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Abstract
This article introduces an innovative approach to antenna array design, focusing on synthesiz-
ing the optimal radiation pattern for fifth-generation (5G) communication. The authors have
designed a reliable linear and elliptical antenna array (EEA) of dipole elements by employing
sailfish optimization (SFO). 5G technology promises transformative improvements in wireless
communication with high data rates, expanded capacity, minimal latency, and exceptional ser-
vice quality.The crux of 5G lies in the precision of antenna array design, aiming for an emission
pattern with minimal side lobe levels (SLLs) and a narrow half-power beam width (HPBW).
A narrower HPBW is essential for efficient long-range communication, whereas reducing the
SLLs enhances signal clarity.The SFO optimizes the current excitation of each antenna element
for reducing the mutual coupling effects and lowering the SLL and HPBW values in linear and
EEAs. This paper uses the exact excitation to each element to show the linear antenna arrays
(LAA) (10-, 16-element) design examples and EAA (8-, 12-, 20-element) structures. The LAA
and EAA design examples obtained with the SFO algorithm establish the advancement in SLL
suppression over the uniform antenna array and the methods proclaimed in the recent article.

Introduction

A reliable design of an antenna array [1–3] is a crucial aspect of 5G communication. In
recent years, many research proposals aimed at developing practical 5G antenna arrays have
been made to improve the spectrum of 5G communications far-field emission pattern char-
acteristics [4, 5]. 5G communication brings several advantages and benefits when compared
with its predecessors. The key advantages of 5G communication are high-speed connectiv-
ity, low latency, massive device connectivity, enhanced reliability, stability, improved capacity,
and efficiency. 5G communication also facilitates the integration of advanced technologies like
artificial intelligence (AI), which can support complex applications like autonomous vehicles
and intelligent infrastructure. 5G technologies open opportunities for developing new services,
business models and industries, including autonomous transportation, smart cities, remote
work, telemedicine, etc. These advantages of 5G communications have the potential to revolu-
tionize numerous sectors and pave the way for a more connected and technologically advanced
future.

The spectrum allocation for 5G communication is divided into two significant categories,
as the International Telecommunication Union Radio Communication (ITU-R) explains. FR1
encompasses frequencies below 6 GHz and FR2 encompasses frequencies above 6 GHz [4].
The geometrical configuration, the current excitation of each element, and the spacing among
the array’s components are the primary building parameters used to attain the ideal emission
pattern (far-field). The 5G band’s increasing freight compelled the array designer to design
an array with a narrower half-power beam width (HPBW) and a lower side lobe level (SLL)
[6–10]. Nonetheless, designing an accurate antenna array in the 5G communication frequency
band is impressive while keeping the lower SLL and HPBW, as the two conditions of lower SLL
and HPBW value will never be fulfilled simultaneously. Different evolutionary optimization
techniques [7, 11–20] are also used for optimal emission pattern synthesis of arrays.

Linear antenna arrays (LAA) are decisive in numerous radio system applications, includ-
ing radar, navigation, and mobile communications. However, recent advancements in wireless
technology, especially in the military and 5G communication, have seen a shift toward elliptical
antenna arrays (EAAs).The key benefit of EAAs lies in their capability to cover the entire space
with their emission pattern, making them increasingly preferable in modern communication
systems.

Various stochastic methods are harnessed to refine the far-field emission patterns of LAA.
Dib et al. employed the Taguchi technique [21], while Khodier et al. utilized particle swarm
optimization (PSO) for LAA pattern synthesis [22]. Biogeography-based optimization (BBO)
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was implemented in [23] to optimize LAA and EAA structures,
and Symbiotic Organism Search (SOS) was employed by Dib et al.
to reduce SLLs in LAA design [24]. Zoubi et al. took a hybrid
optimization approach [25] for LAA synthesis. Recent research
on optimizing linear, circular antenna arrays, and concentric rings
presents a compelling and pragmatic approach [26–34].

Various stochastic optimization techniques have been
employed in the design of EAA. Guney and Durmus utilized
the backtracking search optimization method [35], while the BBO
technique was applied for designing both linear and elliptical
arrays [23]. Bera et al. introduced an optimal design approach
for EAAs using opposition-based differential evolution [36].
In [37], the authors rectified previously published literature’s
array factor equation errors and harnessed the SOS and ALO
techniques to design EAAs. These diverse techniques showcase
the adaptability and potential for improving EAA designs and
performance.

This study synthesizes the optimal far-field radiation pattern
of symmetrical LAA and EAA of dipole element structures. The
approach presented here is universal and can be employed for any
antenna elements for the identical structure utilizing pattern mul-
tiplication. The key benefits and advantages of choosing the SFO
algorithm are as follows:

(i) Fast Convergence: The SFO algorithm demonstrates fast
convergence rates, quickly converging toward optimal or
near-optimal solutions. This makes it convenient for solving
complex optimization problems efficiently.

(ii) Efficient exploration-exploitation balance:TheSFOalgorithm
maintains good equity between searching and attacking the
search space. It efficiently explores diverse areas to avoid
being trapped in local optima, while exploiting promising
regions to converge toward the global optima.

(iii) Adaptability: SFO is adaptive, meaning it can dynamically
adjust its search behavior based on the characteristics of
the problem being solved. It can adapt to different prob-
lem domains and efficiently handle various optimization
challenges.

(iv) Scalability: The SFO algorithm is scalable and can handle
optimization complications of varying sizes and complex-
ities. It can be employed for small-scale and large-scale
optimization problems, making it versatile in different appli-
cation domains.

(v) Parallelization capability: SFO can be parallelized, efficiently
utilizing computing resources. It can expedite the optimiza-
tion process and handle computationally intensive tasks.

(vi) Robustness:The SFO demonstrates robustness and resilience
against noisy and uncertain environments. It can handle
optimization problems with noisy or incomplete informa-
tion and provide satisfactory solutions.

(vii) Simplicity and ease of implementation: The SFO algorithm’s
underlying principles are relatively straightforward. It does
not require complex mathematical formulations or exten-
sive parameter tuning, making it accessible to solve complex
optimization problems.

(viii) Potential for real-world applications: The SFO has pro-
duced encouraging outputs in solving various optimization
problems, including scheduling, engineering design, image
processing, data mining, andmachine learning. Its effective-
ness in real-world applications makes it a valuable tool for
problem-solving.

The SFO has demonstrated several advantages in specific
scenarios. However, the specific problems determine which
optimization algorithm is best and its characteristics and the avail-
able resources because, as per the no free launch theorem [38], no
superior optimization technique performs the best for figuring out
all optimization problems. The SFO is used in this paper to opti-
mize the feeding currents of each LAAandEAAof dipole elements,
keeping the phase excitation weight as zero for the contraction
of mutual coupling effects between the antenna array elements
and to lower the SLL and HPBW values. The elemental spacing
among the elements of the LAA is maintained here as d = 𝜆/2,
whereas, for the design of EAA, the eccentricity of the ellipse is
considered as e = 0.5 for the optimal emission pattern (far-field)
synthesis of LAA and EAA in the frequency of 5G communica-
tion. The optimal results are presented and correlated with those
published in recently divulged articles. They are validated statis-
tically using Computer Simulation Technology (CST)-microwave
studio. The results of utilizing the SFO algorithm show a distin-
guished achievement in designing the symmetrical LAA and EAA
of dipole elements.

The remaining portion of the paper is presented in the following
manner: Section 2 depicts the design equation of LAA and EAA.
Section 3 provides a quick explanation of the stochastic optimiza-
tion technique used. The SFO algorithm’s numerical, statistical,
and EM field simulation-based results are presented and juxta-
posed with those from other contemporary published literature in
Section 4. Lastly, Section 5 brings the article to a conclusion.

Parametric assimilation technique (PAT)

The PAT is employed for mutual coupling withering in antenna
arrays. It aims to minimize the mutual coupling, which occurs
when antennas in an array interfere, degrading the antenna array
performance.The methodologies involved in PAT are discussed in
detail in [18, 39] and are given in a flowchart in Fig. 1.

Array model and mutual coupling analysis:

i. Construct a mathematical model of the antenna array consid-
ering the physical characteristics and position of the antennas.

ii. Analyze the mutual coupling effects between the antenna
elements in the array using numerical methods and obtain
the mutual coupling matrix that represents the interactions
between the antennas.

Antenna pattern synthesis:

i. Define the desired radiation pattern or beam-forming require-
ments for the antenna array.

ii. Use a suitable optimization technique to determine the exact
excitation coefficients for the antennas.

iii. The optimization aims to synthesize the desired radiation pat-
tern while considering the mutual coupling effects.

Characteristics mode analysis (CMA):

i. Perform a characteristic mode analysis (CMA) to identify the
dominant characteristic modes of the antenna array.

ii. Determine the modal currents and characteristic mode
impedances associated with each mode.

iii. CMAhelps understand each antenna’s current distribution and
the coupling between them.
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Figure 1. Flow chart of the PAT.

Mode selection and excitation optimization:

i. Select a subset of characteristic modes that have minimum
coupling with each other.

ii. Modify the excitation coefficients of the antennas to suppress
the coupling effects and minimize the mutual coupling effects.

iii. Use optimization techniques to find the excitation coefficients
that compensate for the remaining mutual coupling effects.

Electromagnetic simulation and analysis:

i. Validate the performance of the decoupled antenna array using
electromagnetic simulation tools.

ii. Analyze the radiation pattern, impedance matching, and other
relevant parameters to assess the effectiveness of the mutual
coupling reduction.

Iterative refinement:

i. Iterate through the previous steps if necessary to further opti-
mize the antenna array’s performance.

ii. Adjust the excitation coefficients and refine the design based on
the results or further analysis.

The specific implementation details and techniques within PAT
may vary depending on the antenna array configuration, require-
ments and available resources. It is essential to carefully analyze
and model the array characteristics, optimize the excitation coeffi-
cients, or refine the design based on the results or further analysis.

Design equation

Linear antenna array

The LAA’s geometry is formed by symmetrically positioning 2 M
(where M is an integer) isotropic array elements along the z-axis,
as shown in Fig. 2,M elements on each side of the origin, separated
by d = 𝜆/2. The feeding currents are distributed symmetrically on

Figure 2. 2 M-elements LAA geometry along the Z-axis.

each element of the array. Hence, the LAA’s broadside array factor
(AF) is denoted by (1):

(AF)2M = 2
n=1

∑
M

In cos [(2n − 1
2 ) ⋅ k ⋅ d ⋅ cos 𝜃 + 𝜙n] . (1)

Thephase excitationweights are kept to zero to keep the far-field
radiation pattern’s central beam stable and fixed, where n denotes
the nth element of the array and In shows the feeding current of the
nth element of the array.

2 M gives the total antenna elements present in the LAA. d
and k describe the elemental separation and the wave propagation
constant. 𝜃 denotes the angle of radiation.

Elliptical antenna array

The EAA is constructed by placing N number of array elements in
the geometry of an ellipse positioned on the x–y plane, as shown
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Figure 3. N elements EAA geometry.

in Fig. 3. Dib et al. described the array factor (AF) of the EAA in
[37], which is given by (2):

AF(𝜃, 𝜑) =
n=1

∑
N

In exp[ jk𝜌n sin 𝜃 cos(𝜑 − 𝜑n) + j𝛼n], (2)

where N indicates the number of array elements included in the
EAA. The feeding current and the phase excitation weight of the
EAA are represented by In and 𝛼n, respectively. The 𝛼n is deter-
mined as (3):

𝛼n = −k𝜌n sin(𝜃0) cos(𝜑0 − 𝜑n), (3)

where thewave propagation constant is represented by k.TheEAA’s
radial distance for the nth element is denoted as 𝜌n, while its
angular position is described in (4):

𝜑n =
2𝜋(n − 1)

N . (4)

The values of 𝜃0 and 𝜑0 are represented by 90∘ and 0∘, respec-
tively, as the central lobe of EAA faces the positive x-axis.The angle
𝜃 is 90∘ since the EAA is in the XY plane.The eccentricity (e = 0.5)
is the ratio between the ellipse’s vertices and foci, as described in
(5):

e = √1 − b2
a2 , (5)

here “a” represents the semi-major axis and its value varies with
the number of elements in the EAA (8-, 12-, and 20-element),
corresponding to 0.5𝜆, 1.15𝜆, and 1.6𝜆 [35–37].

A precise LAA and EAA structure design for applying 5G com-
munication requires developing a convenient cost function (CF)
that can abridge the SLL and HPBW value as given in (6):

CF = W1 ×
|AF(𝜃ms1, In) + AF(𝜃ms2, In)|

|AF(𝜃0, In)|
+ W2

×
∣
𝜃=−𝜋
∑
𝜋

AF(𝜃SLL_Peaks, In)∣

|AFmax|
+ W3

× ∣HPBWComputed − HPBW(In = 1)∣ , (6)

W1, W2, andW3 are weighting factors with values of 0.5, 0.6, and
0.6, respectively. 𝜃0 represents the angle corresponding to the peak
value of the central lobe.The angles 𝜃ms1 and 𝜃ms2 indicate the high-
est side lobe angles for lower and upper angles of arrival from the
main lobe, respectively. “In” denotes the feeding current for the nth
element. HPBWComputed and HPBW (In=1) represent HPBW values
for non-uniform and uniform excitation, respectively, and are con-
sidered only in cases where HPBWComputed exceeds HPBW(In =1).
The third term of the CF is employed to reduce HPBW, while the
second term minimizes the value of SLL by strategically position-
ing nulls at the peaks of each side lobe in the far-field emission
pattern. The summation of all the side lobe peaks is expressed

by
𝜋

∑
𝜃=−𝜋

(𝜃SLL_Peaks, In) where 𝜃 ∈ [−𝜋 : 𝜃ms1, 𝜃ms2 : 𝜋]. |AFmax|

is represented as the highest value of AF. In this paper, SFO
regulates the current amplitude excitation weights to reduce the
CF value.

Sailfish optimization (SFO)

Thedevelopment of sailfish optimization (SFO) as ameta-heuristic
optimization technique is motivated by the group hunting behav-
ior of sailfish. Shadravan et al. developed and analytically designed
the SFO technique [40]. The evolutionary algorithms have been
applied successfully in several engineering problems during the
last few decades because multiple agents frequently share knowl-
edge using meta-heuristic methods, which helps the algorithm
achieve the highest quality solutions in the search space.Whether a
meta-heuristic algorithm effectively solves a specific optimization
problem depends on the proper balance between the algorithm’s
searching and attacking phases.While the exploitation phase more
thoroughly explores the favorable area of the entire search space,
the exploration phase tries to manage the displacement of agents
as randomly as possible throughout the search space.

The SFO technique draws inspiration from the sailfish group’s
hunting behaviors, which alternatively attack the prey of sar-
dines. The reputation of the SFO algorithm compared to the other
recently published meta-heuristic optimization techniques are as
follows: (i) Firstly, in SFO, the prey and predator populations are
divided into two groups to determine the hunting strategy of the
group. (ii) Secondly, in SFO, the collective defence of the prey is
broken by the alternation of the attack. (iii)Thirdly, the preymove-
ment in the search space is updated in SFO to allow the hunter to
become fitter and enriched with the previous experience to catch
the appropriate prey. The behavior of sailfish and its prey in the
SFO technique ismathematicallymodeled by Shadravan et al. [40],
which is briefly addressed in the steps below.

Initialization

Sailfishes are considered potential solutions in SFO, and their loca-
tions in the solution space correspond to the variables that make
up the problem. The SF matrix represents the positions of all sail-
fishes, which shows the variables of all solutions in the optimization
problem:

SFposition =
⎡
⎢⎢⎢
⎣

SF1,1 SF1,2 ⋯ SF1,d
SF2,1 SF2,2 ⋯ SF2,d

⋮ ⋮ ⋮ ⋮
SFm,1 SFm,2 ⋯ SFm,d

⎤
⎥⎥⎥
⎦

, (7)

https://doi.org/10.1017/S1759078723001381 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078723001381


International Journal of Microwave and Wireless Technologies 5

where d is the number of sailfish and m is the number of vari-
ables.The fitness function determines each sailfish’s fitness as given
in (8):

SFFitness =
⎡
⎢
⎢
⎢
⎣

f ( SF1,1 SF1,2 ⋯ SF1,d )
f ( SF2,1 SF2,2 ⋯ SF2,d )

⋮
f ( SFm,1 SFm,2 ⋯ SFm,d )

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢⎢⎢
⎣

FSF1
FSF2

⋮
FSFm

⎤
⎥⎥⎥
⎦

,

(8)
where m denotes the number of sailfish present in the matrix and
SFi,j shows the value of ith sailfish at the jth dimension, and f cal-
culates the fitness function. Each sailfish’s fitness value is stored in
the SFFitness matrix.

The group of sardine fish, which is assumed to move around
the search space, plays another vital role in the SFO optimization
technique. The Sposition and SFitness matrix contain the locations of
the sardines and each one’s fitness value, respectively, as given in
(9) and (10).

SPosition =
⎡
⎢⎢⎢
⎣

S1,1 S1,2 ⋯ S1,d
S2,1 S2,2 ⋯ S2,d

⋮ ⋮ ⋮ ⋮
Sn,1 Sn,2 ⋯ Sn,d

⎤
⎥⎥⎥
⎦

. (9)

The SPosition matrix represents the position of all sardines,
whereas n and d represent the number and the dimension of
sardines, respectively:

SFitness =
⎡
⎢
⎢
⎢
⎣

f ( S1,1 S1,2 ⋯ S1,d )
f ( S2,1 S2,2 ⋯ S2,d )

⋮
f ( Sn,1 Sn,2 ⋯ Sn,d )

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢⎢⎢
⎣

FS1
FS2
⋮

FSn

⎤
⎥⎥⎥
⎦

, (10)

SFitness represents the fitness value of each sardine. Sardines and
sailfish are two crucial, interrelated aspects of the SFO algorithm,
where sardines uphold to detect the best place in the search space.
In contrast, sailfish are dispersed throughout the search area.

Elitism

During the position update of search agents, the excellent solution
is sometimes lost with the comparatively weaker solution when the
method of elitist choice is not used. The elitist approach entails
reproducing thewinner-take-all strategy in the SFO algorithm.The
SFOalgorithmalso employs elitism,where the best sailfish position
in every iteration is saved, reflecting the elite’s position. At the same
time, the wounded sardine position is preserved, elected as the sail-
fish’s best target. X i

elite_SF and X i
injured_S represents the sailfish’s elite

position and wounded sardines at ith iteration.

Attack alternation strategy

The hunting mechanism of the sailfish supports the attack alter-
nation method in the SFO algorithm, where the exploration
phase involves a wide area of search space to find favorable solu-
tions. The sailfish attack in all directions of the search space
within a timid circle and update where they stand with the ideal
response.

In SFO at the ith generation, the sailfish’s new location X i
new_SF

is updated as (11):

X i
new_SF =X i

elite_SF − 𝜆i

× (rand(0, 1) × (
X i
elite_SF + X i

injured_S

2 ) − X i
old_SF) ,

(11)

X i
elite_SF and X i

injured_S represent the elite sailfish’s position and the
injured sardine’s best position, respectively. The location of sail-
fish right now is X i

old_SF and rand(0,1) is the random number
between 0, 1, and 𝜆i is the coefficient of ith generation and is given
by (12):

𝜆i = 2 × rand(0, 1) × PD − PD, (12)

where prey density (PD) is the number of prey at each iteration
which decreases by the sailfish hunting mechanism.The PD is cru-
cial in SFO for updating the sailfish’s location relative to the prey
school, as stated in (13):

PD = 1 − ( NSF
NSF + NS

) , (13)

NSF denotes the number of sailfish, and NS stands for the number
of sardines at each iteration cycle. Because there are more sardines
than sailfish at first, NSF is calculated as NS × pp, where pp is
the proportion of the sardine population that makes up the initial
sailfish population.

Hunting and catching prey

In SFO, the sailfish are initially more eager to catch the prey,
whereas sardines also have more energy to maintain a high escape
speed.The attacking power of sailfish gradually decreased through-
out the iteration.The sardine (prey) loses energy due to the sailfish’s
repeated and violent attacks, which could impair its ability to rec-
ognize directional details regarding its location and impact how it
moves. The new position of sardines in the SFO technique in the
ith generation is given by (14):

X i
new_S = r × (X i

elite_SF − X i
old_S + AP) , (14)

where X i
elite_SF represents the elite sailfish position and X i

old_S is the
location of the sardines right now, r is a random value between 0
and 1, and the strength of the sailfish attack during each iteration
is represented by AP, given by (15):

AP = A × (1 − (2 × Itr × 𝜀)) , (15)

where A and 𝜀 are the coefficients inversely correlated with attack-
ing power, the sailfish’s attacking capability will diminish through-
out the iteration, which can help the search agents converge
through adaptation. The number of sardines updating their loca-
tion (𝛼) with the number of variables (𝛽) is given by (16) and (17),
respectively,

𝛼 = NS × AP, (16)

𝛽 = di × AP, (17)

where di represents the number of variables at ith iteration, andNS
represents the quantity of sardines in each cycle.

Now, 𝛼 sardines with 𝛽 variables will be updated if the sailfish
tap intensity is low (AP < 0.5), and all sardine positions will be
updated if the sailfish tap intensity is high (AP ⩾ 0.5).
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Figure 4. Flowchart for SFO algorithm.

Finally, in the SFO technique, the sailfish change the position
to increase the likelihood of pursuing fresh prey, as indicated by
the most updated position of the chased sardine, which is given
by (18):

X i
SF = X i

S, if f (Si)⟨f (SFi)⟩, (18)

where X i
S stands for the current position of the sardine at the ith

iteration and X i
SF represents the current position of the sailfish at

the ith iteration, respectively. The flow chart of the SFO technique
is shown in Fig. 4.

Results and discussion

The feeding currents to the elements of symmetrical LAA and EAA
structure of dipole element design are achieved by the execution

Table 1. SFO control parameters

Parameters Values

Initial population 100

A 4

𝜀 0.001

of the SFO algorithm extensively. The SFO algorithm was inde-
pendently executed 50 times employing MATLAB R2007b with
the Intel core i5 processor, 2.59 GHz with 8 GB RAM. Based on
the control parameters given in Table 1, the best performance is
showcased among all the outcomes.
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Numerical results of symmetrical linear antenna array

The SFO technique has been utilized in this paper to achieve the
emission pattern of the symmetrical LAA. The SFO technique
yields reduced HPBW and SLL in symmetrical LAAs with 10 and
16 elements. Further insights on evolutionary optimization param-
eter tuning can be found in [41]. The best control parameters of
the SFO algorithm for designing the symmetrical LAA are given
in Table 1.The SFO algorithm designs symmetrical LAAs with 𝜆/2
inter-element spacing, and the corresponding feeding currents are
documented in Table 2.

Table 2. The feeding currents (In) of symmetrical (d = 𝜆/2) linear antenna array
employing the SFO technique

No. of elements Feeding currents Max SLL (dB) Run-time (s)

10 1.0008
0.8969
0.6967
0.4942
0.2966

−26.14 2.28

16 1.0002
0.9348
0.8129
0.6541
0.4860
0.3205
0.1929
0.1006

−40.31 2.61

Figure 5. Radiation patterns of 10-element LAA.

Table 3. Comparative performance of SFO-based 10-element symmetrical LAA
with other algorithms

Algorithm Reference Peak side lobe level (dB) HPBW (deg)

SFO Proposed −26.14 12.28

SOS Dib [24] −25.28 12.24

BBO Sharaqa and
Dib [23]

−25.21 12.24

PSO Khodier and
Al-Aqeel [22]

−24.62 12.24

Taguchi Dib et al. [21] −24.87 12.24

Uniform Das et al. [6] −12.97 10.08

The SLL values accomplished by employing the SFO algo-
rithm for the symmetrical 10, 16-element LAA design are −26.14
and −40.31 dB, respectively. The SFO algorithm requires 2.28 and
2.61 s, respectively, to achieve the optimal value of the feeding
current of symmetrical LAA (10-, 16-element).

Figure 5 illustrates the emission pattern (far-field) of a 10-
element symmetrical LAA constructed using the SFO algorithm.
This pattern is accomplished by applying the SFO technique with
the proclaimed pattern obtained in the contemporary published
article where the effect of mutual coupling was not considered, as
depicted in Table 3.

SFO based results for the design of a symmetrical 10-element
LAA are compared in Table 3. These results are contrasted with
those found in contemporary literature, where mutual coupling
effects were neglected. Table 4 extends this comparison to the
design of a 16-element LAA using the SFO technique, with results
reported in a recent article.

Figure 6 illustrates the far-field radiation pattern achieved by
employing the SFO for the 16-element symmetrical LAA. This
emission pattern starkly contrasts the pattern reported in contem-
porary literature, where mutual coupling effects were disregarded,
as indicated in Table 4.

The numerical findings for designing 10- and 16-element LAA
structures, considering the mutual coupling effects for 5G com-
munication applications, underscore the remarkable optimization

Table 4. Comparative performance of SFO-based 16-element symmetrical LAA
with other algorithms

Algorithm Reference Peak side lobe level (dB) HPBW (deg)

SFO Proposed −40.31 8.48

Hybrid Zoubi et al. [25] −33.36 8.28

SOS Dib [24] −33.39 8.28

BBO Sharaqa and
Dib [23]

−33.06 8.28

PSO Khodier and
Al-Aqeel [22]

−30.63 8.00

Taguchi Dib et al. [21] −31.21 8.28

Uniform Das et al. [6] −13.15 6.48

Figure 6. Radiation patterns of 16-element LAA.
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capabilities of the SFO algorithm. These results contrast sharply
with contemporary literature, where mutual coupling effects were
not considered.

Numerical results of elliptical antenna array

The emission pattern of thinned 8-, 10-, and 20-element EAAs in
the far field is optimized through the SFO technique. Thinning
the antenna array involves removing certain elements from the
symmetric array to overcome adjacency constraints. SFO results
demonstrate reduced HPBW and SLL for 8-, 12-, and 20-element

Table 5. Comparison of sidelobe level (SLL) and half power beamwidth (HPBW)
in uniformly excited and symmetric eccentricity (e = 0.5) EAA with varying
element counts

No. of elements Semi-major axis (a) SLL (dB) HPBW (deg)

8 0.5𝜆 −7.76 46

12 1.15𝜆 −2.75 20

20 1.6𝜆 −6.88 14

Table 6. The results based on the SFO algorithm for the design of EAAs of the
same eccentricity (e = 0.5)

No. of
elements

Feeding
currents Peak SLL (dB) HPBW (deg)

Execution
time (s)

8 0.5684
0.9626

0
1.0000
0.6527
0.9274

0
0.8899

−14.78 49 4.12

12 1.0000
0.0806
0.3734
0.3623
0.3148
0.0796
1.0000
0.1675
0.2441
0.3977
0.2942
0.1529

−8.08 22 4.55

20 1.0000
0.4318
0.7349
0.0026
0.4595
0.1515
0.4714

0
0.5976
0.5227
1.0000
0.5214
0.5005

0
0.3711
0.5260
0.4086
0.0374
0.5863
0.4442

−12.66 17 4.89

symmetrical EAAs, maintaining the ellipse’s constant eccentricity
(e= 0.5), whichmeasures the distance between its foci and vertices.
A comparison of SFO outcomes with uniform feeding currents
across all EAA elements and with literature lacking mutual cou-
pling consideration reveals the technique’s effectiveness in enhanc-
ing antenna performance.

Table 5 presents the SLL and HPBW values for three different
EAA configurations (8, 12, and 20 elements) with uniform feeding
currents and a fixed eccentricity (e = 0.5).

In Table 6, we observe the feeding currents for thinned EAA
designs (8, 12, and 20 elements) that consider mutual coupling
effects optimized using the SFO algorithm.This table also displays
the SLL and HPBW values and the execution time required by the
SFO algorithm to optimize the EAA structures.The results indicate
that the SLL values for the three EAA structures are −14.78, −8.08,
and −12.66 dB, while the HPBW values are 49∘, 22∘, and 17∘,
respectively. The SFO algorithm takes 4.12 s for 8 elements, 4.55 s
for 12 elements, and 4.89 s for 20 elements EAA structures design.

To weigh the effectiveness of the SFO algorithm, Table 7 pro-
vides a comparison between SLL and HPBW values for the design
of 8-element thinned EAAs using the SFO algorithm and the
results reported in a recent article. This analysis aids in under-
standing the algorithm’s performance and alignment with existing
research.

Various meta-heuristic techniques were used to design an 8-
element EAA, with the results summarized in Table 7 and illus-
trated in Fig. 7.The SFO technique, when applied to design thinned
EAA, achieved superior peak SLL values compared to other opti-
mization methods that did not account for array thinning and
mutual coupling effects, as depicted in Fig. 7. Table 8 compares the

Table 7. Comparative analysis of SFO-based performance in 8-element EAAs
with existing results

Algorithm Reference Peak SLL (dB) HPBW (deg)

SFO Proposed −14.78 49

ALO Dib et al. [37] −14.35 48

SOS Dib et al. [37] −14.28 48

Uniform Table 5 −7.76 46

Figure 7. Radiation patterns of 8-element EAA.
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Table 8. Comparative analysis of SFO-based performance in 12-element EAAs
with existing results

Algorithm Reference Maximum SLL (dB) HPBW (deg)

SFO Proposed −8.08 22

ALO Dib et al. [37] −7.90 22

SOS Dib et al. [37] −7.70 22

Uniform Table 5 −2.75 20

Figure 8. Radiation patterns of 12 elements EAA.

Table 9. Comparative analysis of SFO-based performance in 20-element EAAs
with existing results

Algorithm Reference Max “SLL” in dB “HPBW” in degree

SFO Proposed −12.66 17

ALO Dib et al. [37] −11.42 16

SOS Dib et al. [37] −11.48 16

Uniform Table 5 −6.88 14

results obtained using the SFO algorithm, and those from recently
published articles focused on designing 12-element EAAs without
considering themutual coupling and array thinning. Figure 8 illus-
trates the emission pattern (far-field) of 12-element EAA achieved
by employing SFO. The radiation patterns obtained by applying
the SFO algorithm and the proclaimed emission pattern in the
contemporary published literature are plotted in Fig. 8, with the
data displayed in Table 8. The illustration depicts superior peak
SLL and HPBW suppression by the SFO algorithm compared with
competing stochastic optimization methods. The results obtained
from the SFO algorithm for suppressing SLL and HPBW value
are compared with those obtained in the state-of-the-art articles
where themutual coupling effect is not contemplated for designing
20-element EAA, which are given in Table 9.

The emission pattern of the 20-element EAA achieved using
the SFO algorithm is plotted in Fig. 9. The radiation pattern from
the existing literature is included in the same figure, highlighting
the superior performance of the SFO algorithm in comparison to
other contemporary optimization techniques that neglect mutual
coupling effects in the design of 20-element EAAs.

Figure 9. Emission patterns of 20-element EAA.

Electromagnetic simulation-based results

In this study, the efficacy of the SFO algorithm in designing opti-
mal LAA and EAA for the 5G communication spectrum is verified.
The validation uses microwave studio (CST-MS), employing elec-
tromagnetic field simulations.

CST-MS is a dynamic software tool for electromagnetic simula-
tion and designing microwave and RF components and systems. It
is developed andmaintained by Computer Simulation Technology
(CST), a leading provider of electromagnetic simulation software.
Figures 10 and 11 show the dipole antenna and its radiation pattern
for estimating directivity.

Figure 10. Designed half-wave dipole antenna.

Figure 11. The far-field radiation pattern of the half-wave dipole antenna.
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Table 10. CST-MS based results for the design of LAA and EAA structures

Design parameters Antenna array simulation results

Array type No. of elements Parameters Values Parameters Values

LAA 10 Dipole length 40.85 mm Resonant frequency 3.5 GHz

Resonant freq 3.5 GHz Side lobe level (SLL) −26.21 dB

Feeding gap 0.2042 mm Directivity 9.330 dBi

Wire radius 0.085 mm

Wavelength 85 mm

16 Dipole length 40.85 mm Resonant frequency 3.5 GHz

Resonant freq 3.5 GHz Side lobe level (SLL) −40.39 dB

Feeding gap 0.2042 mm Directivity 10.72 dBi

Wire radius 0.085 mm

Wavelength 85 mm

EAA 8 Dipole length 40.85 mm Resonant frequency 3.5 GHz

Resonant freq 3.5 GHz Side lobe level (SLL) −14.85 dB

Feeding gap 0.2042 mm Directivity 8.717 dB

Wire radius 0.085 mm

Wavelength 85 mm

12 Dipole Length 40.85 mm Resonant frequency 3.5 GHz

Resonant freq 3.5 GHz Side lobe level (SLL) −8.16 dB

Feeding gap 0.2042 mm Directivity 10.73 dBi

Wire radius 0.085 mm

Wavelength 85 mm

20 Dipole length 40.85 mm Resonant frequency 3.5 GHz

Resonant freq 3.5 GHz Side lobe level (SLL) −12.72 dB

Feeding gap 0.2042 mm Directivity 13.44 dBi

Wire radius 0.085 mm

Wavelength 85 mm

Table 10 presents design specifications and results obtained
through CST-MS, matching feeding currents and fundamental
separation values from simulations using the SFO method for 10
and 16-element LAAs and 8-, 12-, and 20-element EAAs.

The emission patterns (far-field) of LAA (10 elements and 16
elements) as determined by CST-MS are shown in Figures 12
and 13. Table 10 displays the directivity and SLL values determined
using CST-MS for the 10- and 16-element LAA designs.

The SFO technique-based outcomes of the emission patterns
(far-field) for the design of (8, 12, and 20) elements EAA by
employing CST-MS are presented in Figures 14–16, respectively.
Table 10 displays the directivity values that were determined for
the various scenarios.

Table 10 highlights the SFO’s efficacy in optimizing the LAAs
andEAAs for 5G communication, as it demonstrates themaximum
SLL values attainedwithCST-MS in specific scenarios, affirming its
success.

Figure 12. The far-field emission pattern of 10-element LAA accomplished by
CST-MS.
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Figure 13. The far-field emission pattern of 16-element LAA accomplished by
CST-MS.

Figure 14. The far-field emission pattern of 8 elements EAA accomplished by
CST-MS.

Figure 15. The far-field emission pattern of 12 elements EAA accomplished by
CST-MS.

The performance of SFO based LAA and EAA structures analysis
based on statistical methods

The statistical parameters in Table 11, derived from the SFO algo-
rithm’s application in designing LAAs and EAAs, reveal minimal
variation in the cost function (CF). These results in Table 11 val-
idate the stability of the SFO algorithm for both LAA and EAA
designs.

Figure 16. The far-field emission pattern of 20 elements EAA accomplished by
CST-MS.

Table 11. Statistical analysis of SFO algorithm for LAA and EAA design
(CF results)

Array
type

No. of
elements Min “CF” Max “CF”

Mean
“CF”

Б (standard
deviation)

“LAA” 10 1.71 2.07 1.97 0.11

16 1.89 2.29 2.17 0.10

“EAA”
8 2.53 2.89 2.77 0.10

12 2.66 3.11 2.91 0.14

20 2.79 3.19 3.03 0.11

Box-and-whisker plots
This paper presents Box-and-whisker plots [8] illustrating the
design of LAA with 10 and 16 elements and EAA with 8, 12, and
20 elements, using the SFO technique. The box-and-whisker plots
are based on CF values collected from each run, with the top and
bottom boundaries of the boxes representing the 75th and 25th
percentiles and the median CF value marked by a green triangle.

In Fig. 17, the plots for the LAA designs obtained using the SFO
algorithm are displayed, revealing median CF values of 1.89 and
2.04, respectively. The CF range achieved with the SFO algorithm
for the 10-element LAA design is from 1.71 to 2.07, while for the
16-element LAA design, it spans from 1.89 to 2.29.

Figure 18 showcases the identical plots for the EAA designs
(8, 12, and 20 elements) generated using the SFO algorithm, with
median CF values of 2.66, 2.81, and 2.95, respectively.

Applying SFO in designing various EAA configurations reveals
a broad variational scope in the cost function (CF). The 8-element
EAA ranges from 2.53 to 2.89, while the 12- and 20-element EAAs
exhibit ranges of 2.66 to 3.11 and 2.79 to 3.19, respectively. Thus,
box-and-whisker plots for designing the LAA (10- and 16-element)
and the EAA (8-, 12-, and 20-element) using the SFO technique
offer robust and stable results.

Convergence Graphs of the SFO technique

These convergence graphs plot the iteration cycle’s lowest CF val-
ues. Figures 19 and 20 show the convergence plot for designing
LAA and EAA, respectively.

The convergence curve of LAAs and EAAs approve the phe-
nomenal performance of the SFO for stability and convergence
speed.
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Figure 17. Box-and-whisker plots of LAAs.

Figure 18. Box-and-whisker plots of EAAs.

Figure 19. Convergence plots of LAAs.

Conclusion

The SFO algorithm is employed in this paper for designing the
symmetrical LAA and EAA structure of dipole element with the
non-uniform current excitation to each element of the array for
applying in the 5G communication frequency at 3.5 GHz.The pro-
posed approach using the SFO for designing the LAAs and EAAs
shows an appreciable advancement in SLL reduction regarding the
uniform array pattern and the methods proclaimed in the recently
published articles. Thus, the numerical, statistical and EM field
simulation-based results of SFO confirm that it can be an effi-
cient optimizer for designing the LAA and EAA structures for 5G
communication applications.

Figure 20. Convergence plots of EAAs.
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