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1. Preliminaries. Let R be a ring with unity and let My denote the category of unital
right R-modules. A preradical y of My is a functor y : My — My such that

(i) y(M) = M for each R-module M,
(ii) for f: M —> N, y(f) is the restriction of fto y(M).

y is a radical if (iii) y(M/y(M)) = O for all R-modules M. 1y is left exact or y is a kernel functor
in the sense of Goldman [2] if (iii)’ for a submodule N of an R-module M, y(N) = y(M)n N.
A left exact radical is nothing but an idempotent kernel functor as defined in [2]. '
Let o be an idempotent kernel functor. An R-module M is said to be g-torsion (o-torsion-
Sfree) if 6(M) = M (6(M) = 0). If we denote the classes of g-torsion and o-torsion-free modules
by 7, and &, respectively, then the pair (7,, &,) is a hereditary torsion theory for M.
More precisely: a torsion theory for My is a pair (7, &) of classes of R-modules such that

F = {Ng|Homg [K,N] =0 for all Ke T},
T = {Mg|Homg[M, L] =0 for all Le F}.

Z is closed under homomorphic images, direct sums and extensions. & is closed under
submodules, direct products and extensions.

The torsion theory (7, &) is said to be hereditary if 7 (or equivalently &) is closed under
submodules (injective envelopes).

We have a one-to-one correspondence between idempotent kernel functors on ¥, and
hereditary torsion theories for M. The correspondence is given by

0T , = {Mg|o(M) = M}
with the inverse correspondence J — o5, where, for an R-module M, 6,(M)=Z{N|Nis a
submodule of M and NeZ}. For details, we refer the reader to Goldman [2], Lambek [3]
and Stenstrom [7].
If y, and y, are preradicals, y, < vy, if y,(M) < y,(M) for all R-modules M.
For the proof of the following proposition, we refer to Stenstrom [7, Proposition 1.1]
or Goldman [2, Proposition 1.1, Theorem 1.6}.

PropOSITION 1.1.  With each preradical y, one can associate a radical to be denoted by ¥,
such that

(OR3
(ii) ¥ is a radical,
(iii) if u is a radical and y < u, then 5 £ p.

Moreover, ify is a kernel functor, so is 5. That is, ¥ defines an idempotent kernel functor.
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7 is obtained by transfinite induction as follows: let M be an R-module. For a non-limit
ordinal B, define y; by ys(M)/ys- (M) = y(M]ys_,(M)) and for a limit ordinal f, define y; by
ys(M) = Y 7, (M). This yields an ascending sequence of preradicals. 7 is now given by

B

F(M) =Y y5(M). Equivalently, we can define (M) = n{N|N < M and y(M/N)=0}. We
B
note that y(M) = 0 implies that (M) = 0.

2. Main result and applications. Let & be a class of R-modules. By the hereditary
torsion class generated by & is meant the smallest class J, containing & such that J, is a
hereditary torsion class for some hereditary torsion theory.

LemMa 2.1. Let y be a kernel functor, &,= {M |y(M) =M} and T s the hereditary
torsion class generated by &,. Then I 6= T 5, where T 5 is the class of torsion modules corre-
sponding to the idempotent kernel functor j.

Proof. 7 is the smallest idempotent kernel functor larger than y, by Proposition 1.1.
Since there is a one-to-one correspondence between idempotent kernel functors on My and
hereditary torsion theories for My, J; must correspond to the smallest hereditary torsion class
containing &,. Thus 7 =775

LEMMA 2.2. Let y be a kernel functor. Then for each R-module M, y(M) is an essential
submodule of 7(M).

Proof. Let N<$(M) be such that Nny(M) =0. We show that N=0. Since y is a
kernel functor, y(N) = Nny(M) = 0. This implies that y(N¥) = 0. But N < (M) and hence
7(NYy=N. Thus N = 0 and the lemma follows.

DerFINITION 2.3. A hereditary torsion theory (77, &) is said to be stable if 7 is closed
under essential extensions. We shall call an idempotent kernel functor ¢ stable if the corre-
sponding hereditary torsion theory is stable. (See Stenstrom [7, §4] and Gabriel {1].)

THEOREM 2.4. Let y be a kernel functor such that 7 is stable. Then the following statements
are equivalent.

(1) y(R) is an essential right ideal of R.
(i) y(M) is an essential submodule of M for all R-modules M.
(iii) If M # 0, then y(M)# 0.
) 5(R) = R
V) (M) = M for all M, that is ¥ is the identity functor on M.
(Vi) Each hereditary torsion theory for My is generated by a class of y-torsion modules.
(Here an R-module M is y-torsion if y(M) = M.)
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Proof. ()= (iv). 7(y(R)) = y(R). Since 7 is stable, we have $(R) = R.

(iv)=(v). Since J; is closed under homomorphic images and direct sums, ¥(R) = R
implies that $(M) = M for all M.

(v)=> (iv). Trivial.

(v) = (ii). By Lemma 2.2, y(M) is an essential submodule of (). Thus since j(M) = M,
the implication follows.

(i) = (iii). Trivial.

(iii)=>(i). Suppose not. Then there exists a non-zero right ideal I such that y(R)nI=0.
Now y(I) = y(R). This implies that y(I) = 0, a contradiction.

(v)=> (vi). Theclass& = {M [ (M) = M} is closed under submodules and factor modules.
By Lemma 2.1, the hereditary torsion class generated by & is all of M. Now let 7 be a
hereditary torsion class. Then by Stenstrom [7, Exercise 3, p. 11] 7 is generated by 7 n 8.
That is J is generated by a class of y-torsion modules.

(viy=(v). Take J =M. Then M, is generated by a class of y-torsion modules. By
Lemma 2.1, 7 is the identity functor on #i;. Thus (M) = M for all R-modules M.

Let R be a ring and M an R-module. The singular submodule of M, to be denoted by
Zi(M), is the set of all elements of M which are annihilated by essential right ideals of R.
Zg( ) defines a kernel functor on M;. The idempotent kernel functor corresponding to
Zg( ) is called the Goldie torsion functor. 1t will be denoted by ¥.

We note that the Goldie torsion class is generated by the class of modules of the form 4/B,
where A is an essential extension of B. Moreover, the Goldie torsion functor is stable.

As a special case of Theorem 2.4 we have the following result.

PROPOSITION 2.5. Let R be a ring. Then the following statements are equivalent.

(1) Zr(RR) is an essential right ideal of R.
(ii) Zx(M) is an essential submodule for each R-module M.
(iii) Zx(M) # 0 for every non-zero R-module M.
(iv) 9(R)=R.
V) 9(M) = M for each R-module M.

(vi) Each hereditary torsion theory for Mg is generated by a class of singular modules.

RemArRk. Using different methods, Ming [4] has also established the equivalence of (i),
(ii) and (iii).

PROPOSITION 2.6. Let R be a commutative noetherian ring and let y be a kernel functor.
Then the following statements are equivalent.

(i) y(R) is an essential ideal of R.
(ii) For each R-module M, y(M) is an essential submodule of M.
(iii) y(M) # O for a non-zero module M.
(iv) Each hereditary torsion theory for My is generated by a class of y-torsion modules.

Proof. By a result of Gabriel [1], every hereditary torsion class for a commutative
noetherian ring is stable. The result follows from Theorem 2.4.
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As an application we have

PROPOSITION 2.7. Let R be a commutative noetherian ring. Then the following statements
are equivalent.

(i) Socle (R) is an essential ideal of R.
(ii) R is an artinian ring.

(Here, for an R-module M, Socle (M) is the sum of all simple submodules of M.)

Proof. (i)=>(ii). Socle () defines a kernel functor on Mz. From the last theorem, Socle
(M) # 0 for each non-zero module M. Define an ascending sequence of ideals as follows:
I, =Socle(R)and I,, 21, with I, . /I, = Socle(R/l,). Either R = I, for some m or we get a
strictly ascending sequence I(,_C;I1 % ..., since Socle (R/I,) # 0. Since R is noetherian, this

sequence terminates, say at m. Thus R = I, for some integer m. Now I, /I, has finite length

for each n. Hence R itself is of finite length. Thus R is artinian.
@)= (). Trivial.

RemARk. The above sharpens a result of Nita in [6] where, using different methods, the
above equivalence is proved assuming further that R is an S-ring in the sense of Morita [5].
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