ︷︷ ︸
=total derivative

−1
3

ϕ 3(2+m2)ϕ +
m2

3
ϕ 4 . (1.51)

Using the EOM

(2+m2)ϕ =−4C0ϕ 3 + · · · , (1.52)

it is seen that ϕ 3(2+m2)ϕ is transformed into a sum of operators containing more
than four fields and, therefore, does not contribute to the tree-level amplitude. Finally,
the term proportional to ϕ 4 can be lumped together with the similar term in the
Lagrangian. To summarize, the second-order terms can be completelyeliminated
from the Lagrangian. Thus, without losing generality, one may set C1 = 0
everywhere.
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16 Basic Concepts

1.3.3 Unitarity Bound

We have constructed an effective theory that is equivalent to the underlying theory
at tree level. However, one does not stop at tree level. The effective field theory is
a full-fledged field theory, so one has to consider loop diagrams, generated by the
Lagrangian in Eq. (1.44) as well. Here a question arises naturally: The underlying the-
ory is a superrenormalizable theory (the single coupling constant g has the dimension
of mass), whereas the resulting effective theory contains a tower of non-renormalizable
vertices. How should one deal with these divergences? Or stated differently, how can
one interpret the equivalence of these two theories beyond the tree level?

Moreover, it can be seen that the tree-level amplitude in the effective field theory
necessarily violates unitarity. In order to see this, it is convenient to define the partial-
wave amplitudes

T eff
ℓ (s) =

1
32π
√

s

∫ +1

−1
d cosθ T eff(s,cosθ)Pℓ(cosθ) ,

T eff(s,cosθ) = 16π
√

s
∞

∑
ℓ=0

(2ℓ+1)T eff
ℓ (s)Pℓ(cosθ) , (1.53)

where Pℓ(cosθ) denote the conventional Legendre polynomials and θ is the scatter-
ing angle in the center-of-mass system. The unitarity relation for the partial-wave
amplitudes gives

ImT eff
ℓ (s)≥ p |T eff

ℓ (s)|2 , p =

√
s
4
−m2 , (1.54)

where the inequality turns into the equality below the first inelastic threshold, sthr =
(4m)2, where processes like ϕϕ → ϕϕϕϕ are not allowed energetically.

Transforming Eq. (1.54), we get

p(ReT eff
ℓ (s))2 + p

(
ImT eff

ℓ (s)− 1
2p

)2

− 1
4p
≤ 0 . (1.55)

Now, it is immediately seen that the real part of the amplitude obeys the so-called
unitarity bound:

|ReT eff
ℓ (s)| ≤ 1

2p
. (1.56)

This bound is violated by the tree amplitude given in Eq. (1.45). For example, in the
partial wave with ℓ= 0 the tree-level amplitude is equal to

ReT eff
0 (s) =

1
16π
√

s

(
−24C0 +32m2C1−8C2

(
2
3
(s−4m2)2 + s2

)
+ · · ·

)
.

(1.57)

Substituting this expression into Eq. (1.56), it is seen that the left-hand side grows with
increasing s, whereas the right-hand side decreases. Using the values of the coupling
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17 1.4 The Model at Tree Level: Path-Integral Formalism

constants, determined by the matching condition given in Eq. (1.49), and assuming
s� m2, it is seen that the unitarity bound is saturated at

sM = M2

√
16π−3g̃2

5g̃2/3
+O(1) , g̃ =

g
M

. (1.58)

Note that the large-M limit in the underlying theory is performed so that the dimen-
sionless quantity g̃ stays finite. Otherwise, the leading coupling C0 could not be finite.
Consequently, the quantity sM is of order of M2. If s > sM, loops are necessary in
order to render the tree-level amplitude unitary. In turn, this means that the loops
must be of the same order of magnitude as the tree amplitude, heralding trouble in the
perturbative expansion.

In reality, if s is on the order of sM ∼ M2, the effective theory cannot be applied
any more, and one should resort to a perturbative expansion in the underlying the-
ory, which is superrenormalizable and where the amplitude decreases as s−1 at large
values of s. It is said that the underlying theory provides a Wilsonian ultraviolet (UV)
completion of the effective theory at scales of order M.

1.4 TheModel at Tree Level: Path-Integral Formalism

Consider the generating functional of the theory described by the Lagrangian in
Eq. (1.41):

Z( j,J) =
∫

dϕdΦ exp
{

i
∫

d4x(L(ϕ ,Φ)+ jϕ + JΦ)

}
, (1.59)

where j(x),J(x) denote classical external sources for the fields ϕ(x) and Φ(x), respec-
tively. The Green’s functions are obtained by functional differentiation of Z with
respect to these sources (once per each external leg) and by putting j = J = 0 at the
end.

Sincewe are interested here in theGreen’s functions of the light field only, wemay put
J = 0 and consider the quantity Z( j) .

= Z( j,J = 0). Performing a shift of the integration
variable,

Φ→Φ− g
2
(2+M2)−1ϕ 2 , (1.60)

it is possible to rewrite the generating functional in the following form:

Z( j) =
∫

dϕdΦ exp
{

i
∫

d4x
(
−1

2
Φ(2+M2)Φ+

g2

8
ϕ 2(2+M2)−1ϕ 2

− 1
2

ϕ(2+m2)ϕ + jϕ
)}

. (1.61)

The integration over the variable Φ in the first term gives a constant that can be
included into the normalization. Expanding now the second term in the exponential,
we get
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g2

8
ϕ 2(2+M2)−1ϕ 2 =

g2

8M2

(
ϕ 4−ϕ 2 2

M2 ϕ 2 +ϕ 2 2
2

M4 ϕ 2 + · · ·
)
. (1.62)

Comparing this expansion with Eq. (1.44), we may immediately read off

C0 =−
g2

8M2 , C1 =
g2

8M4 , C2 =−
g2

8M6 , · · · , (1.63)

and the result in Eq. (1.49) is reproduced. Of course, as we already know, C0 and C1

are not independent, as on the mass shell only a linear combination thereof survives.
One could use the EOM in Eq. (1.62) in order to reduce the number of the independent
matching conditions. There is, however, nothing wrong in using an overcomplete set of
independent couplings.

It is legitimate to ask why this result is valid only at tree level, even if no approxima-
tion has been made so far. The answer to this question is that the Taylor expansion of
the integrand in the path integral is not justified, since the value of the integral changes
as a result of this expansion. On the other hand, at tree level, the path integral is equal
just to the value of the integrand along the classical trajectory. Consequently, in this
case, the expansion is justified, since an integration over ϕ is no longer performed.

A final remark is in order. It is easy to see that before Taylor-expanding, the theory
with the effective Lagrangian, which contains only ϕ fields, is formally equivalent to the
underlying theory to all orders in perturbation theory. The effective theory contains
a vertex, ϕ 2(2+M2)−1ϕ 2, and is thus nonlocal. Its high-energy behavior is, however,
damped by the inverse D’Alembertian and corresponds to that of the original super-
renormalizable theory. The expansion makes a local effective Lagrangian out of a
nonlocal one, but at the cost of a worse behavior at high momenta. It is clear that
the expansion breaks down at momenta of the order of M, and we are back to the
underlying theory.

1.5 Equations of Motion and Field Redefinitions

In the previous sections, those terms in the Lagrangian, which vanish by using the
EOM, have been dropped. In what follows, we shall prove that these terms do not
contribute to the S-matrix and thus to physical observables, and hence the procedure
is justified. Moreover, we shall prove that the two Lagrangians, which differ from each
other by field redefinition, lead to the same S-matrix and thus the theories described
by these Lagrangians are equivalent.5

In the framework of field theory, the S-matrix for a generic process n → m is
obtained by using the well-known Lehmann–Symanzik–Zimmermann (LSZ) rule for
the Green’s function with n + m external legs.6 (For simplicity, we consider here the
case of a real scalar field with amass m, but the argument applies withoutmodifications

5 In what follows, we mainly follow the arguments given in Ref. [12].
6 The LSZ formalism is considered in detail in most of the field theory textbooks; see, e.g., Ref. [13].
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19 1.5 Equations of Motion and Field Redefinitions

to other cases as well.) The S-matrix is related to the T -matrix through S = 1 + iT . If
none of the external momenta are equal, the relation between the T -matrix element
and the Green’s function is given by

iT (p1, · · · , pm;q1, · · · ,qn) = (iZ−1/2)n+m

× lim
p2

i ,q
2
j→m2

m

∏
i=1

θ(p0
i )(m

2− p2
i )

n

∏
j=1

θ(q0
j)(m

2−q2
j)G(p1, · · · , pm;q1, · · · ,qn) , (1.64)

where G is the Fourier transform of the n+m-point Green’s function:

(2π)4δ (4)(p1 + · · ·+ pm−q1−·· ·−qn)G(p1, · · · , pm;q1, · · · ,qn)

=
∫ m

∏
i=1

d4xieipixi
n

∏
j=1

d4y je−iq jy j〈0|T ϕ(x1) · · ·ϕ(xm)ϕ(y1) · · ·ϕ(ym)|0〉 . (1.65)

Here, the symbol “T” denotes the conventional time-ordering, TA(x)B(y) = θ(x0−
y0)A(x)B(y)+θ(y0− x0)B(y)A(x), and Z stands for the wave function renormalization
constant which is given by the residue of the two-point function at the one-particle
pole:

D(p2) = i
∫

d4xeipx〈0|T ϕ(x)ϕ(0)|0〉 ,

D(p2)→ Z
m2− p2 , as p2→ m2 . (1.66)

In other words, the Green’s function contains poles in all external momenta, when
the latter approach the mass shell. The generic S-matrix element is obtained from the
Green’s function by extracting the residue on the mass shell andmultiplying by a factor
iZ−1/2 for each external leg.

The amputated Green’s function Γ is defined as

G(p1, · · · , pm;q1, · · · ,qn) =
m

∏
i=1

D(p2
i )

n

∏
j=1

D(q2
j)Γ(p1, · · · , pm;q1, · · · ,qn) , (1.67)

and the T -matrix element can be determined from the amputated function as

iT (p1, · · · , pm;q1, · · · ,qn) = (iZ1/2)n+m lim
p2

i ,q
2
j→m2

Γ(p1, · · · , pm;q1, · · · ,qn). (1.68)

Below, we shall demonstrate that the T -matrix element does not depend on the choice
of the interpolating field. To this end, let us consider a general nonlinear local field
transformation of the type

ϕ ′(x) = F [ϕ(x)] = ϕ(x)+a22ϕ(x)+ · · ·+b0ϕ 2(x)+b1∂µ ϕ(x)∂ µ ϕ(x)

+ b2ϕ(x)2ϕ(x)+ · · ·+ c0ϕ 3(x)+ · · · . (1.69)

The single requirement is that the matrix element of the field ϕ ′ between the vacuum
and the one-particle state 〈0|ϕ ′(x)|p〉 is different from zero. Note also that, to ease the
notations, the coefficient in front of ϕ(x) in the r.h.s. of Eq. (1.69) is set equal to 1, since
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an arbitrary constant coefficient can be removed by a mere rescaling of the field that
does not change the S-matrix elements.

It is clear that the Green’s functions for the fields ϕ and ϕ ′ differ off shell. In order to
extract the T -matrix element, however, we need the behavior only in the vicinity of the
mass shell. Only the diagrams that are one-particle reducible in all external particles
can possess poles in all external momenta and therefore contribute to the T -matrix ele-
ments. Diagrammatically, this corresponds to the situation when the particle described
by the field ϕ escapes the connected part of the diagram and then turns into ϕ ′ with-
out interacting with other external legs. Hence, the n+m point Green’s function of the
fields ϕ ′ is given by

G′(p1, · · · , pm;q1, · · · ,qn)

=
m

∏
i=1

Π(p2
i )D(p2

i )
n

∏
j=1

Π(q2
j)D(q2

j)Γ(p1, · · · , pm;q1, · · · ,qn)+ · · · . (1.70)

Here, Π(p2) denotes the sum of all one-particle irreducible diagrams, which describe
the transition of ϕ into ϕ ′ (see Fig. 1.7b), and the ellipses denote the regular terms.
(These terms do not contain one-particle reducible diagrams in at least one of the
external lines.) These regular terms do not contribute to the T -matrix, and we shall
consistently omit them in the following. The key point is that the amputated Green’s
function Γ is the same in the two cases, simply because it contains the same set of
diagrams in both cases (cf. Figs. 1.7a and 1.7b).

Moreover, the two-point function of field ϕ ′ is given by

D′(p2) = Π2(p2)D(p2)+ · · · , (1.71)

where, again, the ellipsis denotes the regular terms.

tFigure 1.7 (a) The representation of the n+m point Green’s function of the fields ϕ through the amputated Green’s functionΓ.
Solid lines denote the dressed propagator of a single particle. (b) The same for the n+m point Green’s function of the
fields ϕ ′. The singular part is given by a set of the diagrams, where the single particle lines corresponding to the field
ϕ are emanating from the connected part of the diagram and then turn intoϕ ′ without interacting with other lines.
The blocks denoted byΠ contain the set of all one-particle irreducible diagrams that describe this transition. An
example of the regular part that does not contribute to theT -matrix also is shown. In this part the vertex indicated by
the arrow cannot be separated from the rest of the diagram by cutting just one internal line. The amputated function
Γ is the same in both cases, and Γ̃ does not contribute on shell.
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Now, taking into account the fact that Π(p2) is regular in the variable p2 because it
is a sum of the one-particle irreducible diagrams, we obtain the relation between the
wave function renormalization constants of the fields ϕ and ϕ ′:

Z′ = Z Π2(m2) . (1.72)

Finally, using Eq. (1.70), we see that the T -matrix elements, obtained from the Green’s
functions of the fields ϕ and ϕ ′ with the use of the LSZ formula, are exactly the same,
since the factors Π(m2), obtained for each external leg, are canceled by the same fac-
tor emerging in (Z′)−1/2. This proves the statement that the T -matrix elements do not
depend on the choice of the interpolating field.

Based on this result, we can now show that the field redefinitions leave the S-matrix
elements invariant. The generating functional for the Green’s functions in the path
integral formulation is given by

Z(J) =
∫

dϕ exp
(

i
∫

d4x
[
L(ϕ(x))+ J(x)ϕ(x)

])
. (1.73)

The Green’s functions are obtained by differentiating this expression with respect to
the external sources J(x) and setting them to zero at the end.

Next, within this path integral, let us perform the field transformation given in
Eq. (1.69). The Jacobian of this transformation is∣∣∣∣dϕ ′

dϕ

∣∣∣∣= exp
{
Tr ln

(
dϕ ′

dϕ

)}
. (1.74)

Here, in order to simplify the notations, we shall carry out the calculation of the
determinant, when the field transformation has the following form (cf. Eq. (1.69)),

ϕ ′(x) = ϕ(x)+a22ϕ(x)+b0ϕ 2(x) , (1.75)

albeit the treatment is, of course, completely general. Then,

dϕ ′

dϕ
= δ (D)(x− y)+a22δ (D)(x− y)+2b0ϕ(x)δ (D)(x− y) .

= 1+ r . (1.76)

Here, we have anticipated that an UV regularization will be needed to calculate the
determinant and write down the expression in D dimensions, setting D→ 4 at the end
of calculations. Using ln(1+ r) = r− r2/2+ . . ., we obtain

Tr ln
(

dϕ ′

dϕ

)
=
∫

dDxr(x,x)− 1
2

∫
dDxdDyr(x,y)r(y,x)+ · · · ,

∫
dDxr(x,x) =

∫
dDx
(
a22δ (D)(0)+2b0ϕ(x)δ (D)(0)

)
= 0 ,

∫
dDxdDyr(x,y)r(y,x) =

∫
dDx
(
a2

22
2δ (D)(0)+4b2

0ϕ(x)2δ (D)(0)

+ 4a2b0ϕ(x)2δ (D)(0)
)
= 0 , (1.77)
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22 Basic Concepts

and so on. Here, we have used the fact that, in dimensional regularization, δ (D)(0) =
∂µ δ (D)(0) = . . . = 0. Hence, the Jacobian of the transformation is equal to unity in
dimensional regularization. Of course, the physical results do not depend on the reg-
ularization. Using another regularization can be accounted for by using a different
renormalization prescription.

The rest is then straightforward. Under the field transformation the generating
functional turns into

Z(J) =
∫

dϕ exp
(

i
∫

d4x
[
L(F [ϕ(x)])+ J(x)F [ϕ(x)]

])
, (1.78)

where we already took into account the fact that the Jacobian is equal to unity. This
generating functional produces the Green’s functions of the operator F [ϕ(x)] in a
theory that is described by the Lagrangian L(F [ϕ(x)]). However, since the S-matrix
elements do not depend on the choice of the interpolating field, the same S-matrix
elements will be obtained from the generating functional

Z̃(J) =
∫

dϕ exp
(

i
∫

d4x
[
L(F [ϕ(x)])+ J(x)ϕ(x)

])
. (1.79)

Comparing this with the original expression in Eq. (1.73), we may conclude that the
theories, described by the Lagrangians L(ϕ(x)) and L(F [ϕ(x)]) (before and after the
field transformations), lead to the same S-matrix and are thus equivalent to each other.

Finally, we can easily show that in the Lagrangian it is possible to consistently drop
the terms that vanish by using the EOM [12]. For illustration, let us consider a theory
described by the Lagrangian

L=
1
2

∂µ ϕ∂ µ ϕ − m2

2
ϕ 2− λ

4
ϕ 4 . (1.80)

The classical EOM for this theory is

E[ϕ(x)] =
δS

δϕ(x)
=−(2+m2)ϕ(x)−λϕ 3(x) = 0 , (1.81)

where S denotes the action functional.
Let us now consider an arbitrary local functional H[ϕ ] and amend the initial

Lagrangian:

L(x)→L(x)+ εH[ϕ(x)]E[ϕ(x)] . (1.82)

In other words, the additional term vanishes for the solutions of the classical EOM.
We shall now demonstrate that the amended theory leads to the same S-matrix as the
original one. In order to do this, note that the infinitesimal transformation

ϕ(x)→ ϕ(x)+ εH[ϕ(x)] (1.83)

leads to the new Lagrangian:

L(x)→L(x)+ εH[ϕ(x)]
δS

δϕ(x)
+O(ε2) = L(x)+ εH[ϕ(x)]E[ϕ(x)]+O(ε2) .

(1.84)
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23 1.6 Light Particle Mass at One Loop

tFigure 1.8 The self-energy of the light particle at one loop in the model described by the Lagrangian given in Eq. (1.41). Single
and double lines correspond to the light and heavy fields, respectively.

Thus, the Lagrangians L(x) and L(x)+εH[ϕ(x)]E[ϕ(x)] differ by the field transforma-
tion and hence lead to the same S-matrix. Using this procedure, we may eliminate all
terms in the Lagrangian that vanish as solutions of the classical EOM.

1.6 Light Particle Mass at One Loop

Let us start the loop calculations for the simplest case of the two-point function of
the light field, which is described by the Lagrangian given in (1.41). This two-point
function can be written down in the following form:

D(p2) = i
∫

d4xeipx〈0|T ϕ(x)ϕ(0)|0〉= 1
m2− p2−Σ(p2)

. (1.85)

The self-energy of the light particle, Σ(p2), in the underlying theory at one loop
is described by two diagrams shown in Fig. 1.8. We shall calculate these using
dimensional regularization. The contribution of the diagram in Fig. 1.8a is given by

Σa(p2) = g2
∫ dDl

(2π)Di
1

m2− l2
1

M2− (p− l)2 . (1.86)

In (1.86) D denotes the number of space-time dimensions. In addition, in all propaga-
tors the usual causal prescription mass2→mass2− iε , with ε → 0+, is implicit.

Performing the integral with the help of the Feynman trick,

1
AB

=
∫ 1

0

dx
(xA+(1− x)B)2 , (1.87)

as D→ 4, we obtain

Σa(p2) =−2g2L− g2

16π2

∫ 1

0
dx ln

xm2 +(1− x)M2− x(1− x)p2

µ2 , (1.88)

where µ denotes the scale of dimensional regularization, and

L =
µD−4

16π2

(
1

D−4
− 1

2
(Γ′(1)+ ln4π)

)
. (1.89)
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Here, Γ(z) is the Γ-function and Γ′(1) =−γ , where γ = 0.577215665 . . . denotes Euler’s
constant. Integrating over the variable x, we obtain

Σa(p2) =−2g2L− g2

16π2

{
1
2

(
1− M2−m2

p2

)
ln

m2

µ2 +
1
2

(
1+

M2−m2

p2

)
ln

M2

µ2

−λ 1/2

2p2

ln

1
2

(
1− M2−m2

p2

)
− λ 1/2

2p2

1
2

(
1− M2−m2

p2

)
+ λ 1/2

2p2

− ln
− 1

2

(
1+ M2−m2

p2

)
− λ 1/2

2p2

− 1
2

(
1+ M2−m2

p2

)
+ λ 1/2

2p2

−2

}
, (1.90)

where

λ .
= λ (p2,m2,M2) , λ (x,y,z) = x2 + y2 + z2−2xy−2yz−2zx (1.91)

denotes the Källén triangle function. Expanding this expression for large M, we
obtain

Σa(p2) =−2g2L− g2

16π2

(
−1+ ln

M2

µ2

)

− g2

16π2M2

(
m2 ln

M2

µ2 −m2 ln
m2

µ2 −
p2

2

)
+O(M−4) , (1.92)

where the notation O(M−4) includes also the terms of the form O(M−4 lnk M2).We shall
consistently adhere to this notation in the following.

The calculations in case of the diagram in Fig. 1.8b (the “tadpole”) can be done
analogously. The result is given by

Σb(p2) =
g2

2M2

∫ dDl
(2π)Di

1
m2− l2 =

g2m2

M2 L− g2m2

32π2M2

(
1− ln

m2

µ2

)
. (1.93)

Adding these two expressions, we finally obtain

Σa(p2)+Σb(p2) =−2g2L− g2

16π2

(
−1+ ln

M2

µ2

)
+

g2m2

M2 L

− g2

16π2M2

(
m2 ln

M2

µ2 −
3m2

2
ln

m2

µ2 −
1
2
(p2−m2)

)
+O(M−4) . (1.94)

Next, let us answer the following question. We know that the effective Lagran-
gian in Eq. (1.44) reproduces all Green’s functions of the underlying theory in the
tree approximation. Are the results of the loop calculations in the underlying the-
ory also reproduced by the loops in the effective theory, if one is using the same
Lagrangian? The answer to this question is no, as will become clear from our cal-
culations at one loop using the effective Lagrangian given in Eq. (1.44). Note also
that, since we are calculating the Green’s function and not the S-matrix element,
one cannot use the EOM and eliminate the operator, which is multiplied by the
coupling C1.
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25 1.6 Light Particle Mass at One Loop

tFigure 1.9 The self-energy of the light particle in the effective theory described by the Lagrangian given in Eq. (1.44).C0

multiplies the vertex with no derivatives,C1 the vertex with two derivatives and so on.

In the effective theory up to and including O(M−2), only the first diagram in Fig. 1.9,
which is proportional to C0 =−g2/(8M2), contributes. The result is given by

Σeff(p2) =−12C0

∫ dDl
(2π)Di

1
m2− l2 +O(M−4)

=−24C0m2 Leff +
3C0m2

4π2

(
1− ln

m2

µ2
eff

)
+O(M−4) . (1.95)

In this expression, µeff denotes the scale of dimensional regularization in the effective
theory, which need not be the same as the one in the underlying theory, and Leff is
determined from Eq. (1.89) with the replacement µ → µeff .

As clearly seen from the preceding equations, Σa + Σb 6= Σeff at one loop. One
may now ask the question, how could one modify the effective theory so that the
Green’s functions are the same? It can be seen that for the two-point Green’s func-
tion, expanded up to the terms of order M−4, this can be achieved by supplementing
the effective Lagrangian by counterterms that correspond to mass and wave function
renormalization:

Leff → Leff +
A
2
(∂ϕ)2− B

2
ϕ 2 ,

A =
g2

32π2M2 +O(M−4) ,

B = g2
(

2Leff +
1

16π2

(
ln

M2

µ2
eff

−1
))

+
g2m2

M2

(
2Leff +

1
16π2

(
ln

M2

µ2
eff

−1
))

+O(M−4) . (1.96)

Note that A and B do not depend on the scale µeff , as well as the quantities Σa,Σb,Σeff .
The quantities of interest are, however, not the (ultraviolet divergent) coefficients of

the Lagrangian, but the renormalized quantities.Using explicit expressions for the two-
point function, we are now in a position to perform the matching of the renormalized
masses. In order to do this, let us note that the physical mass mP of the light particle,
which is determined by the position of the pole in the two-point Green’s function,
should be the same in both theories. In the underlying theory, at one loop, the pole is
located at

m2−m2
P− (Σa(m2

P)+Σb(m2
P)) = 0 . (1.97)

From this equation we obtain, to lowest order in g,
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m2
P = m2

r +
g2

16π2

(
−1+ ln

M2

µ2

)
+

g2m2
r

16π2M2

(
ln

M2

µ2 −
3
2

ln
m2

r

µ2

)
+O(M−4) , (1.98)

where mr denotes the running (or renormalized) mass in the underlying theory in the
modified minimal subtraction (MS) scheme, which is defined through the subtraction
of the divergent piece proportional to L:

m2
r (µ) = m2 +2g2L− g2m2

M2 L . (1.99)

Here, m denotes the bare mass in the underlying theory. Note that, at this order, it is
still not necessary to consider the loop corrections of other parameters of the theory.

Since we have modified the effective Lagrangian to ensure that the Green’s functions
in the underlying and the effective theories coincide, the poles in both theories will be
at the same place. The physical mass calculated in the effective theory is given by the
solution of the following equation:

m2 +B− (1+A)m2
P−Σeff(m2

P) = 0 , (1.100)

and takes the form

m2
P = m2

r,eff +
3g2m2

r,eff

32π2M2

(
1− ln

m2
r,eff

µ2
eff

)
+O(M−4) , (1.101)

where we used the matching condition for the constant C0 at tree level. Further, mr,eff

denotes the running mass in the effective field theory, which is related to the bare mass
in the following manner:

m2
r,eff(µeff) = m2

eff −
3g2m2

eff

M2 Leff . (1.102)

The bare mass in the effective theory, meff , which appears in Eq. (1.102), can be read
off from the effective Lagrangian,

Leff =
1
2
(∂ϕ)2− m2

2
ϕ 2 +

A
2
(∂ϕ)2− B

2
ϕ 2 +quartic terms

=
1
2

Zeff(∂ϕ)2− m2
eff

2
Zeffϕ 2 +quartic terms ,

Zeff = 1+A , m2
eff =

m2 +B
1+A

. (1.103)

Since observables (here the physical mass) should be the same in the underlying theory
and in the effective theory, this finally gives the relation between the running mass in
both theories:

m2
r,eff(µeff) =m2

r (µ)+
g2

16π2

(
−1+ ln

M2

µ2

)

+
g2m2

r (µ)
16π2M2

(
ln

M2

µ2 −
3
2

(
1+ ln

µ2
eff

µ2

))
+O(M−4) . (1.104)
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27 1.6 Light Particle Mass at One Loop

As we see, the running masses in both theories are not the same beyond tree approxi-
mation.7 Moreover, these masses run differently with respect to the scale variations:

µ
dm2

r (µ)
dµ

=
g2

8π2 −
g2m2

r (µ)
16π2M2

µeff

dm2
r,eff(µeff)

dµeff
=

3g2m2
r,eff(µeff)

16π2M2 +O(M−4) . (1.105)

The above RG equations can be obtained by differentiating the expression for the
physical mass with respect to the scale and setting this derivative to zero, because the
physical mass does not depend on the scale. Moreover, it should be pointed out that
even if the scale µ is present in Eq. (1.104), the running mass in the effective theory,
mr,eff(µeff), in fact, does not depend on this scale. This statement can be straightfor-
wardly checked by using the first of the equations in Eq. (1.105). This happens because
Eq. (1.104) was obtained from the matching to the physical observable, which has to
be scale-independent.

A few concluding remarks:

i) As we have seen, matching the two Lagrangians at tree level does not mean that the
loops calculated with these Lagrangians also will match. The difference, however,
can be taken away completely by renormalization. This means that both theories
are physically equivalent. This is a particular case of the decoupling theorem [14],
as detailed in what follows.

ii) Matching enables us to express the parameters of the effective theory in terms
of the parameters of the underlying theory. What makes sense is the relation
between the finite quantities, for example, between the running masses and the
couplings.

iii) Both sets of the running parameters depend on their own scales (µ and µeff , respec-
tively). The parameters of the effective theory do not depend on the underlying
scale µ , if they can be determined from the matching to physical observables.

iv) Note that in the relation given by Eq. (1.104), all logarithms containing the light
mass cancel. This is the manifestation of the general pattern, which states that the
couplings of the effective theory do not have a nonanalytic behavior that emerges
at the light scales. All of this nonanalytic behavior has to be reproduced by the
loops in the effective theory. On the contrary, the parameters of the effective theory
encode the short-distance dynamics and thus depend on the light mass, at most, in
a polynomial form. For consistency, here we assume that the scales µ,µeff are also
“hard.” On the other hand, reducing µeff down to the “light” scale, the couplings
will no more depend analytically on this scale. We shall observe this phenomenon
explicitly in Chiral Perturbation Theory (ChPT).

7 Strictly speaking, only the matching of observables in two theories (i.e., the masses and the S-matrix ele-
ments) is required. The two-point function is not an observable. So, in principle, one could leave the
wave function renormalization constant Zeff free. However, not much will change in our discussion of the
physical mass if we lift the restriction on this constant.
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tFigure 1.10 Representative set of the diagrams that contribute to the ϕϕ → ϕϕ amplitudes in the underlying (upper panel)
and the effective theory (lower panel).

v) As we know, the dimensionful coupling constant g is on the order of the heavy
mass M in the large-M limit. As one sees from Eq. (1.104), the running mass in the
underlying theory is not protected from large loop corrections,8 and it is driven up
to the heavy scale, unless some fine-tuning is enforced. This phenomenon is closely
related to the hierarchy problem in the Standard Model.

1.7 Matching of the Quartic Coupling at One Loop

After matching the two-point function, we turn to the Green’s functions with more
external legs. Matching of the ϕϕ → ϕϕ scattering amplitudes at one loop proceeds
analogously. First of all, we have to calculate the scattering amplitude in the underlying
theory and in the effective theory. A representative set of the diagrams is shown in
Fig. 1.10. The matching condition is

T = T eff . (1.106)

It is seen that as a result of this matching condition, the quartic couplings in the tree-
level effective Lagrangian, given by Eq. (1.44), are modified according toCi→Ci+δCi.
This is shown schematically in Fig. 1.10.

8 The protection might arise due to the symmetries, e.g., the chiral symmetry in case of fermions. However,
in the case that we are considering, there are no such symmetries.
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29 1.7 Matching of the Quartic Coupling at One Loop

Since the one-loop contributions to the scattering amplitude in the effective theory
(see Fig. 1.10) are divergent, the modified Ci should also contain divergent parts,

Ci = νiLeff +Cr
i (µeff) , (1.107)

where the coefficients νi determine the running of the renormalized couplings Cr
i (µeff)

with respect to the scale µeff :

µeff
dCr

i (µeff)

dµeff
=− νi

16π2 , (1.108)

where the νi are the pertinent β -functions whose explicit values are not needed here.
Matching enables us to express the renormalized couplings Cr

i (µeff) in terms of the
fundamental parameters of the underlying theory. Comparing with Eq. (1.63), which
contains matching at tree level, and using the fact that g has dimension of mass,
we get

Cr
i (µeff) = (−)i+1 g2

8M2(i+1)
r (µeff)

{
1+κi

g2

16π2M2
r (µeff)

}
, (1.109)

where Mr(µeff) is the renormalized heavymass in the underlying theory, and the dimen-
sionless constants κi can depend only on the dimensionless arguments mr/Mr and
µeff/Mr. (Without loss of generality and in order to ease the notation, we used here
µ = µeff .) In Eq. (1.109) we further took into account the fact that in the underly-
ing (superrenormalizable) theory the coupling g is not renormalized, and we used g
instead of gr everywhere. Moreover, as became clear from the discussion in Section 1.6,
the coupling constants determined from the matching cannot contain infrared singu-
larities at mr → 0, since these singularities are the same in the underlying and in the
effective theory, canceling each other in the matching condition. An example of this
is the cancellation of all ln(m2

r )-terms in the matching of the two-point functions; see
Section 1.6. Consequently, the κi are a polynomial in the variable m2

r/M2
r , and the

dependence on this variable can be traded for the derivative terms by using the EOM
in the Lagrangian;9 see Section 1.3. On the contrary, the dependence on the second var-
iable µeff/Mr is nonanalytic, as in perturbation theory logarithms ln(µeff/Mr) usually
appear.

Carrying out the matching at one loop is straightforward but not very enlightening,
since a large number of Feynman diagrams have to be calculated. In what follows, we
shall demonstrate how the same goal can be achieved within the path-integral formal-
ism with considerably less effort. To this end, we evaluate the generating functional
given in Eq. (1.61) at one loop by using the saddle-point technique. In the beginning,
we carry out the integration over the field Φ. (This integration gives an uninteresting
constant, which can be included in the normalization of the path integral.) Further,
we expand the action functional in this integral around the classical solution for the

9 Using the EOM is justified, since the S-matrix elements, which are used in the matching condition, do not
change. One should bear in mind, however, that the off-shell behavior of the Green’s function changes, if
the EOM are used.
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field ϕ , setting ϕ = ϕc +ξ . Here, the field ξ denotes a quantum fluctuation around the
classical solution ϕc, which obeys the following EOM:

0 = (2+m2)ϕc(x)+ j(x)+
g2

2

∫
d4yϕc(x)DM(x− y)ϕ 2

c (y)

= (2+m2)ϕc(x)+ j(x)+
g2

2M2 ϕ 3
c (x)+ · · · , (1.110)

with

DM(x− y) = 〈x|(2+M2)−1|y〉=
∫ d4 p

(2π)4
e−ip(x−y)

M2− p2

=
1

M2

∫ d4 p
(2π)4 e−ip(x−y)

(
1+

p2

M2 + · · ·
)

=
1

M2 δ (4)(x− y)− 1
M4 2δ (4)(x− y)+ · · · . (1.111)

Retaining terms up to second order in the expansion over ξ , and taking into account
the fact that dϕ = dξ , the generating functional in Eq. (1.61) can be rewritten as

Z( j) =
∫

dξ exp
{

i
∫

d4x
(
−1

2
ϕc(2+m2)ϕc +

g2

8
ϕ 2

c (2+M2)−1ϕ 2
c + jϕc

)}

× exp
{

i
∫

d4xd4y
(
−1

2
ξ (x)H(x− y)ξ (y)+O(ξ 3)

)}
, (1.112)

with

H(x− y) = (2+m2 +S(x))δ (4)(x− y)−Λ(x− y) ,

S(x) =−g2

2
(2+M2)−1ϕ 2

c (x) ,

Λ(x− y) = g2ϕc(x)〈x|(2+M2)−1|y〉ϕc(y) . (1.113)

Note that there are no terms linear in ξ , because ϕc is the solution of the EOM that
makes the action functional stationary.

Evaluating the Gaussian integral over ξ in a standard manner, we obtain

Z( j) = exp
{

i
∫

d4x
(
−1

2
ϕc(2+m2)ϕc

+
g2

8
ϕ 2

c (2+M2)−1ϕ 2
c + jϕc

)
+ iSeff

}
, (1.114)

where

Seff =
i
2
Tr ln((2+m2 +S)−Λ) =

i
2
Tr ln(2+m2)+

i
2
Tr((2+m2)−1S)

− i
4
Tr((2+m2)−1S(2+m2)−1S)− i

2
Tr((2+m2)−1Λ)
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+
i
2
Tr((2+m2)−1S(2+m2)−1Λ)− i

4
Tr((2+m2)−1Λ(2+m2)−1Λ)+ · · ·

=T0 +T1 +T2 +T3 +T4 +T5 +O(g6) . (1.115)

Here, “Tr” denotes the trace of an operator in coordinate space, that is,

TrA =
∫

d4x〈x|A|x〉 . (1.116)

Note that T0 is an uninteresting constant, which can be included in the normaliza-
tion of the path integral. T1 and T3 are quadratic in the field ϕc and contribute to the
renormalization of the two-point function of the light field. We have studied this issue
in detail in Section 1.6. The remaining terms T2, T4 and T5, which contribute to the
renormalization of the quartic couplings, can be rewritten as

T2=
g4

16

∫
d4xd4yd4ud4v (−iD(u−v)D(v−u)DM(u− x)DM(v− y))ϕ 2

c (x)ϕ 2
c (y) ,

T4=
g4

4

∫
d4xd4yd4ud4v(−iD(v−u)D(u− y)DM(y−v)DM(u− x))

×ϕ 2
c (x)ϕc(y)ϕc(v) ,

T5=
g4

4

∫
d4xd4yd4ud4v (−iD(v−u)DM(u− x)D(x− y)DM(y−v))

×ϕc(x)ϕc(y)ϕc(u)ϕc(v) , (1.117)

where D(x− y) is a light scalar propagator with a mass m. Schematically, the three
quantities T2, T4, T5 are depicted in Fig. 1.11.

Let us now consider the strategy for matching at one loop. First, we recall that
the matching condition is altered by loop corrections, because the heavy particles
are present in the loops and the Taylor expansion in the inverse powers of the heavy
mass cannot be straightforwardly carried out in the Feynman integrals. Namely, let us
denote TM{Ti}, i = 2,4,5, the quantities Ti, evaluated from the same diagrams shown
in Fig. 1.11, but with the Taylor-expanded heavy particle propagator,

1
M2− l2 →

1
M2 +

l2

M4 + · · · . (1.118)

Here and in what follows, the symbol “TM” stands for the procedure of Taylor-
expanding in inverse powers of the heavy mass.10 Then, the difference,

∆T = ∑
i=2,4,5

(Ti−TM{Ti}), (1.119)

should be compensated by adjusting the quartic coupling constants. This gives us the
desired matching condition for these couplings.

10 Note that, graphically, the operation TM amounts to contracting the heavy propagators to one point.
Consequently the diagrams describing ϕϕ → ϕϕ scattering in the effective theory arise from the diagrams
T2, T4 and T5, shown in Fig. 1.11.
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tFigure 1.11 A schematic representation ofT2,T4 andT5. The solid and double lines denote the light and heavy fields,
respectively. The arrow points toward the one loop graph in the effective theory that is obtained fromT2,T4,T5 by
contracting the heavy propagators.

From Fig. 1.11 we immediately conclude that T2 will not affect the matching
condition, because it does not contain heavy particles in the loops. Consequently,

T2−TM{T2}= 0 . (1.120)

T4 and T5 will, however, affect the matching condition. Let us start with the quantity
T4. The vertex diagram, which is part of T4 (see Fig. 1.11), is given by

− iD(v−u)D(u− y)DM(y−v)

=
∫ d4 p1

(2π)4
d4 p2

(2π)4 e−ip1(v−u)−ip2(u−y)Γv(p1, p2) , (1.121)

with

Γv(p1, p2) =
∫ dDl

(2π)Di
1

(m2− (p1 + l)2)

1
(m2− (p2 + l)2)

1
(M2− l2)

. (1.122)

Note that the second heavy propagator DM(u− x), which is outside the loop, can be
expanded in inverse powers of M without much ado.

We are interested in the quantity Rv(p1, p2) = Γv(p1, p2)−TM{Γv(p1, p2)}. Since the
quantity Rv(p1, p2) should be a low-energy polynomial in the small momenta p1, p2,
one may expand it in a Taylor series:

Rv(p1, p2) =Rv(0,0)+ pµ
1

∂
∂ pµ

1
Rv(p1, p2)

∣∣∣∣
p1,p2=0

+ pµ
2

∂
∂ pµ

2
Rv(p1, p2)

∣∣∣∣
p1,p2=0

+ · · · . (1.123)

Note that in the effective Lagrangian this expansion translates into the derivative
expansion in the light fields. In order to perform matching at lowest order in the inverse
heavy mass M, it suffices to retain the first term in this expansion. Generalization to
higher orders is straightforward.

Calculating Γv(0,0), we get, on the one hand,

Γv(0,0) =
∫ dDl

(2π)Di
1

(m2− l2)2
1

M2− l2 =
1

16π2

∫ 1

0

dxx
xm2 +(1− x)M2

=
1

16π2

(
1

m2−M2 −
M2

(m2−M2)2 ln
m2

M2

)

=− 1
16π2M2

(
1+ ln

m2

M2

)
+O(M−4) . (1.124)
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On the other hand,

TM{Γv(0,0)}=
∫ dDl

(2π)Di
1

(m2− l2)2

{
1

M2 +O(M−4)

}

=
2

M2 Leff −
1

16π2M2 ln
m2

µ2
eff

+O(M−4) . (1.125)

Subtracting these two expressions gives

Rv(0,0) =
2

M2 Leff −
1

16π2M2

(
1+ ln

µ2
eff

M2

)
+O(M−4) . (1.126)

As expected, the nonanalytic terms proportional to lnm2 cancel in this difference.
Substituting now this expression into Eqs. (1.121) and (1.117), we finally obtain

T4−TM{T4}=
g4

4M2 Rv(0,0)
∫

d4xϕ 4
c (x)+O(M−6) . (1.127)

The quantity T5 can be treated analogously. Here, we need the expression of the box
integral at zero momenta (see Fig. 1.11):

Γb(0,0) =
∫ dDl

(2π)Di
1

(m2− l2)2
1

(M2− l2)2 =
1

16π2

∫ 1

0

dxx(1− x)
(xm2 +(1− x)M2)2

=
1

16π2
−2(M2−m2)+(M2 +m2) ln(M2/m2)

(M2−m2)3

=
1

16π2M4

(
−2+ ln

M2

m2

)
+O(M−6) . (1.128)

The same integral, with the Taylor-expanded heavy propagator, is equal to

TM{Γb(0,0)}=
∫ dDl

(2π)Di
1

(m2− l2)2
1

(M2)2 =− 2
M4 Leff −

1
16π2M4 ln

m2

µ2
eff

.

(1.129)

From these equations we obtain

Rb(0,0) = Γb(0,0)−TM{Γb(0,0)}

=
2

M4 Leff +
1

16π2M4

(
−2− ln

µ2
eff

M2

)
+O(M−6) . (1.130)

Finally, from Eq. (1.117) we have

T5−TM{T5}=
g4

4
Rb(0,0)

∫
d4xϕ 4

c (x) . (1.131)

Eqs. (1.127) and (1.131) allow one to read off the matching of the low-energy constant
C0 at one loop:

C0 =−
g2

8M2 −
g4

4M2 Rv(0,0)−
g4

4
Rb(0,0)+O(M−6)

=− g2

8M2 −
g4

M4 Leff +
g4

64π2M4

(
3+2ln

µ2
eff

M2

)
+O(M−6) . (1.132)
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tFigure 1.12 Renormalization of the heavy mass at one loop. The solid and double lines denote the light and heavy fields,
respectively.

tFigure 1.13 The renormalization of the Green’s function with eight external legs in the effective theory. In order to cancel the
divergence, a local term with eightϕ -fields is introduced in the Lagrangian. The pertinent coupling is denoted byE8.

In order to arrive at the final result, one has to express everything in Eq. (1.132) in
terms of the renormalized couplings. As already mentioned, g is not renormalized.
The quantity M2 should, however, be renormalized (see Fig. 1.12):

M2 = M2
r (µeff)−g2Leff , (1.133)

where, without loss of generality, one may assume that the scales in the underlying and
effective theories coincide, µ = µeff .

Substituting this expression into Eq. (1.132), we finally obtain

C0 =−
g2

8M2
r
− 9g4

8M4
r

Leff +
g4

64π2M4
r

(
3+2ln

µ2
eff

M2
r

)
+O(M−6

r )

= ν0Leff +Cr
0(µeff) . (1.134)

It is seen that Cr
0(µeff) can be written in the form of Eq. (1.109). Reading off the

coefficient κ0, we get

κ0 =−6−4ln
M2

µ2
eff

+O(M−2
r ) . (1.135)

The coefficient κ0 does not depend on the light mass m at this order. This is, however,
not true in general, that is, to all orders in the expansion in the inverse powers of Mr,
unless the EOMs are used.

Finally, from Eq. (1.134) we can straightforwardly ensure that the renormalized
coupling constant at this order obeys the well-known RG equation in the ϕ 4 theory:

µeff
dCr

0
dµeff

=
9

2π2 (C
r
0)

2 . (1.136)

Last but not least, it should be noted that the effective Lagrangian beyond tree level
contains termswith 6,8,. . . ϕ -fields as well. These are needed, in particular, to cancel the
divergences in the loop diagrams of the effective theory of the type shown in Fig. 1.13.
Such terms emerge as a result of using the EOM in the quartic terms as well.

https://doi.org/10.1017/9781108689038.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108689038.002
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tFigure 1.14 Insertion of two irrelevant vertices into the one-loop diagram. The incoming and outgoing momenta are p1, p2 and
p3, p4, respectively. The total momentum isP = p1 + p2 = p3 + p4.

1.8 Dependence of the Effective Couplings on the Heavy Mass

In the simple model considered in the previous sections, the heavy mass M sets the hard
scale at which the structure of the theory changes. For this reason, it is interesting to
find out how the parameters of the low-energy theory depend on the heavy mass. First,
let us consider the effective Lagrangian at tree level. We can judge about the leading
behavior of these couplings in the limit M→ ∞ on the basis of the mass dimensions of
these couplings alone. Only the effective mass of the light particle has a positive mass
dimension. The coupling C0 is dimensionless, and the couplings Ci with i > 0 have neg-
ative mass dimension. On dimensional grounds, the leading behavior in M in the latter
couplings should be proportional to g2/M2(i+1) ∝ M−2i. Consequently, the couplings
Ci, i > 0, fall off as negative powers of M in the limit M→ ∞. The dimensionless cou-
plings are defined as C̃i =CiM2i. The couplings C̃i are said to be of natural size if they
are of order one. The dimension of the operators in the Lagrangian, which are multi-
plied by these couplings, is correlated with the preceding counting, in order to ensure
that the Lagrangian has the correct mass dimension.

According to the mass dimension, the couplings are referred to as relevant (positive
mass dimension), marginal (dimensionless) and irrelevant (negative mass dimension).
It is seen that at low energies corresponding to the limit of a very large M, the contri-
bution from the irrelevant couplings to the Green’s functions is suppressed by powers
of the large mass M.

Does the situation change beyond the tree level? Let us consider the insertion of
irrelevant couplings in the loops. For simplicity, consider one loop in the effective the-
ory with the insertion of two irrelevant vertices multiplied by the couplings Ci and C j;
see Fig. 1.14. The product of these two couplings falls off as M−2(i+ j). Further, the
mass dimension of the diagram in Fig. 1.14 is equal to zero. So, in order to obtain
the required mass dimension, the preceding factor should be multiplied by mass2(i+ j),
wheremass denotes any available mass scale in the effective theory: external momenta,
effective mass or the regulator mass in the loops.

The discussion is particularly simple in dimensional regularization. The diagram in
Fig. 1.14 is given by the expression

Ii j =
C̃iC̃ j

M2(i+ j)

∫ dDl
(2π)Di

N(l; p1, p2, p3, p4)

(m2− l2)(m2− (P− l)2)
, (1.137)
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where the tree-level couplings C̃i =CiM2i are dimensionless and stay finite as M→∞.
Further, p1, . . . , p4 are the external momenta with P = p1 + p2, and the numerator N,
which has the mass dimension 2(i+ j), depends on the integration momentum l, the
external momenta and the light mass m (at this order, one may replace the running
effective mass of the light particle mr,eff by m). After integration, the dependence on
the scale µeff appears. However, in dimensional regularization the dependence on the
scale µeff is logarithmic and thus safe (i.e., the power of M in front of the integral
is not changed through the multiplication by a logarithm). Loops with insertions of
the irrelevant couplings are also irrelevant in the limit M → ∞. Thus, irrelevant cou-
plings can be eliminated from the theory at one loop level as well. Moreover, as seen
in this example, the naive power counting is respected in dimensional regularization.
The insertion of two couplings that scale as M−i and M− j yields a result that scales like
M−(i+ j).

The argumentation is a bit more subtle in arbitrary regularization (say, cutoff
regularization), where the powers of the large regulator scale Λcut can appear. This
situation also emerges if we have a multi-scale problem, with heavy particles appear-
ing in the effective field theory loops together with light particles (one prominent
example being pion–nucleon scattering in Chiral Perturbation Theory). According
to the dimensional counting, the maximal power of Λcut is contained in the maxi-
mally UV-divergent piece of the integral Ii j in Eq. (1.137), which does not depend on
the external momenta p1, · · · p4. Denoting this maximally divergent piece by Ĩi j, we
have

Ĩi j =
C̃iC̃ j

M2(i+ j)

∫ Λcut d4l
(2π)4i

l2(i+ j)

(m2− l2)2 ∼
C̃iC̃ jΛ

2(i+ j)
cut

M2(i+ j)
. (1.138)

In other words, this term is no more suppressed since Λcut ∼M. Note, however, that the
above contribution does not depend on the external momenta and has exactly the same
formas the contribution coming at tree level from themarginal vertexwith the coupling
C0. Consequently, the whole contribution Ĩi j can be removed by renormalization of C0,
which we are free to perform. We arrive at the same conclusion as earlier within dimen-
sional regularization: the contributions from the irrelevant couplings are irrelevant at
one loop as well. Thus, our results, as expected, do not depend on the regularization
used, only the naive power counting holds no more in the cutoff regularization (cf. the
effective theory of the potential well, Section 1.2.4).

The above arguments can be readily generalized for any number of insertions in dia-
grams with an arbitrary number of loops and external legs. The picture particularly
simplifies in the limit M → ∞, where the contributions from the irrelevant operators
vanish. One arrives at the so-called decoupling theorem by Appelquist and Caraz-
zone [14], which, loosely spoken, states that the whole contribution of the infinitely
heavy degrees of freedom can be included in the renormalization of themasses and cou-
pling constants, and thewave function renormalization constants of the light degrees of
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37 1.8 Dependence of the Effective Couplings on the Heavy Mass

freedom.11 In the context of the simple model considered in this section, the statement
amounts to the claim that arbitrary renormalized Green’s functions in the underlying
and the effective theories in the limit Mr→ ∞ are related according to

Gr(p1, · · · , pn;mr,Mr,g,µ) = Zn/2Gr,eff(p1, · · · , pn;mr,eff ,Cr
0,µ)+ · · · , (1.139)

where, for simplicity, we took µeff = µ , Z denotes the wave function renormal-
ization constant and the ellipses stand for the terms that vanish in the limit
Mr→ ∞.

To summarize: at low energies the contributions from the irrelevant operators in the
Lagrangian to all physical observables are suppressed by inverse powers of the large
scale and are thus small. Therefore, the physics at low energies is governed by a few
operators with nonpositive mass dimension. This is obviously true at tree level but, as
we have seen, holds as well when insertion of effective vertices in the loops is consid-
ered. This property of the effective theories has important implications when we try to
establish the limits of existing theories and look for physics beyond them. As a simple
example, consider QED, which is described by a Lagrangian containing only the rele-
vant and marginal operators. Whatever the physics beyond QED is, it can be described
by a string of the effective interactions in the Lagrangian, constructed with the use of
the electron and photon fields. The operators with the smallest mass dimension will be
least suppressed and, hence, more important at low momenta. Recalling the engineer-
ing dimensions of the fermion and photon fields, [ψ] = [ψ̄] = 3

2 and [Aµ ] = 1, one may
conclude that, at leading order, the effective Lagrangian can contain a single operator
of dimension 5, the well-known Pauli term,

δL=
e
M

ψ̄σµνF µν ψ , (1.140)

where e is the electric charge, F µν = ∂ µA ν −∂ νA µ denotes the electromagnetic field
strength tensor, and σµν = i

2 [γµ ,γν ]. According to dimensional counting, the operator
of dimension 5 in the Lagrangian should be accompanied by an inverse power of a
large scale M and thus suppressed at low energies. Further, note that the operator given
in Eq. (1.140) contributes to the anomalous magnetic moment of the electron, and
this contribution is not contained in QED. Consequently, measuring the anomalous
magnetic moment very precisely in the experiment and confronting the result with the
sufficiently accurate calculations in QED, one obtains a lower bound on the scale M of
the physics beyond QED; see, for example, Ref. [15]. The search of new physics at the
precision frontier generally proceeds along similar patterns.

11 Note that in the theories with spontaneous breaking of the symmetry, the masses of some particles are
equal to the product of the vacuum expectation value of the Higgs field and the coupling constant of a
given particle with the Higgs field (a nice example is the Standard Model). The heavy mass limit in such
theories can mean: a) the vacuum expectation value becomes large, or b) some of the couplings become
large. The decoupling theorem applies in the first case only, whereas in the second case we are dealing
with the theory in the strong coupling limit, where the perturbative arguments cannot be used.
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tFigure 1.15 The dressed photon propagator by summing up the self-energy insertions. The wiggly and solid lines denote photons
and electrons, respectively.

1.9 Decoupling in Different Renormalization Schemes

Next, we shall discuss the choice of the renormalization scheme that will prove to be
very instructive. As we have seen in the previous sections, the decoupling of a heavy
scale in the theory proceeds differently, if different regularizations and renormaliza-
tion schemes are used (e.g., the MS scheme in dimensional regularization versus cutoff
regularization). In this section, we wish to elaborate on this issue.

Consider the well-known example of charge renormalization in QED at one loop.
Summing up all self-energy insertions in the photon propagator (see Fig. 1.15), it is
seen that the latter obeys the Dyson–Schwinger equation:

Dµν(p) = D0
µν(p)+ iD0

µλ (p)e2Πλρ(p)Dρν(p) . (1.141)

For simplicity, we choose the Feynman gauge, where the free photon propagator is
given by D0

µν(p) =−gµν/p2. Furthermore, the one-loop self-energy is given by

e2Πµν(p) = i(pµ pν − p2gµν)e2Π(p2)

=
ie2

2π2 (pµ pν − p2gµν)

{
−16π2

3
L−

∫ 1

0
dxx(1− x) ln

m2
e− p2x(1− x)

µ2

}
,

(1.142)

where me and e denote the electron mass and charge, respectively, and µ is the scale of
dimensional regularization. The UV-divergent quantity L is defined in Eq. (1.89).

The solution of the Dyson–Schwinger equation takes the form

Dµν(p) =−
(

gµν −
pµ pν

p2

)
1

p2(1+ e2Π(p2))
−

pµ pν

p4 . (1.143)

As seen from Eq. (1.142), the quantity Π(p2) is ultraviolet-divergent. This divergence
has to be “eaten up” by the charge renormalization. Namely, the bare charge e is
also divergent. The renormalized charge and renormalized self-energy are defined by
requiring that

e2

1+ e2Π(p2)
=

e2
ren

1+ e2
renΠren(p2)

. (1.144)
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The method to remove the divergences in Πren(p2) and, hence, the definition of eren,
depends on the renormalization prescription used. In what follows we shall compare
two different renormalization schemes. (The indices “r” and “R” are used to distinguish
between these schemes):

a) The MS scheme: In this scheme, the renormalized self-energy is obtained by just
dropping the term proportional to L:

e2Πr(p2; µ2) =− e2

2π2

∫ 1

0
dxx(1− x) ln

m2
e− p2x(1− x)

µ2 . (1.145)

b) The MOM scheme: In this scheme, the renormalized self-energy is obtained by a
subtraction at p2 = µ2

0 with µ2
0 < 0:

e2ΠR(p2; µ2
0 ) = e2Π(p2)− e2Π(µ2

0 ) =−
e2

2π2

∫ 1

0
dxx(1− x) ln

m2
e− p2x(1− x)

m2
e−µ2

0 x(1− x)
.

(1.146)

In both cases, the divergent quantity, which is subtracted, is a constant independent of
p2. Writing down Π(p2) = Πdiv+Πren(p2), we get

e2
ren = e2(1− e2Πdiv+O(e4)) . (1.147)

Furthermore, Πdiv and Πren(p2) both depend on the renormalization scale (µ in the
MS scheme, µ0 in the MOM scheme), whereas their sum does not. Hence, eren also
depends on this scale, since the bare parameter, e, does not. The dependence on the
scale is described by the RG equations:

(a) MS scheme:

µ
der(µ)

dµ
= βr(er(µ)) ,

βr(e) =
e
2

µ
d

dµ
Πr(p2; µ2) =

e3

12π2 . (1.148)

(b) MOM scheme:

µ0
deR(µ0)

dµ0
= βR(eR(µ0)) ,

βR(e) =
e
2

µ0
d

dµ0
ΠR(p2; µ2

0 ) =−
e3

4π2

∫ 1

0

dxx2(1− x)2µ2
0

m2
e−µ2

0 x(1− x)
. (1.149)

It is instructive to study two limiting cases, with me much larger and much smaller
than the renormalization scale. We have:

βr(e) =
e3

12π2 , all values of me ,

βR(e) =
e3

12π2 , if me� µ0 , the same result as in the MS scheme ,
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tFigure 1.16 Vacuum polarization correction to the one-photon exchange diagram in electron–electron scattering. The shaded
circle represents the full propagator.

βR(e) =−
e3µ2

0
60π2m2

e
→ 0 , if me� µ0 , decoupling, approaches a free theory .

(1.150)

Does this result mean that the decoupling of the heavy scale occurs only within the
MOM renormalization scheme? Of course not, as can be seen from the discussion in
Section 1.6. The lesson to be learned here is different. The decoupling is explicit, if
everything is expressed in terms of low-energy quantities. Such a low-energy quantity
is, for example, the physical charge, which can be defined as follows. Consider the scat-
tering amplitude of two electrons, with the one-photon exchange diagram modified by
an electron loop;12 see Fig. 1.16:

Tee→ee = ū(p′1,s
′
1)γµ u(p1,s1)

e2
ren

−q2(1+ e2
renΠren(q2))

ū(p′2,s
′
2)γµ u(p2,s2) , (1.151)

where pi,si and p′i,s
′
i (i = 1,2) denote the momenta and the spins of the electrons in

the initial and in the final state, respectively, and q = p′1− p1 = p′2− p2. To simplify the
discussion, we do not consider the second diagram, which is obtained by a permutation
of the two electrons in the initial or in the final state.

Consider now these expressions at very low momenta, p2
i � m2

e and p′i
2� m2

e . It is
easily seen that

p0
i =

√
m2

e +p2
i = me +

p2
i

2me
+ · · ·= me +O(m−1

e ) . (1.152)

Similar relations hold for p′i
0. Further, q2 = (p′i

0 − p0
i )

2 − (p′i − pi)
2 = −(p′i − pi)

2 +

O(m−1
e ). The nonrelativistic reduction of the Dirac spinors takes the form

ū(p′,s′)γµ u(p,s) = ū(0,s′)
6 p′+me√
p′0 +me

γµ 6 p+me√
p0 +me

u(0,s)

= (2me)gµ0δs′s(1+O(m−1
e )) . (1.153)

According to this, the amplitude at low momenta is given by

Tee→ee = (2me)
2δs′1s1

δs′2s2

e2
ren

q2(1+ e2
renΠren(−q2))

(1+O(m−1
e )) . (1.154)

12 According to the Ward identity, only vacuum polarization contributes to charge renormalization.
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On the other hand, in the Born approximation, this amplitude is proportional to
the interaction potential between two electrons,13 which takes into account the vac-
uum polarization effect. Dropping the overall normalization factor and spin indices,
we get

V (r) =
∫ d3q

(2π)3 eiqr e2
ren

q2(1+ e2
renΠren(−q2))

. (1.155)

Neglecting the correction in the denominator, the static Coulomb potential is obtained
from this expression.

We fix the parameters of the theory (here, the electric charge) at large distances,
that is, by measuring the force acting on small charged oil droplets (Millikan-type
experiment). The elementary charge measured in this manner corresponds to α =

e2
phys/(4π) ' 1/137, the fine-structure constant. Since the distances in such an exper-

iment are much larger than the Compton wavelength of the electron, in momentum
space we are focusing on the region q2 → 0. In this region, the modified poten-
tial (1.155) asymptotically coincides with the Coulomb potential at large distances.
This gives

V (r) =
∫ d3q

(2π)3 eiqr e2
phys

q2(1+ e2
phys(Πren(−q2)−Πren(0)))

,

e2
phys =

e2
ren

(1+ e2
renΠren(0))

. (1.156)

For the different renormalization schemes we have the following:

(a) MS scheme:

e2
r (µ) =

e2
phys

1+
e2
phys

12π2 ln
m2

e

µ2

. (1.157)

(b) MOM scheme:

e2
R(µ0) =

e2
phys

1+
e2
phys

2π2

∫ 1

0
dxx(1− x) ln

(
1−

µ2
0

m2
e

x(1− x)
) . (1.158)

Differentiating e(µ) and e(µ0) with respect to µ and µ0, respectively, and taking into
account that the quantity ephys is a physical observable that is scale-independent, we
again arrive at the RG equations, (1.148) and (1.149). Finally, expressing everything in
terms of ephys, the modified Coulomb potential takes the form

V (r) =
∫ d3q

(2π)3 eiqr e2
phys

q2(1+ e2
physF(q2))

,

13 Strictly speaking, this is the potential energy of two electrons and not the static electromagnetic potential.
We shall, however, use this short term in the following and hope that it does not lead to any confusion.
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F(q2) =
1

2π2

∫ 1

0
dxx(1− x) ln

(
1 +

q2

m2
e

x(1− x)
)
. (1.159)

Note that the quantity F(q2) is scale-independent and is the same in both regulariza-
tions. The decoupling is explicit as F(q2)→ 0 for m2

e → ∞. Thus, the whole difference
between the two regularizations is hidden in Eqs. (1.157) and (1.158), which describe
how the renormalized charge er(µ) and eR(µ0) behave at me→ ∞, when ephys is fixed.
This behavior is different. Namely, eR(µ0)→ ephys, meaning that eR(µ0) stays a perfect
low-energy quantity in this limit. On the contrary, the limit me → ∞ cannot be per-
formed at a fixed ephys and µ in the quantity er(µ), because of the large logarithms
ln(m2

e/µ2) in perturbation theory. In order to suppress these logarithms, one has to
take µ ∼me, meaning that one is fixing the charge at a scale of order me. Thus, er(µ) is
not a quantity defined at low energy, and the decoupling is not explicit if the expressions
are written in terms of er(µ) instead of ephys.

1.10 Floating Cutoff

In Section 1.8 we gave arguments in favor of the conclusion that at low energies, only
superrenormalizable and renormalizable interactions, described by relevant and mar-
ginal operators in the Lagrangian, survive, whereas the contributions from irrelevant
operators are suppressed by the powers of a large mass. In this section, we address
this issue from a different point of view, using a method that is based on the ideas of
Wilson’s renormalization group [16]. In this method the high-frequency modes in the
generating functional of the theory are systematically integrated out. The discussion
here closely follows Polchinski’s original paper [17]; see also [18].

We do not want to focus on any particular model. To this end we shall interpret M
merely as some hard scale of the theory, after which the unknown physics starts, be this
a new particle with a mass M, nonlocal effects, or whatever. Further, in order to make
the arguments maximally transparent, here we shall use a momentum cutoff instead
of dimensional regularization. Consider, for simplicity, a theory with a single scalar
field ϕ . The Euclidean generating functional for the renormalized Green’s functions in
momentum space is given by

Z(J) =
∫ [

dϕ
]

M exp
{

S(ϕ ,Ci(M))+ Jϕ
}
, (1.160)

where
[
dϕ
]

M denotes the path integral measure with a cutoff on the high-frequency
modes with p ∼ M. This shorthand notation should be interpreted as follows: calcu-
lating Eq. (1.160) in perturbation theory, a cutoff at the momentum scale of order
M is introduced in all Feynman graphs. Note that the explicit form of the cutoff
does not play a role. Further, S(ϕ ,Ci(M)) is the action functional that contains the
bare coupling constants Ci(M) corresponding to the cutoff at a scale M. In addition,
in a renormalizable theory (in a conventional sense), it is possible to choose Ci(M)

so that the generating functional remains finite as M → ∞. This is not possible in a
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non-renormalizable theory, but everything is perfectly well defined if the cutoff stays
finite.

Now, let us ask the question how the action depends on the cutoff when the latter
varies from M to some lower value Λeff , where our effective field theory is defined. This
scale obeys the inequality m�Λeff �M. (Here, m denotes the light scale in the theory,
for example, the mass of a light particle described by the field ϕ .) More precisely, we
consider a smooth change of a cutoff from M to Λeff , defining a scale Λeff ≤ Λ ≤ M.
The Euclidean path integral is given by Eq. (1.160), with M replaced by Λ.

Here, we are only interested in the low-frequency modes; thus, we assume that

J(p) = 0 for p2 > Λ2
eff . (1.161)

The crucial point is that, in order to ensure that the renormalized Green’s functions do
not depend on Λ, the effective action S(ϕ ,Ci(Λ)) should obey certainRGflow equations.
In other words, the effective couplings that enter S(ϕ ,Ci(Λ)) should depend on Λ in a
manner that compensates the explicit Λ-dependence coming from the cutoff. For exam-
ple, the mass parameters at two scales in the theory with the interaction Lagrangian
LI =C0ϕ 4 at one loop are related by

m2(Λ) = m2(M)−12C0

∫ M dDl
(2π)D

1
m2 + l2

∣∣∣∣
Eucl.

+ 12C0

∫ Λ dDl
(2π)D

1
m2 + l2

∣∣∣∣
Eucl.

= m2(M)− 3C0

4π2

(
M2−Λ2−m2 ln

M2

Λ2 + · · ·
)
,

Λ
d

dΛ
m2(Λ) =

3C0

2π2 Λ2
(

1+O
(

m2

Λ2

))
, (1.162)

where the momentum integrals are evaluated in Euclidean space. Note that, in order
to obtain these equations, the tadpole diagram (the first diagram in Fig. 1.9) has been
evaluated. In general, at a scale Λ, the effective Lagrangian includes the contributions
from all momenta Λ < p < M, which emerge through the loops. Thus, the Lagrangian
at lower scales necessarily contains all derivative vertices, even if the theory did not
contain non-renormalizable operators at Λ = M at all. The RG flow equation tells us
that these will be generated at lower scales. For dimensional reasons these operators
ϕ 22ϕ 2, ϕ 222ϕ 2, · · · will be suppressed by the respective powers of Λ if m�Λ still holds.
The first-order differential equations, analogous to one given in Eq. (1.162), emerge for
the couplings Ci(Λ). These are nothing but the conventional RG equations.

In the following it will be useful to consider the mass as one of the couplings Ci(Λ).
These couplings define a point C = {Ci(Λ)} in the (infinite-dimensional) parame-
ter space, which moves along some trajectory when Λ changes from M to Λeff . This
trajectory is defined by the RG equations and the boundary conditions at Λ = M.

It is convenient to define the dimensionless couplings, C̃i(Λ), according to

Ci(Λ) = Λ∆iC̃i(Λ) . (1.163)
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If ∆i is positive, zero or negative, the pertinent operators are referred to as relevant,
marginal and irrelevant couplings, respectively.

The RG equations for the dimensionless couplings are written as follows:

Λ
d

dΛ
C̃i(Λ)+∆iC̃i(Λ) = βi(C̃(Λ)) , (1.164)

where the βi denote the pertinent β -functions. In what follows, we shall demonstrate
that, if the couplings are sufficiently small (i.e., allowing for a perturbative treatment),
for a completely arbitrary boundary condition at Λ = M, the system at a lower scale
Λ=Λeff lives on a surface with a dimension given by a total number of the relevant and
marginal operators only. In other words, systems with very different values of the irrel-
evant couplings at a high scale behave similarly at lower scales. Stated differently, the
information about the high scale is erased during the RG evolution. Only the relevant
and marginal couplings survive.

In order to understand how this happens, consider a toy example with two couplings:
a marginal one, C0(Λ), and an irrelevant one, C1(Λ), with a mass dimension equal
to −2. We set, for simplicity, all other couplings to zero. The RG equations for the
couplings C0,C2 take the form

Λ
dC̃0

dΛ
= β0(C̃0,C̃1) ,

Λ
dC̃1

dΛ
−2C̃1 = β1(C̃0,C̃1) . (1.165)

The boundary conditions are fixed at Λ = M:

C̃i(Λ)
∣∣
Λ=M = C̃(0)

i , i = 0,1 . (1.166)

Let us now assume that the pair (C̄0,C̄1) is some solution of the preceding equations.
Consider a small deviation C̃(0)

i → C̃(0)
i +δC̃(0)

i in the boundary conditions. Then, the
solutions will also change. We denote εi = C̃i − C̄i and note that the RG equations
linearize for εi:

Λ
dε0

dΛ
=

∂β0

∂C̃0
ε0 +

∂β0

∂C̃1
ε1 ,

Λ
dε1

dΛ
−2ε1 =

∂β1

∂C̃0
ε0 +

∂β1

∂C̃1
ε1 , (1.167)

where the bar means that the partial derivatives are evaluated at (C̄0,C̄1). The term
−2ε1 in Eq. (1.167) is crucial in our discussion, since it will cause a damping of the
variation of the deviations in the ε1-direction.

The equations for ε0,ε1 can be decoupled by introducing a new variable,

ζ1 = ε1− ε0
dC̄1/dΛ
dC̄0/dΛ

. (1.168)

The physical meaning of the variable ζ1 is the distance between two neighboring tra-
jectories in the C̃0,C̃1 plane along the C̃1 axis; see Fig. 1.17. As already mentioned, the
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C
0

C
1

A1

A2B1

B2
B2

O

~
~

tFigure 1.17 Two neighboring trajectories in the C̃0,C̃1 plane. Let the pointsA1,A2 correspond to a pair (C̃0,C̃1) at someΛ.
The distance between the curves is just the length of |A1A2|. WhenΛ→ Λ+∆Λ, thenA1 moves toB1 andA2

toB2. The vertical distance between two curves in this case is, however, given by the length of
|B1B′2|= |OB1|− |OB′2|, which coincides with variable ζ1 defined in Eq. (1.168).

RG equation for this quantity decouples. Indeed, using Eqs. (1.165) and (1.167), it can
be straightforwardly shown that ζ1 obeys the following equation:

Λ
dζ1

dΛ
−2ζ1 =

(
∂β1

∂C̃1
+

∂β0

∂C̃0
−Λ

d
dΛ

ln β̄0

)
ζ1 . (1.169)

In perturbation theory, the r.h.s. of this equation is small, and the RG evolution of
ζ1 is governed by the term −2ζ1 in the l.h.s. of the equation, determined by the mass
dimension of the irrelevant coupling. Hence, the solution of the equation at Λ = Λeff

to lowest order in perturbation theory is given by

ζ1(Λeff) = ζ1(M)

(
Λ2
eff

M2

)
. (1.170)

This means that all RG trajectories approach each other in the infrared, and there is
one essential parameter left instead of two: The value of C̃1 is predicted, given the value
of C̃0. Moreover, the value of the parameter C̃0 is also not independent, it just marks
the place where we are on a single trajectory in the infrared. In other words, C̃0 can
be traded for the scale Λeff . Let us stress once more that the validity of this result is
restricted to the perturbative regime, where the small corrections are supposed not to
change the leading-order behavior. Strong non-perturbative effects might invalidate
some arguments used in the proof and lead to the modification of the results.14

Imagine now that we arbitrarily change input values of couplings C̃0,C̃1 at the scale
Λ = M. The curves will still converge in the infrared. Moreover, the resulting curve will
be defined by the sameRG equation for a single coupling C̃0, since C̃1 is a function of C̃0

in the infrared limit. Thus, adjusting C̃0(M),C̃1(M) so that C̃0(Λ) at Λ = Λeff takes the

14 A nice example for this is provided by the Thirring model; see, e.g., the discussion in Ref. [19].
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same value as before,15 one ends up with the same curve below Λeff . Stated differently,
different theories at the scale M converge to the same theory with a single coupling
C̃0(Λeff) at a lower scale, which means that some information, which was present at
the scale M, gets erased at the scale Λeff . This is exactly the essence of decoupling.
Furthermore, note that C1(Λeff) = C̃1(Λeff)/Λ2

eff is still power-suppressed in the low-
energy region, if the cutoff Λeff is taken much larger than the light particle mass and
the characteristic momenta.

1.11 Emergent Symmetries

The fact that only a few couplings survive in the infrared region can have far-reaching
implications. Namely, if we set all couplings that become irrelevant at low energies to
zero, the resulting Lagrangian might have a higher symmetry than the original one,
containing, for example, a whole string of operators with increasing mass dimension.
Consequently, one speaks of an emergent symmetry. This means that the theory at low
energies exhibits a symmetry that was not present in the original Lagrangian at high
energies. We note that the content of this section is somewhat speculative and it might
be skipped upon first reading.

Below, we will demonstrate this effect within a simple model for a global symmetry.
We shall follow the perturbative approach outlined in Refs. [20, 21]. The Lagrangian
of the model is given by

L=
1
2
(∂ϕ1)

2 +
1
2
(∂ϕ2)

2− m2

2
(ϕ 2

1 +ϕ 2
2 )−

λ
4
(ϕ 4

1 +ϕ 4
2 )−

g
2

ϕ 2
1 ϕ 2

2

+ counter terms . (1.171)

Here, ϕ1,2 are real scalar fields. The preceding Lagrangian possesses a discrete symme-
try with respect to ϕ1,2 →−ϕ1,2 and ϕ1 ↔ ϕ2. If λ = g, however, the theory becomes
invariant under the continuous O(2) group

ϕ1→ ϕ1 cosθ −ϕ2 sinθ , ϕ2→ ϕ1 sinθ +ϕ2 cosθ , (1.172)

where θ is an angle. Let us now consider the renormalization group running for the
couplings of the Lagrangian. To this end, we shall first calculate the pertinent β -
functions at one loop, using the saddle-point method in the path integral. Expanding
the action functional in the vicinity of the classical solution of the EOM,

ϕ1,2(x) = ϕ c
1,2(x)+ξ1,2(x) , (1.173)

we get ∫
d4xL(x) =

∫
d4x
(
Lc(x)+

1
2

ΞT D̂Ξ+O(ξ 3)

)
, (1.174)

15 We have two couplings C̃0(M),C̃1(M) at our disposal, to adjust a single coupling C̃0(Λeff ). It is evident
that some residual freedom at the scale M remains after matching, performed at a lower scale.
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where Lc(x) is the Lagrangian evaluated with the classical solution ϕ c
1,2(x), ΞT =

(ξ1,ξ2), and

D̂ =

(
−(2+m2)−3λ (ϕ c

1 )
2−g(ϕ c

2 )
2 −2gϕ c

1 ϕ c
2

−2gϕ c
1 ϕ c

2 −(2+m2)−3λ (ϕ c
2 )

2−g(ϕ c
1 )

2

)

= D̂0 + D̂1 , D̂0 =

(
−(2+m2) 0

0 −(2+m2)

)
. (1.175)

Note also that the linear terms in ξ1,2 are absent in Eq. (1.174) because the ϕ c
1,2(x) obey

the EOM. The path integral can now be evaluated in the semiclassical approximation:∫
dϕ1dϕ2 exp

[
i
∫

d4xL(x)
]
=
∫

dξ1dξ2 exp
[

i
∫

d4x
(
Lc(x)+

1
2

ΞT D̂Ξ
)]

= (det D̂)−1/2 exp
[

i
∫

d4xLc(x)
]

= exp
[

i
(∫

d4xLc(x)+
i
2
tr ln D̂

)]
. (1.176)

Expanding the logarithm in powers of the fields ϕ c
1,2,

i
2
tr ln D̂ =

i
2
tr ln(D̂0 + D̂1)

=
i
2
tr ln D̂0 +

i
2
tr(D̂−1

0 D̂1)−
i
4
tr(D̂−1

0 D̂1D̂−1
0 D̂1)+ · · · , (1.177)

it is immediately seen that the renormalization of the quartic couplings can be read off
from the last term in this equation. This term can be rewritten in the following form:

− i
4
tr(D̂−1

0 D̂1D̂−1
0 D̂1) =−

i
4

∫
d4xd4yD(x− y)D(y− x)tr(D̂1(y)D̂1(x)) ,

(1.178)

with

D(x− y) = 〈x|(2+m2)|y〉=
∫ d4k

(2π)4
e−ik(x−y)

m2− k2 . (1.179)

Then, using translational invariance, one may write

D(x− y)D(y− x) = i
∫ d4k1

(2π)4 e−ik1(x−y)
∫ d4k2

(2π)4i
1

(m2− (k1 + k2)2)(m2− k2
2)

.

(1.180)

The integral over k2 is UV-divergent. For clarity, let us use cutoff regularization. Then,∫ d4k2

(2π)4i
1

(m2− (k1 + k2)2)(m2− k2
2)

=
1

16π2 ln
Λ2

m2 + · · · , (1.181)
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where the ellipsis denotes the terms that do not depend on Λ in the limit of large cutoff
Λ� m. Hence,

D(x− y)D(y− x) = iδ (4)(x− y)
1

16π2 ln
Λ2

m2 + · · · , (1.182)

and

− i
4
tr(D̂−1

0 D̂1D̂−1
0 D̂1) =

1
4

1
16π2 ln

Λ2

m2

∫
d4xtr(D̂1(x)D̂1(x))

=
1

16π2 ln
Λ2

m2

∫
d4x
(

9λ 2 +g2

4
((ϕ c

1 )
4 +(ϕ c

2 )
4)+(3λg+2g2)(ϕ c

1 )
2(ϕ c

2 )
2
)
.

(1.183)

The coefficients in front of the operators (ϕ c
1 )

4 +(ϕ c
2 )

4 and (ϕ c
1 )

2(ϕ c
2 )

2 in the effective
action (that includes Lc) should not depend on the cutoff Λ. This condition gives

0 = Λ
d

dΛ

(
−1

4
λ +

1
16π2 ln

Λ2

m2
9λ 2 +g2

4

)
,

0 = Λ
d

dΛ

(
−1

2
g+

1
16π2 ln

Λ2

m2 (3λg+2g2)

)
. (1.184)

Hence, the RG equations at one loop take the following form:

Λ
d

dΛ
λ =

3
8π2

(
3λ 2 +

1
3

g2
)
,

Λ
d

dΛ
g =

3
8π2

(
2λg+

4
3

g2
)
. (1.185)

The quantity of interest is η = g/λ . The RG equation for this quantity is readily
obtained from Eq. (1.185):

Λ
d

dΛ
η =

3
8π2 (−λη)

(
1
3

η2− 4
3

η +1
)
. (1.186)

As seen, the β -function for the coupling η vanishes at η = 0,1,3; these are fixed points.
The point η = 0 (i.e., g = 0) corresponds to two mutually noninteracting scalar fields.
The case η = 3 (i.e., g = 3λ ) is reduced to the former by the substitution ϕ1 = (ψ1 +

ψ2)/
√

2 and ϕ2 = (ψ1−ψ2)/
√

2. Finally, the case η = 1 (i.e., g = λ ) corresponds to the
O(2) symmetric case. Note also that the derivative of the β -function with respect to η
is positive for η = 1 (infrared attractor) and negative for η = 0,3 (infrared repulsor).
Here, we assume that λ is positive so that the Hamiltonian is bound from below.

Let us now consider the running of the coupling η in the vicinity of the fixed points.
If η ' 1, the RG equation linearizes:

Λ
d

dΛ
η ' c(η−1) , c =

3λ
8π2 > 0 . (1.187)
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The solution of this differential equation takes the form

η(Λ)−1 = (η(M)−1)
(

Λ
M

)c

, (1.188)

where Λ and M are two different scales with M� Λ. Now, it is seen that starting from
some high scale M and evolving down to the scale Λ, the coupling η(Λ) tends to one
irrespective of the value η(M) at the high scale. In other words, the O(2) global symme-
try emerges at low energies, even if at high energies there was no such symmetry and the
couplings λ and g were independent. Note also that with the fixed points η = 0,3 the
situation is the opposite: the sign of the pertinent c’s is now negative, and the coupling
η(Λ) is repelled from the fixed points as Λ�M.

Next, we turn to the case of local symmetries. As is well known, theories with (mas-
sive) vector fields are, in general, non-renormalizable. Only when these fields describe
gauge bosons of some local symmetry group (unbroken or broken) can the theory be
made renormalizable. On the other hand, as we have learned from the previous dis-
cussions, the non-renormalizable interactions that are described by the operators with
higher dimensions become irrelevant at low energies, that is, only renormalizable inter-
actions survive. This raises the intriguing question of whether gauge symmetries are
also emergent at low energies and need not be postulated from the beginning. In a
loose language, one could even speak of “the emergence of light from chaos” (i.e.,
massless photons out of massive vector fields) at low energies.

The preceding question is difficult. In Refs. [20, 21], a one-loop perturbative study
has been carried out in different models, including those with supersymmetry. The
results are inconclusive. In some cases, we encounter infrared attractors, whereas in
other cases we do not. On the other hand, in Ref. [22], very plausible non-perturbative
arguments were given in favor of the statement that gauge theories should emerge in the
infrared limit. In what follows, we shall illustrate these arguments in a simple example.

Let us start from a theory that contains a vector field Gµ = −iGa
µ T a that belongs

to the adjoint representation of some compact group G. The quantities T a denote the
generators of the group G, normalized as tr(T aT b) = δ ab/2. Except Gµ , there can be
other fields (matter fields) in the theory, which transform as basis vectors of some irre-
ducible representations of G. In the following, we do not need to specify these fields
explicitly. Note that the symmetry considered here is global.

The most prominent signature of an (unbroken) gauge symmetry is the emergence
of a vector particle with zero mass. This manifests itself as the pole in the two-point
function of two vector fields, located at p2 = 0. It is, however, more convenient to con-
sider the two-point function of currents Jµ = −iJa

µ T a, which couple to the field. For
example, if G is the group SU(N), and the vector field Gµ interacts with the fermions
in the fundamental representation, ψ , then a convenient choice for Ja

µ by analogy with
QED is

Ja
µ(x) = ψ̄(x)γµ T aψ(x) . (1.189)

The reason for considering currents instead of fields will become clear in what follows.
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Next, using the invariance under global transformations, it can be seen immediately
that the two-point function

∆µν(x− y) =
∫

dGµ · · · tr
(
Jµ(x)Jν(y)

)
exp
(

i
∫

d4xL
[
Gµ , · · ·

])
(1.190)

develops a pole at the physical mass of the vector particle. Here, the ellipses stand for
the matter fields, which are not shown explicitly.16

Up to now, the theory did not possess gauge invariance at all, as G is a global group.
In Ref. [22], Förster, Nielsen and Ninomiya have proposed an elegant trick to for-
mally elevate the global symmetry to a local one. To this end, one defines the gauge
transformation of Gµ in a standard manner:

Gµ(x) 7→ GΛ
µ(x) = Λ(x)Gµ(x)Λ(x)−1−∂µ Λ(x)Λ(x)−1 , (1.191)

where Λ(x) is an element of a local group G. The matter fields transform under the
gauge group in the standard manner as well. Note also that the current, which was
introduced in Eq. (1.189), under the gauge transformation transforms as

Jµ(x) 7→ Λ(x)Jµ(x)Λ(x)−1 , (1.192)

so that the trace in Eq. (1.190) is invariant under the transformations. This is the ration-
ale for considering the two-point function of currents instead of the fields Gµ . Further,
the path integral measure is invariant under local transformations. Performing the
transformations on the integration variables, one may write

∆µν(x− y) =
∫

dΛ
∫

dGµ · · · tr
(
Jµ(x)Jν(y)

)
exp
(

i
∫

d4xL
[
Gµ , · · ·

])

=
∫

dΛ
∫

dGµ · · · tr
(
Jµ(x)Jν(y)

)
exp
(

i
∫

d4xL
[
GΛ

µ , · · ·
])

.

(1.193)

The action functional in Eq. (1.193) consists of two parts: the one that preserves
gauge invariance, and the one that does not; that is,

S
[
GΛ

µ , · · ·
]
=
∫

d4xL
[
GΛ

µ , · · ·
]
= S0

[
Gµ , · · ·

]
+S1

[
GΛ

µ , · · ·
]
. (1.194)

Defining next

exp
(
iδS
[
Gµ , · · ·

])
=
∫

dΛexp
(
iS1
[
GΛ

µ , · · ·
])
, (1.195)

we finally get

∆µν(x− y) =
∫

dGµ · · · tr
(
Jµ(x)Jν(y)

)
exp
(
iS0
[
Gµ , · · ·

]
+ iδS

[
Gµ , · · ·

])
.

(1.196)
16 Two disclaimers should be immediately made here. First, we implicitly assume that the theory is regular-

ized on a finite space-time lattice (see the following), and hence there is no need for adding a gauge-fixing
term. Second, for simplicity, we assume that there is no confinement of the vector field; otherwise, the
physical mass cannot be defined.
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At first glance, a paradoxical result emerges. Starting from a gauge non-invariant
expression, we obtain an expression where everything is written in terms of gauge-
invariant quantities. Performing the gauge transformation Gµ → GΛ

µ ,Λ ∈ G in
Eq. (1.195), it can be easily seen that the quantity δS[Gµ , · · · ] is explicitly gauge-
invariant. However, the gauge invariance of the latter does not yet guarantee that it
is given in form of the integral over a local Lagrangian, and thus one gets a gauge-
invariant effective theory at the end. In fact, the variables Λ in Eq. (1.195) can be
considered as dynamical fields, living on a compact group manifold and interacting
with external fields Gµ , . . .. An analog is a system of spins that are localized on the
sites of a regular lattice in space and that interact with an external magnetic field.
It is known that, for varying parameters of the model, two different phases can be
realized:

• High-temperature phase, no spontaneous magnetization:

In this case, the variables Λ(x) are not correlated at distances larger than the
inverse UV cutoff. This corresponds to the situation where S1 is “small” and the
path integral can be calculated by expanding the exponent exp(iS1) = 1+ iS1 + . . ..
In this case, δS can be written as

δS
[
Gµ , · · ·

]
=
∫

d4x∑
i

CiOi(x) , (1.197)

where the Oi(x) are local, gauge-invariant operators and the Ci are couplings. At low
energies, only relevant and marginal operators survive and we end up with a gauge
theory with massless gauge bosons.17 So, light from chaos indeed emerges.18

• Low-temperature phase, spontaneous magnetization:

In this case, the correlation length of variables Λ is large and a local, gauge-
invariant effective Lagrangian cannot be derived. The field Gµ is in general massive.

A nontrivial part of the statement is that there exists a region in the parameter space
where the transition to the disordered phase takes place and, hence, an effective low-
energy gauge-invariant theory emerges from the theory, which was not gauge-invariant
originally. The statement has been backed, for example, by the numerical results of
Monte-Carlo simulations in the two-dimensional XY model on the lattice [23]. Even
being tempting, we do not claim here that the fundamental gauge interactions in
Nature necessarily emerge from a theory that does not exhibit gauge symmetry at high
energies. Although it is an interesting option to entertain, a further discussion goes
beyond the scope of this book.

17 These can still acquire mass through the Higgs mechanism in the interactions with matter fields.
18 A gauge theory must be compact in order to be dynamically stable. A simple counter-example is provided

by a single free massive vector field, described by the Lagrangian

L=−1
4
(∂µ Gν −∂ν Gµ )

2 +
m2

2
Gµ Gµ . (1.198)

This is a free theory, and the vector meson there has a nonzero mass [22].
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1.12 Triviality of the ϕ4-Theory

Let us consider a theory that is described by the Lagrangian

L=
1
2
(∂ϕ)2− m2

2
ϕ 2− λ

4
ϕ 4 , (1.199)

where ϕ denotes a one-component real scalar field. It is well known that this theory
is perturbatively renormalizable in a strict sense. To all orders in perturbation theory,
the divergences arising in the Green’s functions can be removed by the renormalization
of the mass m, the coupling constant λ and the multiplicative renormalization of the
field ϕ → Z1/2ϕ , where Z is the wave function renormalization constant. For a detailed
discussion, see, for example, the textbook [24].

In this section, we use cutoff regularization and denote the cutoff scale by Λ.
Although dimensional regularization is more simple and elegant, it lacks physical
transparency. In the following, m and λ are the bare parameters. The renormalized
parameters are denoted by mR and λR, respectively.

Suppose that one calculates the Green’s function of the fields ϕ with n external legs,
the n-point function. The unrenormalized Green’s function is given by

(2π)4δ (4)
( n

∑
i=1

pi

)
G(p1, · · · , pn;m,λ ,Λ)

=
∫ n

∏
i=1

(
dxi eipixi

)
〈0|T ϕ(x1) · · ·ϕ(xn)|0〉 . (1.200)

The renormalized Green’s function follows as

GR(p1, · · · , pn;mR,λR,Λ) = Z−n/2(mR,λR,Λ)G(p1, · · · , pn;m,λ ,Λ) , (1.201)

with mR,λR functions of m,λ and Λ and vice versa. Renormalizability means that, for
fixed values of mR,λR, one may choose the dependence on Λ in the parameters m,λ and
Z so that all Green’s functions GR(p1, · · · , pn;mR,λR,Λ) stay finite in the limit Λ→ ∞.
If the Green’s functions are expanded up to k loops in perturbation theory, then

GR(p1, · · · , pn;mR,λR,Λ) = GR(p1, · · · , pn;mR,λR)+O(Λ−2 lnk Λ) , (1.202)

where GR(p1, · · · , pn;mR,λR) is the renormalized Green’s function in the limit Λ→ ∞,
and the remainder describes the so-called scaling violation.

In order to set the framework unambiguously, one in addition should fix the renor-
malization prescription, that is, one should define how the quantities mR,λR,Z are
expressed through the pertinent bare quantities. In the following, we choose the renor-
malization at vanishing external momenta (a particular choice within the so-called
MOM scheme). Consider first the two-point Green’s function:

GR(p,−p;mR,λR,Λ) = Z−1(mR,λR,Λ)G(p,−p;m,λ ,Λ)

.
=−i

[
Γ(2)

R (p2;mR,λR,Λ)
]−1

. (1.203)
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In order to fix mR and Z, we may require

Γ(2)
R (0;mR,λR,Λ) = m2

R , (1.204)

and

d
d p2 Γ(2)

R (p2;mR,λR,Λ)
∣∣∣∣

p2=0
=−1 . (1.205)

Note that mR is not equal to the physical mass denoted by mP. Also, mR is different from
the renormalized mass mr in the MS scheme, which was considered in the previous
sections.

In order to fix the coupling constant λR, one considers the four-point function:

TR(p1, p2, p3, p4;mR,λR,Λ)

=−iZ−2(mR,λR,Λ)
4

∏
i=1

(m2
P− p2

i )G(p1, p2, p3, p4;m,λ ,Λ) . (1.206)

The renormalized coupling λR is defined as

TR(0,0,0,0;mR,λR,Λ) =−6λR . (1.207)

The preceding three relations indeed determine the bare quantities m,λ ,Z in terms of
the renormalized ones, mR,λR, and the cutoff Λ.

In order to see how these relations work in practice, let us perform calculations at
one loop. The calculation of the two-point function at this order yields[

G(p,−p;m,λ ,Λ)
]−1

= m2− p2 +3λ I(m2,Λ) ,

I(m2,Λ) =
∫ Λ d4k

(2π)4i
1

m2− k2 . (1.208)

Note that, at this order, I(m2,Λ) does not depend on p2. Consequently, differentiating
the relation

Γ(2)
R (p2;mR,λR,Λ) = Z(mR,λR,Λ)

[
m2− p2 +3λ I(m2,Λ)

]
(1.209)

with respect to p2 and using Eq. (1.205), we obtain

Z(mR,λR,Λ) = 1 . (1.210)

Further, Eq. (1.204) at this order yields

m2
R = m2 +3λ I(m2,Λ) , m2 = m2

R−3λRI(m2
R,Λ) . (1.211)

Here, we have used the fact that mR = m and λR = λ at lowest order. Substituting the
explicit expression for the self-energy integral

I(m2,Λ) =
1

16π2

[
Λ2−m2 ln

Λ2

m2 +O
(

1
Λ2

)]
, (1.212)
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we get

m2 = m2
R−

3λR

16π2

[
Λ2−m2

R ln
Λ2

m2
R
+O

(
1

Λ2

)]
. (1.213)

Note that mR is equal to the physical mass mP at this order.
Next, calculating the four-point function at one loop, we get

T (p1, p2, p3, p4;mR,λR,Λ) =−6λ

+(6λ )2(J(s,m2,Λ)+ J(t,m2,Λ)+ J(u,m2,Λ)
)
, (1.214)

where s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p1 + p4)
2, and

J(s,m2,Λ) =
1
2

∫ Λ d4k
(2π)4i

1
(m2− k2)(m2− (k− p1− p2)2)

=
1

32π2

∫ 1

0
dx
[

ln
Λ2

m2 +1− ln
m2− x(1− x)s

m2 +O
(

1
Λ2

)]
. (1.215)

Using Eq. (1.207), we finally obtain

λR = λ − 9λ 2

16π2

[
ln

Λ2

m2 +1
]
. (1.216)

Fixing λR to a given value (independent of Λ) leads to

0 = Λ
∂

∂Λ
λR = Λ

∂
∂Λ

λ − 9λ 2

8π2 . (1.217)

This yields the RG equation that determines the dependence of the bare coupling λ on
the cutoff Λ:

Λ
∂

∂Λ
λ = β (λ ,m,Λ) . (1.218)

The arguments of the β -function on the right-hand side of this equation are the bare
coupling λ , the bare mass m and the cutoff Λ. The quantities m and Λ can be further
expressed through λ and the renormalized parameters mR,λR. Since the latter are fixed,
one could consider the explicit dependence on λ only, suppressing all other variables.
Expanding now the β -function in powers of the coupling constant, we get

β (λ ) =−β0λ 2−β1λ 3−·· · , (1.219)

where, in our case,

β0 =−
9

8π2 < 0 . (1.220)

Let us consider the solution of the RG equation to lowest order. Integrating the
equation

Λ
∂

∂Λ
λ =−β0λ 2 (1.221)

gives

1
λ (Λ)

− 1
λ0

= β0 ln
Λ
Λ0

, λ0 = λ (Λ)
∣∣
Λ=Λ0

. (1.222)
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55 1.12 Triviality of the ϕ 4-Theory

This equation can be rewritten as

λ (Λ) =
λ0

1+β0λ0 ln Λ
Λ0

. (1.223)

Recall that λ0 is the bare coupling constant corresponding to the (fixed) renormalized
constant at the value of the cutoff Λ=Λ0. It has a certain numerical value that depends
on λR,Λ0 and mR. Renormalizability of the theory is then equivalent to the statement
that, when Λ is varied continuously from Λ = Λ0 to infinity, we can always choose a
value of the bare coupling λ (Λ), which would correspond to the same values of the
renormalized parameters. Let us explicitly check whether this statement is valid at one
loop.

The answer to this question depends on the sign of the coefficient of β0. As seen
from Eq. (1.223), if β0 is positive, λ (Λ) decreases monotonically and approaches zero,
as Λ increases from Λ0 to infinity. (Recall that λ0 has to be positive, otherwise the
Hamiltonian of the model is not bound from below.) This means that the limit Λ→ ∞
exists and, moreover, the first-order perturbative result can be trusted at large values of
Λ (asymptotic freedom). However, if β0 is negative, as in our example (see Eq. (1.220)),
the situation changes dramatically. The bare coupling constant becomes infinite at

Λ = Λ0 exp
(
− 1

β0λ0

)
. (1.224)

This phenomenon is called a Landau pole [25–27]. In this case, the limit Λ→∞ cannot
be performed, unless λR = 0, that is, in a trivial theory. The latter statement, however,
comes with a grain of salt. Namely, approaching the critical value of Λ, the coupling
constant λ grows, and the applicability of perturbation theory is questionable. It is
therefore necessary to find out whether higher-order corrections might invalidate the
statement.

Below, we shall formulate the condition under which the limit Λ→ ∞ exists. To this
end, let us integrate the first-order differential equation (1.218):

ln
Λ
Λ0

=
∫ λ

λ0

dλ ′

β (λ ′)
. (1.225)

If Λ→ ∞, the l.h.s. of this equation is positive and diverges. The integral on the r.h.s.
of the equation should thus behave in the same way. There are several alternatives:

• The β -function has a zero,

β (λ ) = 0 at λ = λ ∗ , (1.226)

where the quantity λ ∗ defines the location of a so-called fixed point. Let us assume,
for illustrative reasons, that the zero in the β -function is of first order. (Other cases
can be treated similarly.) In this case, we can perform a Taylor expansion in the
vicinity of the fixed pole:

β (λ ) =C(λ −λ ∗)+O((λ −λ ∗)2) , (1.227)
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where C is the derivative of the β -function at the fixed point. We assume that C <

0 (ultraviolet fixed point). We also assume that λ0 > λ ∗ (the case λ0 < λ ∗ can be
considered analogously). Suppose now that λ (Λ) for some Λ is located in the vicinity
of λ ∗. Then, Eq. (1.225) can be rewritten as

ln
Λ
Λ0

=
∫ λ ∗+ε

λ0

dλ ′

β (λ ′)
+
∫ λ

λ ∗+ε

dλ ′

C(λ ′−λ ∗)
. (1.228)

Here, ε is a small quantity and, in the second integral, the function β (λ ) can be
replaced by the first term in the Taylor expansion. Denoting the first integral by A
(it does not depend on λ ), we get

ln
Λ
Λ0

= A+
1
C

ln
λ −λ ∗

ε
, (1.229)

so that

λ −λ ∗ = ε
(

Λ
Λ0eA

)C

. (1.230)

If C < 0, λ (Λ) converges toward λ ∗ as Λ→∞. For this reason, we speak of an ultra-
violet fixed point, or an attractor.On the contrary, there is no attraction to this point
in the ultraviolet if C > 0.

• The function β (λ ) has a definite sign. For Λ→ ∞, the l.h.s. of Eq. (1.225) diverges,
and the r.h.s. should do so as well. This divergence can arise only at λ → ∞, that is,
the asymptotic behavior of β (λ ) is restricted by∣∣∣∣β (λ )λ

∣∣∣∣≤ constant, as λ → ∞ . (1.231)

In this case, the limit Λ→ ∞ can be also performed. There are no singularities at
finite values of Λ.

• Finally, consider the situation when β (λ ) grows faster than λ 1+δ , with δ > 0, as
λ → ∞. In this case, the integral on the r.h.s. of Eq. (1.225) converges, whereas the
logarithm on the l.h.s. diverges, as Λ→∞. Consequently, there exists a critical value
of Λ, called Λcrit, determined from the equation

ln
Λcrit

Λ0
=
∫ ∞

λ0

dλ ′

β (λ ′)
, (1.232)

where the coupling constant blows up, and thus performing the limit Λ → ∞ is
not possible. This situation resembles the previously discussed Landau pole in
perturbation theory.

Thus, the question whether the limit Λ→ ∞ can be performed in the renormalized
ϕ 4-theory boils down to the study of the asymptotic behavior of the β -function at large
values of λ and its zeros. Clearly, non-perturbative methods should be used in order
to solve this problem.

In the series of papers [28–30] Lüscher and Weisz have demonstrated that, indeed,
the ϕ 4-theory is trivial, that is, the limit Λ→ ∞ cannot be performed at λR 6= 0. Sche-
matically, the argument in these papers goes as follows. (For simplicity, we consider a
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case of a single scalar field in the phase with unbroken symmetry.) In the unrenormal-
ized theory, one has two dimensionless quantities: m̄=m/Λ and λ . In the renormalized
theory, these are m̄R =mR/Λ and λR. Further, one can express the renormalized param-
eters in terms of the bare ones in a wide range of bare parameters, including the
physically interesting domain mR/Λ→ 0. These relations take the form

m̄R = m̄R(λ , m̄) , λR = λR(λ , m̄) . (1.233)

Now, it is possible to invert the second relation, expressing m̄ through λ and λR.
Substituting this into the first relation, one gets

m̄R = F(λ ,λR) . (1.234)

In Refs. [28–30], the trajectories of m̄R were studied for a fixed λR, using a combination
of the high-temperature expansion of the Green’s functions and a numerical solution
of the RG equations. It was shown that the dependence on λ is monotonic, and the
minimum is achieved when λ →∞. This result means that the value of m̄−1

R is bounded
from above at every fixed λR, and one may write

ln m̄−1
R = ln

Λ
mR
≤ f (λR) , (1.235)

where f (λR) can be evaluated numerically, using the methods just mentioned. In other
words, for each given λR 6= 0, there exists an upper bound on Λ, that is, the theory is
trivial. Note further, as shown inRef. [28], the function f (λR) can be well approximated
by an expression of the form f (λR) = A/λR +B lnλR +O(1). If λR is not very large, the
second-order perturbation expression works very well, yielding

ln
Λ

mR
≤− 1

β0λR
− β1

β 2
0

ln(−β0λR)+C(λR) , (1.236)

where −1.7≤C(λR)≤ 1.3 for λR ≤ 1.5.
At this point, one has to discuss what the obtained result means in practice. The

fact that the ultraviolet cutoff cannot be moved to infinity does not a priori invalidate
the results that can be obtained from this theory at low momenta, that is, momenta
much smaller than the cutoff Λ. In other words, the ϕ 4-theory perfectly makes sense
as an effective theory if one does not insist that it should be valid at all energies. The
contributions coming from high momenta, which can be characterized by the higher-
dimensional operators in the Lagrangian, are small at the momenta much less than the
cutoff.

This statement has important implications, if one insists that, for consistency, the
mass of a scalar particle must be smaller than the ultraviolet cutoff. This results in
the existence of an upper bound on the mass of the scalar particle(s), the so-called
triviality bound, in theories, where the interactions in the scalar sector are described by
the ϕ 4 Lagrangian. A prominent example is the triviality bound set on the mass of the
Higgs particle in the Standard Model before the actual discovery of the Higgs. Below
we shall give a simple, intuitive derivation of the bound from the one-loop running of
the coupling constant.
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Consider the Lagrangian of the Higgs sector of the Standard Model that contains
one complex doublet field Φ:

LH =
1
2

∂µ Φ†∂ µ Φ− m2

2
Φ†Φ− λ

4
(Φ†Φ)2 . (1.237)

For a rough estimate one can use the lowest-order perturbative results for the running
of the renormalized coupling constant. To this end, by analogy with Eq. (1.216), one
can define the scale-dependent renormalized constant λR(µ):

λ = λR(µ)−
1
2

β0λR(µ)2
[

ln
Λ2

µ2 +1
]
, (1.238)

where β0 in the theory with two complex scalar fields, described by the Lagrangian
(1.237), is given by

β0 =−
3

2π2 , (1.239)

and the quantity λR, which was defined previously, corresponds to the choice of the
scale µ = mR; see Eq. (1.216). The RG running of the renormalized quartic coupling is
given by

µ
∂

∂ µ
λR(µ) =−β0λ 2

R(µ) . (1.240)

Integrating this differential equation leads to

λR(µ0) =
λR(µ)

1+ 3
2π2 λR(µ) ln µ

µ0

, µ ≥ µ0 . (1.241)

Taking into account the fact that λR(µ) is positive, the following upper bound on
λR(µ0) emerges:

λ̄R
.
= λR(µ0)≤

2π2

3ln µ
µ0

. (1.242)

Further, at the order of perturbation theory we are working, we can use tree-level
results for the masses from the Standard Model:

M2
H = 2λ̄Rv

2 , M2
W =

1
4

g2v2 , g =
e

sinθW
. (1.243)

Here, MH and MW are themasses of theHiggs andW -bosons, respectively, v' 246 GeV
in the vacuum expectation value of the Higgs field, e and g are the electromagnetic and
the SU(2) gauge couplings, respectively, and sin2 θW ' 0.23, where θW denotes the weak
mixing (Weinberg) angle. Using now Eq. (1.243), we obtain(

MH

MW

)2

=
8λ̄R

g2 . (1.244)

Finally, substituting the value of the coupling g, the following rough estimate can be
obtained:

MH

MW
≤ 4π

g
√

3
1

(ln(µ/µ0))1/2 '
900 GeV

MW

1
(ln(µ/µ0))1/2 . (1.245)
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In the spontaneously broken phase, µ0 should be chosen on the order of the Higgs
mass. Further, the quantity µ defines the scale up to which the theory is consistent. (It
does not make sense to move the scale µ beyond the cutoff Λ.) If µ is as small as 2µ0

(the smaller values are barely consistent with the requirement mH � Λ), the preceding
equation yields MH ≤ 1070 GeV. If µ is taken up to the Planck mass mPl = 1019 GeV,
the upper limit on the Higgs mass goes down to ' 140 GeV. Combining the results of
lattice calculations with higher-order calculations in perturbation theory, it is possible
to arrive at more refined constraints on the Higgs mass.

Very interesting further questions emerge in connectionwith the problem considered
in the present section. How is the bound affected in the Standard Model when the
interactions with the gauge bosons and fermions are taken into account? How would
the results change, if the Higgs particle is composite? The answer to these intriguing
questions is, however, beyond the scope of the present book. Further information on
this subject can be found, for example, in Refs. [31–35].

1.13 Relevant Degrees of Freedom at LowMomenta

In this chapter we have considered theories, where both the heavy and light degrees of
freedom corresponded to the fields represented in the Lagrangian, and perturbation
theory was assumed to work at both high and low energies. At low energies, the heavy
degrees of freedom could be neatly integrated out, and a perturbative matching could
be performed. Conceptually, this is the most clean and transparent case; but in Nature
the separation of the low- and high-energy modes can proceed along many different
patterns. In what follows, we list a few of them.

The construction of the low-energy effective theory of QCD is perhaps the most
important example, which will be considered in much detail here. The degrees of free-
dom of the underlying theory are quarks and gluons, none of them surviving in the
low-energy limit. Formally, the (light) quarks and gluons have very small (even zero)
masses. However, the strong non-perturbative interactions between them lead to con-
finement (no quarks and/or gluons in the asymptotic states) and to the creation of a
mass gap of order of 1 GeV determined by the mass of the proton, which is the lightest
stable particle in QCD, whose mass does not vanish in the chiral limit. It turns out that
at low energies only theGoldstone bosons, which emerge as a result of the spontaneous
chiral symmetry breaking in QCD, have masses lighter than the heavy scale of QCD
on the order of 1 GeV, and thus represent the only relevant degrees of freedom at these
energies. Perturbative matching is, of course, not possible.

Another interesting possibility emerges, for example, in nonrelativistic effective the-
ories, or in heavy quark (heavy baryon) effective field theories, which will also be
considered here in detail. In this case, the role of the heavy fields is played by the heavy
components of the same field. These heavy components correspond to the antiparti-
cles, whose contribution is now relegated to the effective couplings. The heavy scale of

https://doi.org/10.1017/9781108689038.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108689038.002


60 Basic Concepts

tFigure 1.18 Degrees of freedom (dofs) in a typical EFT, which operates at small momenta corresponding to the light particle
masses. Beyond some separation scaleΛ, heavy particles appear. Their effect on the low-energy EFT is only indirect by
providing the strengths of multiparticle operators in the light particle sector.

the theory is determined by the mass gap separating the particles and the antiparticles,
that is, by the mass of the particle itself.

Finally, note that, in the context of the many-body problems, effective fields often
describe collective excitations, a prominent example being the Landau–Ginsburg the-
ory. The energies of the excitations should be much smaller than the natural hard
momentum scale in the problem, given by the inverse of the lattice spacing in the
crystal.

To summarize, there exist different scenarios in nature for how the low-energy
degrees of freedom emerge from the dynamics at short distances. A universal rule to
find these degrees of freedom is to examine the low-energy spectrum of the system, that
is, to investigate the low-energy singularity structure of the S-matrix. This allows us to
choose the appropriate variables for describing the system at low energies without any
reference to the short-distance dynamics.

1.14 Construction Principles of an EFT

Here, we briefly summarize what we have learned, or, stated differently, what the
principles are behind the construction of an effective field theory. These are:

• Scale separation: This is arguably the most basic concept underlying any EFT.
The EFT is operative at small momenta/energies (at large distances), and the phys-
ics in this regime is insensitive to what happens at large momenta (small distances)
as depicted in Fig. 1.18. The heavy particles can have only an indirect effect at low
energies by providing the strengths of certainmultiparticle operators in the light par-
ticle sector. However, the EFT can be formulated without any knowledge of these
heavy degrees of freedom, fitting the appearing LECs to some data at low energies.
This scale separation further implies that renormalizability in the strict sense is not
applicable. In fact, it should be obvious that any quantum field theory is indeed an
effective field theory.
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• Relevant degrees of freedom: Related to the scale separation are the active par-
ticles in the low-energy EFT, which either decouple from the heavy degrees of
freedom or are generated through some symmetry breaking, as discussed in detail
in Section 1.13. These relevant degrees of freedom are intimately connected to the
low-energy singularity structure of the pertinent S-matrix.

• Symmetries: Symmetries play an important role in the construction of any EFT.
First, discrete and continuous symmetries constrain the possible interactions of the
particles. This is equivalent to the construction of any QFT. Second, the realiza-
tion of symmetries plays an important role, as spontaneous breaking can generate
the pertinent low-energy degrees of freedom. As will be discussed in detail in
later chapters, this exactly happens for QCD in the confinement regime (at small
momenta).

• Power counting:With the relevant particles and the constraints from symmetries, one
can write down an infinite tower of allowed interactions in the EFT. Power counting
is the tool to order all these terms according to their relevance. Symbolically, any
matrix element can be perturbatively expanded in powers of energies/momenta Q
over the breakdown scale Λ as

M= ∑
ν

(
Q
Λ

)ν
fν(Q/µ,gi) , (1.246)

where µ is a renormalization scale related to the required renormalization of loop
diagrams and the gi are coupling constants, often called low-energy constants
(LECs). In case of an EFT, the index ν is bounded from below, which allows for
a systematic and controlled expansion. Furthermore, fν is a function of O(1), and
this property is called “naturalness.” Note also that describing bound states requires
some type of non-perturbative resummation.

• Matching: Matching is not universal to EFTs but appears very often. One example
we already encountered was the matching of the EFT two-body scattering phase
to the effective range expansion, which allows us to express the LECs in terms
of physical parameters. Another example that will prominently appear in the next
chapter is the matching of a nonrelativistic EFT to its relativistic counterpart. Yet
another example of matching is the reduction of a theory at high energies down to
the low-energy EFT, which might proceed in steps, and matching is performed at
the boundaries between the different EFTs to guarantee a smooth transition when
lowering the resolution scale. A classical example is the weak ∆S = 1 Hamiltonian,
where the W -bosons and the t, b and c quarks are integrated out successively; see,
for example, Ref. [36].

1.15 Literature Guide

Most of the material presented in this chapter is standard and overlaps with many
textbooks and lecture notes. In this context we mention here the recent books on
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effective theories by Petrov and Blechman [37] and Burgess [38], as well as a selection
of lecture notes and reviews [12, 19, 39–43].

As already mentioned, the use of the effective theory approach in the problems of
nonrelativistic quantum mechanics was discussed in the extremely instructive lectures
by Lepage [1]. The two-body scattering with pointlike potentials and the issue of the
equivalence of different regularizations and renormalization schemes as well as the
relation to the Wigner bound have been extensively discussed in the literature. Apart
from the papers, which were already cited [2, 3, 8], important aspects of the same
problem have been considered in Refs. [7, 44].

The decoupling theorem was first proved by Appelquist and Carazzone [14]. For
related work, see, for example, Refs. [45–47]. A very detailed introduction to the issue is
contained in a book by Collins [6], to which the reader is referred for further references.
The decoupling in the case of two scalar fields has been considered in detail in Refs. [48,
49].

The Wilson renormalization group approach was first described in Ref. [16]; see also
Ref. [50]. It is discussed, in particular, in the textbook by Peskin and Schroeder [24].
The dependence of the effective couplings on the floating cutoff was first considered in
Polchinski’s paper [17]; see also the discussion in Weinberg’s textbook [18].

The Landau pole was introduced in the seminal papers [25–27]. A thorough discus-
sion of this issue from different points of view is given in the review article [51]. In a
series of papers [28–30], Lüscher and Weisz give an extremely clear and concise discus-
sion of triviality in the ϕ 4 theory. The triviality bound on the Higgs mass is considered
in Refs. [52–56].

Various aspects of the emerging symmetries at low energy have been considered in
Refs. [20–23]; see also Ref. [57].
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