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HOW TO QUANTIFY RIPPLE 

H. Geib, C. Kiihne, E. Morgenbrod 

Carl Zeiss, Oberkochen 

1. Introduction 

Every manufacturer of large mirrors is familiar with the fact that the poli­

shing process may not only lead to large-area surface errors, such as astigma­

tism or spherical aberration, but also to short-period errors. In particular, 

this applies to aspherical surfaces because they require polishing tools of 

small dimensions, as compared with the mirror diameter. These errors are not 

entirely irregular and may therefore not be treated as statistical errors; nor 

are they sufficiently regular to be described in terms of amplitudes of 

ZERNIKE polynomials as it is now ussually done in the case of large-area 

aberrations (F.FRANZA e. a. 1977). Unfortunately this still is true if very 

high radial and tangential orders are involved, e.g.in D. ANDERSON e.a.1982. 

The reason is quite obvious: The description by means of ZERNIKE polynomials 

is based on the assumption of a two-dimensional regularity which simply does 

not exist in practice. 

We therefore omitted the two-dimensional aspect altogether when trying to find 

a method of making these small-area errors - which are called "ripple" in the 

following - accessible to quantitative description. The objection that this 

approach is incomplete and lacks mathematical strictness is outweighed by the 

higher degree of clarity and the easy comparability of the measuring results. 

Furhtermore, our work is to be considered only as a first attempt of dealing 

with the ripple problem with numerical methods. 

2. definition 

First of all, the meaning of the term "ripple" is to be defind. Let us take a 

look at a Foucault test photograph Fig. 1 for this purpose: A regular zonal 

fine structure is clearly noticeable but the spatial frequency does not evenly 

cover the mirror, neither in the radial nor in the tangential direction. Also, 

it is. neither constant nor does it satisfy a sufficiently simple relationship 
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between the period length and the radius. However, it is characterized by the 

mainly rotational-symmetrical distribution of the ripple structure which is 

due to the polishing method. Unfortunately a Foucault test photograph only 

indicates the period length of the fine structure. The quantitative determina­

tion of the amplitudes is virtually impossible. This can only be achieved with 

the aid of interferograms, as shown in Fig. 2. However, it has to be accepted 

that in interferograms the tangential fringes of the ripple structure are not 

very pronounced. But if the evaluation is confined to one dimension - as it 

was in our case - the central radial fringe is sufficient for the determination 

of the ripple. 

Fig. 1 Foucault Test Photograph, Fig. 2 Interferogram, showing 

(3,5 m Primary MPIA) side interferences (1,2 m 

piano coud6 mirror IRAK) 

At the same time Fig. 2 shows a disturbance in the form of side interferences 

of extremely short period length. They practically always occur in laser 

interferometers (LUP1) induced by micro defects in interferometer elements as 

a result of the long coherence length of laser light. They considerably 

complicate the evaluation process. Although it is well known that these 

interferences must not be interpreted as mirror errors, it is rather difficult 

to separate them in the analysis without making any further theoretical 

assumptions. We therefore did not develop a special theory for the determination 

of these interfluences. They are not deducted from the results even if this 
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leads to a deterioration of the numerical result - a perfectly justifiable 

approach, generally. In extreme cases - of which an example will be given -

the influence can be directly identified and permits to be excluded in the 

evaluation of the measured result. 

3. Measurement of the Interference Fringe 

The measurement is performed according to 

the method shown in Fig. 3. The central 

interference fringe is photometered on the 

left and right side in equidistant steps 

of i = 1,2,3,...N and the coordinates xi , 

and x, 2 belonging to an arbitrary but 

fixed degree of density are measured. N is 

a sufficiently large number, approx. 400. 

Any bore which the mirror may have is 

skipped and not counted. The two x-values 

are averaged to x. and the sequence of 

these mean values represents the ripple 

structure of the fringe. 

Fig. 3 Measurement of 

interference fringes 

*i ~ 2 ***,* + Xi,*./ 1, 2, ...N 

To get clear of the scale factor of the coordinate measurement, the mean 

fringe spacing s is measured. Distance s is either 1 or 2 in nanometers, 

depending on whether the interferogram was obtained in a single or double 

application. Division by s gives x. in nanometers. The linear quantity of & y 

is obtained from the ratio of the actual mirror diameter and its image diameter. 
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4. The Evaluation Philosophy 

The obvious approach for us was to apply a Fourier analysis to the x. values 

measured and to calculate a power spectrum. Information is thus obtained on 

the amplitudes in the fringes in the form of a function of their spatial 

frequency. Several tests have shown, however, that this function is of little 

informative value. The primary reason being that generally a fixed spatial 

frequency only extends over short distances along the interference fringe. 

To be able to also evaluate short but pronounced structures, we therefore 

defined a "window", 2 L in length, which is shifted in steps along the fringe 

(Fig. 4 ) . The functional 

values Xj located inside 

this window are analyzed 

in order to establish 

which are the amplitudes 

of a sine or cosine wave 

of period length L in­

cluded in these values. 

The choice of two 

periods for each window 

lenght is a compromise 

between the following 

two considerations: 

Fig. 4 Travelling window 

The more periods are included in the window, the more the ripple 

amplitudes of this period length are damped if they do not completely 

cover the length of the window. This would lead to an inadequate 

assessment of the ripple. 

If there is only one period per window length, every single irregulari­

ty which just covers the window length will be fully included in the 

evaluation. Single irregularities, however, are not to be regarded as 

ripple. 

The period number 2, in our opinion, makes sufficient allowance for both argu­

ments . 

https://doi.org/10.1017/S0252921100108334 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100108334


How To Quantify Ripple 139 

The scanning of the interference fringes with windows of 2 L in length is 

performed by changing the centre position i step by step. With one scan run 

completed, L is changed and the procedure is repeated. We chose one quarter 

of the diameter to be the initial length of L which means that the largest 

window is as long as the radius. The reduction factor of L is 0.8. Reduction 

is continued until the number of reference points on L is less than 4. L„ is 
K o o 

always chosen so that L is an integral multiple of the step width A h. 

Fractions which may occur as a result of the steps are rounded off. 

Before the amplitudes are numerically determined, the x. values inside the 

window range are cleared of an inherent linear regression, i.e. the mean value 

and grade of x- inside the window are zeroed. 

5. Determination of the Amplitudes 

Our analysis started out from the question whether there are differences in 

the results obtained with different trigonometric functions, sine, cosine or 

exponential functions and if so, whether they are of a systematic nature which 

would justify that preference is given to one of these functions. To decide 

this question, it was assumed that the oscillation required of a ripple period 

inside the window 2 L satisfies the equations 

y = a- cos ir ^k + b>sin 2T^k {]) 

Le= n-k (2) 

with A h and L being given and a and b being required, a and b are determined 

according to the Gaussian fit 

n-1 z 

QSZ {*i+k ~Yk } *=£* Minimum (3) 
k--n 

I f i t is further assumed that a ripple of period length L exists in the fringe 

and has a constant amplitude C along the fr inge, the following applies to the 

measured values 

4 ^ 1 • I w ' Xk = CCOS(2T -j-k -hf) + x. (4) 
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Here y> is an arbitrary phase position in which i is also to be included. 

Xk contains all remaining portions of which can not be expressed in terms of 

this oscillation. 

If a and b are now determined through differentiation of (3), and assuming 

that the summation residua of the remainders xA are sufficiently small, the 

following applies approximately: 

(5) 

2.7, 27, . , r.:*ll. -T.r—rlEJxL^i. c/« Hi Q 'ISin jfA • COS jfk +b-Zzinl%K =CZcos(j*±mk "J' s'n £ * 

The summation covers k = -n to k = (n-1) , i . e . Zn values. I f we r e s t r i c t 

ourselves her 

we hold that 

ourselves here to the case that L d i f fe rs from L only very s l i g h t l y , and i f 

£ - 1-SL IJLI«1 (6) 

then (5) can be evaluated from S L as follows: 

na=C[Zcos(gk*Y).Cos£k - %JLZ**in(gic + r)'C*s %k] 
(7) 

Thus we get 

a =Ccos<f[l- ~SL {cotan | f +2-tctn y>)] 

b-C-sinf[l -%6L• cotan i*] (8) 

The amplitudes a and b of the cosine or sine function can be combined to give 

the amplitude c of the exponential function 

c-C / > - ^JLfcctan | f * sin 2r}J (9) 
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The result can be interpreted as follows: 

- for a ripple of period length L , i.e. 6 L = 0, a and b follow faithfully 

the phase position <f> of the ripple oscillation. As we can expect, c = C is 

also a constant over the whole length of the fringe, as each integer numbered 

periodic section can be precisely represented by the exponential function. 

- for a ripple with a slight deviation 6 L J6 0 from the period length L 

certain deviations arise in determining C, which are proportionate to S L. 

The deviations consist partly of an element (cotan 2T/n ) which depends 

purely on the point number n, i.e. on the length L itself. This element is 

constant in the amplitudes a, b and c. With a and c however other terms 

appear which are dependent on the phase <f> . The sine amplitude b is not 

affected by y>. 

- the factor (T/n)zoXm(2T/n)\s zero for the minimum point number (n = 4) 

and for large n develops asymptotically and unvaryingly into 1/2. For a 

small b L the deviation of the amplitude thus remains small and is negli­

gible. In other words, ripple periods in the close vicinity of L are still 

sufficiently well determined by the amplitudes. 

The amplitudes thus incorporate a certain bandwidth. And this accords satisfac­

torily with the fact that the period lengths of the ripple structures are 

subject to marked fluctuations. So we have also selected the interval between 

successive L (with a factor of 0.8) in such a way that each period length can 

be deemed as a deviation SL from the foregoing one. This guarantees a 

certain constancy of transition between various period lengths and ensures 

that no ripple period is suppressed in the analysis. 

6. Testing the Evaluation 

To test the method and determine the best way to represent it, we examined 

numerically a ripple structure of known size and period length. The COSINE 

test, as we called it, consisted of three overlapping cosine functions of the 

amplitudes + 10 nm and the period lengths L = 64, L =20, and L = 8. Fig. 5 

shows the input data of the test. 
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In a second test, the SINE test, the 

cosine functions of Fig. 5 were substituted 

by sine functions. In each of these tests 

the amplitudes a, b and c were determined 

according to equations (8) and (9). 

Fig.6, 7 and 8 show the results of the 

COSINE test, Fig. 9, 10 and 11 those of 

the SINE test. As we might expect, the 

amplitudes a and b of the cosine and 

sine functions fluctuate between positive 

and negative values and are phase displaced 

in relation to each other by about 90°. c 

is by definition always positive. One can 

also see clearly how on the one hand the 

three different period lengths are separated 

from each other, but on the other hand 

also overlap into the neighbouring L . 

Fig. 5 Input Data of C0SINE-

and SINE-Test 
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Fig. 6 COSINE-Test with 

cosine - function 

Fig. 7 COSINE-Test with 

sine-function 

Fig. 8 COSINE-Test 

with e-function 

"t 

Fig. 9 SINE-Test with 
cosine-function 

Fig. 10 SINE-Test with 
sine-function 

Fig.11 SINE-Test 
with e-function 
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A closer comparison shows that the cosine amplitude between the various period 

lengths fades quickest. This fact becomes clearer if we illustrate the 

difference in the extremes of amplitude as a function of the period length 

(Fig. 12.) 

........... 3imit'Am^lifud* 
SlNUS-T+tt *-Amfi/itudt 

Fig. 12 Comparison of extremes 

of amplitudes 

In both tests the sine amplitude proves to 

be inferior. It does not always reach the 

nominal input amplitude of +_ 10 nm. This 

does not happen with the cosine amplitude 

which also shows much lower minimum values 

between the nominal period lengths. The 

exponential amplitude, which by definition 

is always larger than a or b, always 

attains the input amplitude but is 

inferior to the cosine amplitude in 

sharpness of definition. The causes of 

this different behaviour are not yet fully 

established. We suspect that it may be 

because the cosine amplitude can react 

more sensitively to inconstancy in the 

procedure than the sine amplitude, because 

it is jumping up and down between zero and 

one at the ends of the window. 

The slight increase in amplitude in the nominal period lengths is clearly the 

result of the fact that the positive and negative extremes can arise from 

different elongation. Thus they are always affected by an unfortunate combination 

of other influences from the neighbouring period lengths. 

As a result of this test, we chose the cosine amplitude as the value which 

should represent the ripple structure of an interferogram. 

7. Quantitative Evaluation 

To determine the quality of mirrors we normally use the standard deviation and 

the maximum peak-to valley deviation of the phase disturbances of a wavefront. 

In support of this procedure we have also analysed the difference between the 

extreme positive and negative elongations of the cosine amplitude a for each 
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period length L . And the positive and negative extremes can definitely belong 

to various oscillations of a. We have further calculated the standard deviation 

of the elongations. 

fig. 13 3.5 m - Primary Mirror 
of MPIA, Interferogram 

Fig. 15 1.1 m -RC Secondary Mirror 
of Iraq, Interferogram 
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Fig. 14 3.5 m Primary Mirror Fig. 16. 
of MPIA, Ripple 

1 .1m- RC-Secondary Mirror 
of Iraq, Ripple 
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Fig. 17 0.7 * 1.1 m Coude Mirror, 

of Iraq, Ripple 

Fig. 18 0.5 m Coude Mirror, 

of Iraq, Ripple 

Figs. 13 to 20 show the results of four 

examples. Figs. 13 and 14 show the 3.5 m 

primary mirror of the MPIA-telescope. 

Figs. 15 and 16 show the 1.2 m RC 

secondary mirror of the 3.5 m Iraq-

telescope and Figs. 2 and 17 its 

0.7 * 1.1 m Coude reflecting mirror. 

Fig. 19 0.5 m Coude-Mirror of Iraq 

Interferogram with Laser 

interferences 
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Figs. 18 and 19 are particularly remarkable. They show a small plane mirror 

with a ripple structure which is not just an error of the mirror but is caused 

by interference from the laser light. This effect is reflected in the analysis 

by a marked rise in the amplitudes at the small period lengths. In this 

extreme case it is easy to establish a direct connection between the increased 

amplitudes and the laser interferences. However this is not always so straight­

forward. In other cases it remains difficult to distinguish between the 

mirror's own ripple and the laser interferences. The computer cannot make this 

distinction. Thus it will always require the eye of an experienced optical 

technician to make a definitive judgment on the quality of mirrors. 

The method of evaluating ripple structure described here is relatively new. 

More research must be done for instance on the question of what p.t.p. or 

r.m.s. amplitudes are permissible and still allow the mirror to be ranked as 

good. We shall be trying to collect further data to enable us to make quantita­

tive evaluations. 
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