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Abstract
We formalize a consumption–investment–insurance problem with the distinction of a state-dependent relative risk
aversion. The state dependence refers to the state of the finite state Markov chain that also formalizes insurable risks
such as health and lifetime uncertainty. We derive and analyze the implicit solution to the problem, compare it with
special cases in the literature, and illustrate the range of results in a disability model where the relative risk aversion
is preserved, decreases, or increases upon disability.

1. Introduction
We formalize and solve a consumption–investment–insurance problem in a multistate framework where
the risk aversion depends on the state. Heterogeneous preferences across states are relevant in both
multigeneration models, multiagent models, and single-agent models with health states. The solution is
here characterized implicitly and numerically illustrated in a three-state (so-called) disability model of a
single individual with risk aversion dependent on whether she is active in the labour market or disabled
from working.

The academic tradition of considering consumption–investment problems formulated in continuous
time dates back to Merton [1971, 1969]. The fundamental, stylized case of an agent seeking to optimize
expected utility, with a constant relative risk aversion, of consumption in a Merton market model has
been generalized and varied over again and again during the last four decades. The starting point of
our work is the generalization of an uncertain lifetime already studied by Richard [1975] and before by
Yaari [1965] in a simpler setting. The uncertain lifetime is matched by access to life insurance which the
agent also optimizes. A simple rationale for our work is the following: Richard [1975] worked through,
explicitly, the case where the utility of both the consumption and the insurance death benefit paid out
upon death are based on the same constant relative risk aversion, although these amounts are clearly to
be consumed by different groups of individuals insofar that the decision maker is not present to consume
the death benefit. But what happens if the risk aversions are different?

Multistate models are an inevitable tool in the mathematics of life insurance and pensions. The sur-
vival model with alive and dead as the only states is the simplest possible and one can, in that case,
easily work without the concept of states, as for example, Richard [1975] did. But for generalizations to
a disability, multilife, couples, multiple causes of death, and health models, the multistate models are
the workhorse models in both theory and practice, typically assumed to be Markovian, see for exampl,
Hoem [1988]. The problem solved by Richard [1975] was generalized to multistate models by Kraft and
Steffensen [2008b]. They allow both income and consumption to be state-dependent and the optimal
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risk position now includes optimal insurance against all risks to which one is exposed in a given state.
A generalization where market and decision constraints are added to the special case of a disability
model is the object of study in Hambel et al. [2016]. However, in both Kraft and Steffensen [2008b]
and Hambel et al. [2016], the risk aversion is homogeneous across states; thus, none of them helps us
answer the question posed at the end of the preceding paragraph.

One generalization of Merton’s consumption–investment problem is in the direction of heteroge-
neous preferences. Heterogeneous preference is a standard topic in multiagent models where hetero-
geneity exists across agents. It is less standard in single-agent models where heterogeneity exists across
the time and space of the single agent. Heterogeneity in time is studied by Steffensen [2011] and Aase
[2017]. The solution by Steffensen [2011] is based on an idea of how to construct a value function,
presented by Lakner and Nygren [2006]. They solve a problem with different utility functions for
(constrained) consumption and (constrained) terminal wealth by introducing the main idea that a candi-
date value function can be constructed by distributing initial wealth optimally to the consumption and
the terminal wealth projects, respectively, and, thereafter, allocating distributed wealth to risky assets
marginally for each project. Steffensen [2011] adopts the idea and constructs on that basis a value func-
tion to solve a problem with generally age/time-dependent risk aversion by separating the problem in
a continuum of marginal terminal wealth problems terminating at a continuum of time points and an
initial wealth distribution problem. Lichtenstern et al. [2020] generalize to an age-dependent subsistence
level and discuss calibration to observed life-cycle consumption profiles.

The basic idea in the present paper is to adopt and adapt that technique to state-dependent utility in a
multistate model to cope with state heterogeneity. This allows us to study a single agent who changes risk
aversion if for example, she becomes disabled or unemployed or whatever the (insurable) risky event,
the state transition represents. We believe that our work contributes to state-dependence in the health
dimension for which demand was expressed already by Karni [1983]. Several authors have worked with
the state-dependent utility since then but most often with either a multiplicative state effect or with the
state being the financial state rather than some orthogonal state stemming from, for example, health. See
Jarrow and Li [2021] for recent theoretical results on the notion of state-dependent utility.

Our setup also allows us to study household problems where the preferences of the household planner
change across states – presumably because the household itself changes – for example, if someone in the
family dies. A similar type of heterogeneity is studied by Kwak et al. [2011] who work in a three-state
model where each state represents the number out of two generations in a household that is alive (2, 1 or
0). What differs from our work is that in Kwak et al. [2011], each generation has its risk aversion such
that, initially, when both generations are alive, utility from the consumption of each generation is simply
added up, tacitly assuming generation additivity of utility. We, instead, assume that the household has
a single representative risk aversion in each state, and we solve for a general J-state model. Also, Choi
and Koo [2005] solves a related problem where; however, the event upon which the preferences change
is an optimal stopping time, with the retirement time as the most immediate application in mind.

We address the generalization of Kraft and Steffensen [2008b] to include state-dependent utility.
Other recent contributions and generalizations in the area include Wei et al. [2020], who consider opti-
mal life insurance in a household with correlated lifetimes; Wang et al. [2021], who allow income
to increase in a random and non-hedgeable way and allow for market ambiguity; Wang et al. [2019],
who generalize the financial market to a continuous-time, finite-state self-exciting threshold model; and
Doctor [2021], who also generalize the financial market and include inflation risk. Common for the
recent literature is that the contributions are driven by generalized financial markets or general insurance
risk models whereas our contribution is in the direction of generalized preferences.

Adding the separation idea of Lakner and Nygren [2006] to the already involved solution to the
problem with state-dependence studied by Kraft and Steffensen [2008b], such that also risk aversion can
be state-dependent, is the key contribution of the present paper. This makes the key difference to Kraft
and Steffensen [2008b] and this is the key difficulty in the sections ahead. We show that the mathematical
structure of the solution is similar to the one obtained by Kraft and Steffensen [2008b] together with an
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initial optimal allocation of capital. Further, we exemplify the steps concretely to show the impact of
state-varying risk aversion.

The outline of the paper is as follows: In Section 2, we present the problem and the Hamilton–Jacobi–
Bellman (HJB) Equation characterizing its solution and formulate a verification theorem. In Section 3,
a candidate for the value function is established. In Section 4, we verify that the candidate function
fulfills the HJB equation and compare the structure with special cases earlier studied in the literature.
We illustrate in Section 5 how our setup impacts consumption and wealth dynamics for an individual
with a risk aversion that depends on his state of health.

2. The problem and characterization of its solution
We consider an individual, henceforth called the insured, who makes decisions in a standard Black–
Scholes market consisting of a risk-free asset, the bond, and a risky asset, the stock, such that the price
dynamics are given by

dB(t) = rB(t)dt, B(0) = 1,

dS(t) = αS(t)dt + σS(t)dW(t), S(0) = s0,

where r, α, and σ are constants, and W (t) a standard Brownian motion.
We consider a situation where the position of the insured and his insurance policy is described by a

finite-state time-inhomogeneous continuous-time Markov chain, Z , on a state space J . The insurance
policy terminates at time T , and we denote the Markov chain state of the insured at time t ∈ [0, T] by
Z(t). The Brownian motion W and the Markov chain Z are assumed to be independent and defined on
the measurable space (�, F ), here F is the natural filtration of (Z ,W ).

We define two equivalent probability measures on the measurable space (�, F ). First, the objective
measure is denoted by P and second, the pricing measure is denoted by P

∗ used for pricing both financial
market risk (W ) and insurance market risk (Z). Thus, we consider life insurance policies as standard
marketed contracts, as Richard [1975] and Kraft and Steffensen [2008b]. Further, we assume the pricing
measure exists and is unique such that prices are linear and unique but allow for the possibility that the
pricing measure is equal to the objective measure.

Let Njk denote the counting process counting the number of transitions from the jth state to the kth
such that Njk(t) equals the number of transitions made until time t. The process Z has deterministic
objective transition intensities μjk for any transition, j �= k, under the objective measure, and we assume
that all positive transition intensities are bounded away from both zero and infinity, but some transition
intensities may be equal to zero, that is, no transition is possible. The relation between the counting
processes and the transition intensities is, formally, E[Njk(t) − Njk(t − h)|Z(t − h) = j] =μjk(t)h + o(h).

The corresponding transition intensities under the pricing measure are denoted by μ∗jk with the same
properties, formally defined by E∗[Njk(t) − Njk(t − h)|Z(t − h) = j] =μ∗jk(t)h + o(h), where E∗ is the
expectation under then pricing measure P∗. If positive intensities are bounded away from zero and infin-
ity, assuming that the measures (P∗ and P) are equivalent corresponds to the assumption that μ∗jk is zero
if and only if μjk is zero. The difference between the two transition intensities represents an insurance-
risk loading. We consider later the special case of zero-risk loading as this gives access to particularly
simple, but not trivial, results. Finally, we assume that Z is Markovian also under the pricing measure
which essentially means that also the pricing transition intensities are deterministic. One convenient con-
sequence of that assumption is that the assumed independence between W and Z holds under both the
objective and the pricing measure, see Dhaene et al. [2017] for that topic on a more general level. Then,
for all possible states j ∈ J , the wealth of the insured evolves according to the jump-diffusion process,
with initial wealth x0. The wealth we present here is financial wealth, but is for simplicity referred to as
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the wealth.

dX(t) =
(

rX(t) +
∑
j∈J

(
π j(t)X(t)(α− r) + Yj(t) − cj(t)

−
∑
k:k �=j

μ∗jk(t)bjk(t)
)
1{Z(t)=j}

)
dt

+
∑
j∈J

∑
k:k �=j

bjk(t)dNjk(t) + σ
∑
j∈J

π j(t)X(t)dW(t)1{Z(t)=j}, t ∈ [0, T], (1)

X(0)= x0,

where π j describes the proportion of wealth invested in stocks in the jth state, Yj is a deterministic
function formalizing the income rate in the jth state, cj(t) the consumption rate at time t in the jth state,
and bjk(t) is the insurance benefit received upon transition from state j to k at time t.

We take the investment proportion, the consumption rates, and the insurance benefits to be the control
process. Whereas investment and consumption are standard control processes, the insurance benefit is
less standard. When Z is in state j, the policyholder is exposed to making a transition from j to k for all
k : k �= j with the intensity μjk(t). The policyholder buys insurance protection that pays out the lump sum
bjk(t) if a transition takes place and for that, the policyholder pays a premium at the rate μ∗jk(t)bjk(t). A
controllable insurance sum means that the sum paid out upon any insurance risk can be continuously
adjusted. When the policyholder is in state j, she decides on all insurance sums bjk, k:k �= j where the
transition rate μjk is positive. All other insurance sums play no role as long as the policyholder is in
state j. They simply do not appear in the dynamics of X. The second line in the dynamics of X is the
insurance premium payment paid out of the wealth for the benefits bjk(t), k : k �= j. That line shows how
the pricing transition intensities are used to calculate the premium for the insurance benefits.

We introduce the notion of human capital – and the notation a for it – which is the financial value
of future labour income. We speak of the sum of the financial wealth and the human capital as the
total wealth of an investor. The human capital is represented in (1) by the labor income process Yj. The
labor income rate that drives a is stochastic since it depends on Z; therefore, a itself becomes stochastic.
However, by access to the insurance market, the individual can hedge their future income. In that sense,
access to the insurance market makes the individual face a complete market. The human capital is,
formally, the unique value of the future income hedging portfolio.

With the set-up established, we consider the objective to maximize the expected utility of consump-
tion until termination T , that is,

sup
c,π ,b∈A

E

[ ∫ T

0

∑
j∈J

uj(t, cj(t))1{Z(t)=j}dt

]
.

The supremum is taken over consumption, investment, and insurance processes in the set A of
admissible controls and the utility functions are specified as

uj(t, cj(t)) = 1

1 − γj

(gj(t))γj (cj(t))1−γj . (2)

Here, the time-dependence of the utility function appears through gj, a deterministic positive time-weight
function, taken to the power of γj for mathematical convenience. The standard subjective utility dis-
counting is included in the setup by a specific exponential choice of gj. In the numerical calculations in
Section 5, we assume such an exponential discounting of utility. We note here that γ is decorated with
j which formalizes the essential contribution of this paper compared to Kraft and Steffensen [2008b].
The value function is, correspondingly, defined as
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Vj(t, x) = sup
c,π ,b∈A

Et,x,j

[ ∫ T

t

∑
k∈J

uk(s, ck(s))1{Z(s)=k}ds

]
, (3)

where Et,x,j denotes conditional expectation, given that X(t) = x and Z(t) = j.
We say that the controls, (cj, π j, bjk) for all j, k ∈ J are admissible if they meet the following require-

ments: First, the insured cannot have a negative total capital in the sense of wealth including human
capital, that is, X(t) + a(t) ≥ 0 for all t ∈ [0, T]. Second, (1) has a unique solution. Third, the expectation
in (3), based on that specific strategy, is well-defined. Finally, we have that

E

[∫ T

0

σπ j(t)X(t)dW(t)1{Z(t)=j}

]
= 0,

E

[∫ T

0

bjk(t)
(
dNjk(t) −μjk(t)1{Z(t)=j}dt

)]= 0.

We denote by A the set of admissible controls. It is important to note that the rate of the compensator for
the jump process Njk(t) is actuallyμjk(t)1{Z(t)=j}, unlike a standard Poisson process that has a deterministic
compensator.

Theorem 2.1. (Verification theorem) Assume that there exists a system of sufficiently differen-
tiable functions Uj(t, x), j ∈ J , and admissible controls (cj, π j, bjk) ∈ A such that Uj(t, x) solves the
equation

0 = sup
cj ,π j ,bjk∈A

{
(rx + π jx(α − r) +∑

k∈J (Yk(t) − ck)1{k=j}

−∑
k:k �=j μ

∗jk(t)bjk)
∂

∂x
Uj(t, x)

+ 1

2
(π j)2x2σ 2

∂2

∂x∂x
Uj(t, x) +∑

k∈J uk(t, ck)1{k=j}

+∑
k:k �=j μ

jk(t)
(

Uk(t, x + bjk) − Uj(t, x)
)}

+ ∂

∂t
Uj(t, x),

0 = Uj(T , x),

and such that

arg sup
cj ,π j ,bjk∈A

{
(rx + π jx(α − r) +

∑
k∈J

(Yk(t) − ck)1{k=j}

−
∑
k:k �=j

μ∗jk(t)bjk)
∂

∂x
Uj(t, x)

+ 1

2
(π j)

2
x2σ 2 ∂2

∂x∂x
Uj(t, x) +

∑
k∈J

uk(t, ck)1{k=j}

+
∑
k:k �=j

μjk(t)
(

Uk(t, x + bjk) − Uj(t, x)
)}

,

exists and constitutes (c∗j, π ∗j, b∗jk) ∈ A .
Then the optimal value function Vj to the control problem is given by

Vj(t, x) = Uj(t, x),

and (c∗j, π ∗j, b∗jk) is the optimal control function.
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Remark 2.1. Note that the above system is deterministic and holds for all states of Z and X. Specifically
it holds for Z(t) = j and X(t) = x we can; therefore, leave out the indicator 1{Z(t)=j}. Clearly, in the above
equation we could write

∑
k∈J (Yk(t) − ck)1{k=j} simpler as Yj(t) − cj but we insist on the cumbersome

version as it will make certain operations later on easier to follow.

The proof of the verification theorem follows standard calculations, exactly as Asmussen and
Steffensen [2020], Theorem 6.1, where the verification theorem for the multistate problem with con-
stant risk aversion case is proved. The generalization to state-dependent risk aversion does not make the
verification theorem any more complicated. However, as we shall see, constructing a candidate for U
and verifying that it fulfils the requirements in the verification, is considerably more complicated.

In the following two sections, first we construct and motivate our value function candidate in
Section 3. Second, in Section 4 we verify that this candidate value function fulfils the requirements
for U in the verification theorem. Once we have verified this in Section 4, we know by the verification
theorem that our candidate value function is indeed the value function of the control problem.

3. The value function
In this section, we develop an intuitive understanding of and construct a candidate value function. The
argument for the construction of the candidate value function is informal, whereas the formal verification
that it solves the HJB equation, is found in Section 4.

A classical guess for the value function in the case with no insurance state risk and with constant risk
aversion is based on the separation of the time and wealth variables such that

U(t, x) = 1

1 − γ
f (t)γ (x + a(t))1−γ ,

where the function f together with a the human capital captures the time dependence of the candidate
value function, but this candidate does not include any insurance state variation. Consequently, we turn to
the construction in Kraft and Steffensen [2008b], with insurance state risk included but the risk aversion
is constant. They obtain

Uj(t, x) = 1

1 − γ
f j(t)γ (x + aj(t))1−γ . (4)

As seen, now the candidate value function depends on the state, as do also the functions f j and aj. This
still does not include the state variation of risk aversion, though. Lakner and Nygren [2006] suggest
a way to construct a value function that copes with variation of risk aversion where the variation is
with respect to consumption and terminal wealth. This is done by dividing the initial wealth into one
part for consumption and another part for terminal wealth. Then it is possible to solve each subproblem
marginally since each subproblem has no variation in risk aversion. In the end, the optimal allocation
of the initial wealth is determined by making sure the marginal indirect utility from the two problems
coincide such that the individual does not gain further from moving wealth from one subproblem to
the other. Steffensen [2011] uses the same method for solving a pure consumption problem with age-
dependent risk aversion. This way of constructing a candidate value function gives us the idea of how
to include the state-varying relative risk aversion.

We construct our candidate value function by decomposing our problem into several subproblems
such that each subproblem is formed by its measure of utility from consumption in a particular state in
the state space J . Further, as part of the construction, we also allocate the initial wealth to the different
subproblems. We decorate by subscript the subproblem to which a given quantity belongs. Thus, we
have a wealth process, an income process, a consumption rate, an investment proportion in state j, and
an insurance lump sum upon transition from j to k, all corresponding to subproblem l, given as Xl, Yj

l ,
cj

l, π
j
l , and bjk

l , respectively. The subproblem quantities aggregate to the quantities of the single original
problem in the following way, X =∑

l Xl, Yj =∑
l Yj

l , cj =∑
l cj

l, π jX =∑
l π

j
l Xl, and bjk =∑

l bjk
l .
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The decomposition into subproblems introduces a long list of control variables, and one can expect
that there are different decompositions where the overall optimal controls are distributed differently to
the subproblems and where the wealth is distributed to the different subproblems accordingly. These
decompositions are all different decompositions of the same overall optimal control and are, thus, all
optimal. The ambition here is not to characterize all optimal decompositions but to characterize a single
one of them. We, therefore, restrict ourselves to the case where consumption in state k only happens in
the subproblem where utility from that consumption is actually measured, that is, cj

l = 0 for l �= j such
that cj =∑

l cj
l = cj

j, and cj
j can henceforth simply be denoted by cj. Similarly, we restrict ourselves to the

case where income in the state k is fully allocated to the state where it is received, that is, Yj
l = 0 for l �= j

such that Yj =∑
l Yj

l = Yj
j , and we can denote Yj

j by Yj. We also restrict ourselves to the case where all
of the insurance lump sums paid upon jump into state k are allocated to the wealth of the subproblem
related to utility from consumption in state k, that is, bjk

l = 0 for l �= k such that bjk =∑
l bjk

l = bjk
k , and

we can denote bjk
k by bjk. Finally, we also restrict ourselves to the case where the insurance premium is

financed by the wealth in the subproblem where the corresponding insurance benefits are also earned
upon transitions. We emphasize that along with all these restrictions follows a specific initial wealth
distribution, and the whole set of controls and initial wealth distribution are integrated parts of the guess
on the value function below. If we can find a solution to the HJB equation for a given set of restrictions,
we certainly have an optimal solution to the problem. We pay no further attention to the idea that the
decomposition of the optimal control is not unique.

We mention, en passant, that these restrictions are no different from the restriction that Lakner and
Nygren [2006] make when they allocate all the consumption to their utility of consumption subproblem.
One can easily imagine a different allocation where parts of the consumption are withdrawn from the
wealth in the utility of terminal wealth subproblem, but the utility of this consumption is measured in the
utility of consumption subproblem. That would simply lead to a different distribution of initial wealth
but the same overall aggregate optimal solution.

Based on these restrictions, we have that the dynamics of Xl are quite similar to the dynamics given
by X in (1). We have with initial wealth xl,0,

dXl(t) =
(

rXl(t) +
∑
j∈J

π
j
l (t)Xl(t)(α− r) +

∑
j∈J

(
Yj

l (t) − cj
l(t)

−
∑
k:k �=j

μ∗jk(t)bjk
l (t)

)
1{Z(t)=j}

)
dt

+
∑
j∈J

∑
k:k �=j

bjk
l (t)dNjk(t) + σ

∑
j∈J

π
j
l (t)Xl(t)dW(t), t ∈ [0, T], (5)

Xl(0) = xl,0.

We look at the dynamics dX in (1) to confirm this to be equal to d(
∑

l Xl). We consider (5) and sum
over all the subproblems∑

l∈J

dXl(t) =
∑
l∈J

(
rXl(t) +

∑
j∈J

π
j
l (t)Xl(t)(α− r) +

∑
j∈J

(
Yj

l (t) − cj
l(t)

−
∑
k:k �=j

μ∗jk(t)bjk
l (t)

)
1{Z(t)=j}

)
dt

+
∑
l∈J

(∑
j∈J

∑
k:k �=j

bjk
l (t)dNjk(t) + σ

∑
j∈J

π
j
l (t)Xl(t)dW(t)

)
, t ∈ [0, T],

∑
l∈J

Xl(0) =
∑
l∈J

xl,0.
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Inserting the above-explained notation and moving the sum over the subproblems l to the affected
parts, we get

d
∑
l∈J

Xl(t) =
(

r
∑
l∈J

Xl(t) +
∑
j∈J

∑
l∈J

π
j
l (t)Xl(t)(α− r) +

∑
j∈J

(∑
l∈J

Yj
l (t) −

∑
l∈J

cj
l(t)

−
∑
k:k �=j

μ∗jk(t)
∑
l∈J

bjk
l (t)

))
dt

+
∑
j∈J

∑
k:k �=j

∑
l∈J

bjk
l (t)dNjk(t) + σ

∑
j∈J

∑
l∈J

π
j
l (t)Xl(t)dW(t), t ∈ [0, T],

∑
l∈J

Xl(0) =
∑
l∈J

xl,0.

Now, if we notice
∑

l π
j
l Xl = π jX,

∑
l Yj

l = Yj,
∑

l cj
l = cj, and

∑
l bjk

l = bjk, we recognize this as (1) and,
thereby, dX(t) =∑

l dXl(t).
When we condition on X(t) = x and Xk(t) = xk, and we know that X =∑

k∈J Xk, we are in the subspace
where x =∑

k∈J xk. This relation between x and xk, k ∈ J is used frequently from now.
The subproblem corresponding to measuring utility from consumption in state k ∈ J becomes

sup
ck ,πk ,bjk

E

[ ∫ T

0

uk(t, ck(t))1{Z(t)=k}dt

]
. (6)

This draws on our specific decomposition since ck is not only the total consumption rate spent in state
k. It is even equal to the consumption rate subtracted from the wealth belonging to subproblem k as the
consumption from all other subproblems is zero. Each subproblem isolates a single risk aversion and,
therefore, with reference to Kraft and Steffensen [2008b], a subproblem value function candidate is

Uj
k(t, xk) = 1

1 − γk

f j
k(t)γk (xk + aj

k(t))
1−γk . (7)

Note again here how all subscripts refer to the subproblem where utility is measured and all topscripts
refer to the possible states of Z at time t.

The candidate function of the original problem is now formed by aggregation of the candidate
functions of the subproblems, that is,

Uj(t, x) =
∑
k∈J

Uj
k(t, xk),

along with the relation between the arguments mentioned above, x =∑
k∈J xk.

The decomposition into subproblems and an initial wealth allocation follows the fundamental idea by
Lakner and Nygren [2006]. Lakner and Nygren [2006] work with such a separation idea under a general
utility function. We consider only the case of the power utility, see (2), and we choose the decomposition
into subproblems such that each subproblem measures the utility from a specific constant relative risk
aversion. That makes the candidate value function for each subproblem further separable in the time and
wealth.

We show that the fundamental idea of allocating to subproblems works well together with state-
varying relative risk aversion. Based on the general utility function approach by Lakner and Nygren
[2006], there is all reason to believe that the decomposition into subproblems works well beyond that
case. However, the separability of the subproblem value function candidates in time and wealth cannot
be expected to work outside our case of state-varying relative risk aversion. This separability allows,
for example, a simple explicit calculation of the distribution of initial capital to subproblems, see below.
Applications of the decomposition idea beyond the power utility case are beyond the scope of this paper.
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The initial wealth allocated to each subproblem is determined through the marginal indirect utility
∂

∂xk
Uj

k(t, xk). Following Lakner and Nygren [2006], we want the marginal indirect utility from the different
subproblems to coincide such that the individual does not gain further from moving wealth from one
subproblem to another. This is a condition on the allocations xk, k ∈ J . Further, we want the marginal
indirect utility to be independent of the state of Z . Thus, we require from the allocation of wealth that
there exists a function ψ such that

ψ(t, x) = ∂

∂xk

Uj
k(t, xk), for all k ∈ J . (8)

When noting that the left side depends on only wealth and time, the marginal wealth allocation on the
right side must be linked to each other and the wealth through the relation x =∑

k∈J xk. When taking
the derivative with respect to xk, we mean the derivative with respect to the second coordinate of the
value function Uj

k. Thus, a more direct way to write our assumption (8) is

ψ

⎛
⎝t,

∑
k∈J

xk

⎞
⎠= ∂

∂x1

Uj
1(t, x1) = ∂

∂x2

Uj
2(t, x2) = ... = ∂

∂xJ

Uj
J(t, xJ). (9)

We cannot stress hard enough that, whenever the total wealth realization x is specified below, we always
require implicitly that this wealth is allocated optimally such that x =∑

k∈J xk and such that (9) holds.
The function ψ(t, x) representing the marginal indirect utility is the partial derivative of the subprob-

lem’s value function candidate. Thus, it is just an ingredient in our guess on a value function. Only later
when we have verified that our candidate solves the HJB equation we know that the allocation of wealth
into subproblems is correct. By the notation and assumption introduced above, we can combine (7) and
(8) to reach the following relation,

xk = f j
k(t)ψ(t, x)− 1

γk − aj
k(t). (10)

By plugging this back into the value function, we can write the marginal value functions in terms of the
marginal indirect utility as

Uj
k(t, xk) = 1

1 − γk

f j
k(t)ψ(t, x)

γk−1
γk . (11)

The marginal indirect utility must be determined implicitly as the solution to

x =
∑
k∈J

xk =
∑
k∈J

(
f j
k(t)ψ(t, x)− 1

γk − aj
k(t)
)

. (12)

For numerical illustrations, this implicit equation must be solved numerically.
The combination of (11) and (12) forms our candidate value function. This is based on exactly the

same idea as the one Lakner and Nygren [2006] and Steffensen [2011] use to form a candidate for the
value function. But the application of the idea is here clearly much more advanced, and the notation,
motivation, and description are correspondingly more involved. We have now established a candidate.
In the next section, we verify that our candidate truly solves the HJB equation.

4. Verification
Now we are going to verify our candidate solution indeed solves the HJB equation. By inserting (11) in
(3), our implicit candidate function can be presented as

Uj(t, x) =
∑
k∈J

1

1 − γk

f j
k(t)ψ(t, x)

γk−1
γk , (13)

x =
∑
k∈J

(
f j
k(t)ψ(t, x)− 1

γk − aj
k(t)
)

. (14)
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To ease the next computations, we introduce the auxiliary function

hj(t, x) =
∑
k∈J

1

γk

f j
k(t)ψ(t, x)− 1

γk .

4.1. Partial derivatives
The first step to verifying our candidate value function is to find the partial derivatives. Deriving (13)
with respect to time t gives

∂

∂t
Uj(t, x) =

∑
k∈J

(
1

1 − γk

ψ(t, x)
γk−1
γk

d

dt
f j
k(t) − 1

γk

f j
k(t)ψ(t, x)− 1

γk
∂

∂t
ψ(t, x)

)
,

=
∑
k∈J

(
1

1 − γk

ψ(t, x)
γk−1
γk

d

dt
f j
k(t)

)
− hj(t, x)

∂

∂t
ψ(t, x). (15)

The partial derivative
∂

∂t
ψ(t, x) is found by differentiating with respect to time t on both sides of the

relation (14)

0 =
∑
k∈J

(
ψ(t, x)− 1

γk
d

dt
f j
k(t) − d

dt
aj

k(t)

)
− hj(t, x) ∂

∂t
ψ(t, x)

ψ(t, x)
,

⇔ ∂

∂t
ψ(t, x) =

∑
k∈J

(
ψ(t, x)

γk−1
γk

d
dt

f j
k(t) −ψ(t, x) d

dt
aj

k(t)
)

hj(t, x)
.

Inserting this in (15) equals

∂

∂t
Uj(t, x) =

∑
k∈J

(
γk

1 − γk

ψ(t, x)
γk−1
γk

d

dt
f j
k(t) +ψ(t, x)

d

dt
aj

k(t)

)
. (16)

For the partial derivative with respect to x, (13) we get
∂

∂x
Uj(t, x) =

∑
k∈J

− 1

γk

f j
k(t)ψ(t, x)− 1

γk
∂

∂x
ψ(t, x) = −hj(t, x)

∂

∂x
ψ(t, x). (17)

Similarly to the above, differentiating on both sides of (14) with respect to x gives

−ψ(t, x)

hj(t, x)
= ∂

∂x
ψ(t, x).

Inserting this in (17) gives
∂

∂x
Uj(t, x) =ψ(t, x), (18)

∂2

∂x∂x
Uj(t, x) = ∂

∂x
ψ(t, x). (19)

This result gives an expression for the partial derivatives of the total value function, where the underlying
condition for the wealth allocation is crucial as this was assumed to obtain (14). The partial derivative
in (18) represents variation in x, where x =∑

k xk, but this variation also includes a variation in the
reallocation of wealth among the subproblems because

∑
k xk varies with x. By the inclusion of this

reallocation, we obtain that (18) does not depend on j. Thus, ψ is not only the marginal indirect utility
for each subproblem k, see (8), but it also actually coincides with the total marginal indirect utility.
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4.2. HJB equation
Next, to verify our candidate value function, we plug it (and its partial derivatives obtained above) into
the HJB equation, such that

0 =
∑
k∈J

(
ψ(t, x)

d

dt
aj

k(t) + γk

1 − γk

ψ(t, x)
γk−1
γk

d

dt
f j
k(t)

)

+ sup
cj ,π j ,bjk

{
(rx + π jx(α − r) +∑

k∈J (Yk(t) − ck)1{k=j}

−∑
k∈J μ∗jk(t)bjk1{k �=j})ψ(t, x)

+1

2
(π j)2x2σ 2 ∂

∂x
ψ(t, x) +∑

k∈J uk(t, ck)1{k=j}

+∑
k∈J μjk(t)1{k �=j}

(
Uk(t, x + bjk) − Uj(t, x)

)}
,

0 =Uj(T , x). (20)

The optimal controls are found as the controls that attain the supremum, that is,

arg sup
cj ,π j ,bjk

{
(rx + π jx(α − r) +

∑
k∈J

(Yk(t) − ck)1{k=j} −
∑
k∈J

μ∗jk(t)bjk1{k �=j})ψ(t, x)

+ 1

2
(π j)

2
x2σ 2 ∂

∂x
ψ(t, x) +

∑
k∈J

uk(t, ck)1{k=j}

+
∑
k∈J

μjk(t)1{k �=j}
(

Uk(t, x + bjk) − Uj(t, x)
)}

. (21)

Before solving the equation, we need to investigate and elaborate on some parts. First, we reconsider the
allocation of the insurance benefit into subproblems. As discussed in Section 3, we restrict ourselves to
allocating benefits received upon transition into state k, bjk, to the wealth of the kth subproblem. This
means that this lump sum affects subproblem k only. Looking at the value function Uk(t, x), we can write
it as (13) with the allocated wealth to each subproblem and include the benefit in the kth subproblem,

Uk(t, x + b∗jk) = Uk
k (t, xk + b∗jk) +

∑
l:l �=k

Uk
l (t, xl). (22)

We remind the reader that this allocation of insurance lump sum payments is a choice we make. One
could take a different distribution and, most importantly, a different allocation of initial wealth. However,
as mentioned earlier we just need to point at one decomposition and the related optimal solution, not
all decompositions. The allocation of the state k-insurance benefits to the state-k subproblem is mathe-
matically elegant since it relieves us from carrying around with the cumbersome notation bjk

l (since it is
zero for l �= k) and the insurance lump sum bjk then only appears in a single subproblem value function.
Further, we investigate (21) in order to find an expression for the optimal controls. Deriving wrt. the
insurance benefit in order to find optimal control b∗jk and using the chosen allocation as described in
(22), we have the first-order condition

μjk(t)1{k �=j}
∂

∂xk

Uk
k (t, xk + bjk) −μ∗jk(t)1{k �=j}ψ(t, x) = 0. (23)

The first part could also be seen asμjk(t)ψ(t, x + bjk) since by (8) the marginal indirect utility isψ(t, x) =
∂

∂xk

Uj
k(t, xk) for all k ∈ J . This allocation of the lump sum payment is a choice as previously described,
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and the above calculation reflects the decision to allocate bjk fully to subproblem k. We insert the value
function from (7) and derive it with respect to the second parameter

∂

∂xk

Uk
k (t, xk + bjk) = f k

k (t)γk (xk + ak
k(t) + bjk)−γk .

Altogether the above calculations result in

b∗jk(t, x) =
(
μ∗jk(t)

μjk(t)

)− 1
γk

ψ(t, x)− 1
γk f k

k (t) − (xk + ak
k(t)), for all k �= j.

Remember xk = x −∑
l:l �=k xl, we present the optimal controls in (21) in the following way for

all j ∈ J

c∗j(t, x) = gj(t)ψ(t, x)
− 1
γj .

π ∗j(t, x) = −α − r

σ 2

ψ(t, x)

x
∂

∂x
ψ(t, x)

.

b∗jk(t, x) =
(
μ∗jk(t)

μjk(t)

)− 1
γk

ψ(t, x)− 1
γk f k

k (t) − (x + ak
k(t) −

∑
l:l �=k

xl), for all k �= j.

The results for cj and π j are obtained in a similar way as the optimal insurance payment, and these
calculations are standard for consumption–investment problems.

To make sure we have an optimum, we take the second derivative of the inner part of (21) with
respect to the controls. The derivation for c and π are standard, but for the insurance sum we find, by
differentiating the left-hand side of (23) and plugging in the candidate control,

∂

∂bjk

(
μjk(t)1{k �=j}

∂

∂xk

Uk
k (t, xk + b∗jk) −μ∗jk(t)1{k �=j}ψ(t, x)

)

= ∂

∂bjk

(
μjk(t)1{k �=j}f

k
k (t)γk (xk + b∗jk + ak

k(t))
−γk −μ∗jk(t)1{k �=j}ψ(t, x)

)
= −γkμ

jk(t)1{k �=j}f
k
k (t)γk (xk + b∗jk + ak

k(t))
−γk−1 < 0.

With a negative second derivate, we have an optimum. Later in this section, we elaborate on the opti-
mal control strategies without the marginal indirect utility function ψ(t, x), since it is for intermediate
calculations mainly. This means the final results do not depend on ψ(t, x) but until our candidate value
function is verified as the optimal value function we continue with ψ(t, x) present. With the optimal
controls defined we are almost ready to solve the HJB equation, but before, we need to rewrite the last
term from (20). Therefore, with the design in (22), we first see

∑
k∈J

μjk(t)1{k �=j}
(
Uk
(
t, x + bjk

)− Uj(t, x)
)

=
∑
k∈J

μjk(t)1{k �=j}

⎛
⎝Uk

k (t, xk + bjk) +
∑
l∈J

Uk
l (t, xl)1{l �=k} −

∑
l∈J

Uj
l(t, xl)

⎞
⎠ .
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If we gather the last two terms and, on these terms, interchange the order of summation, we get

∑
k∈J

μjk(t)1{k �=j}

⎛
⎝Uk

k (t, xk + bjk) +
∑
l∈J

Uk
l (t, xl)1{l �=k} −

∑
l∈J

Uj
l(t, xl)

⎞
⎠

=
∑
k∈J

μjk(t)1{k �=j}U
k
k (t, xk + bjk)

+
∑
k∈J

∑
l∈J

μjk(t)1{k �=j}
(
Uk

l (t, xl)1{l �=k} − Uj
l(t, xl)

)

=
∑
k∈J

μjk(t)1{k �=j}U
k
k (t, xk + bjk)

+
∑
k∈J

∑
l∈J

μjl(t)1{l �=j}
(
Ul

k(t, xk)1{k �=l} − Uj
k(t, xk)

)

=
∑
k∈J

μjk(t)1{k �=j}U
k
k (t, xk + bjk)

+
∑
k∈J

∑
l∈J

μjl(t)1{l �=j}
( 1

1 − γk

f l
k(t)ψ(t, x)

γk−1
γk 1{k �=l} − 1

1 − γk

f j
k(t)ψ(t, x)

γk−1
γk

)
. (24)

This way of rewriting is possible because the lump sum bjk is fully allocated to the kth subproblem. Now
everything is prepared to solve the HJB equation. We insert the expression (24) and the optimal controls
into the HJB equation to get

0 =
∑
k∈J

(
γk

1 − γk

ψ(t, x)
γk−1
γk

d

dt
f j
k(t) +ψ(t, x)

d

dt
aj

k(t)

)

+ rxψ(t, x) − 1

2

(α − r)2

σ 2

ψ(t, x)2

∂

∂x
ψ(t, x)

+
∑
k∈J

Yk(t)ψ(t, x)1{k=j}

+
∑
k∈J

γk

1 − γk

gk(t)ψ(t, x)
γk−1
γk 1{k=j}

−
∑
k∈J

μ∗jk(t)
γk

1−γk μjk(t)
1
γk f k

k (t)ψ(t, x)
γk−1
γk 1{k �=j}

+
∑
k∈J

μ∗jk(t)1{k �=j}(x + ak
k(t) −

∑
l:l �=k

xl)ψ(t, x)

+
∑
k∈J

1

1 − γk

μ∗jk(t)
γk

1−γk μjk(t)
1
γk f k

k (t)ψ(t, x)
γk−1
γk 1{k �=j}

+
∑
k∈J

∑
l∈J

μjl(t)1{l �=j}
( 1

1 − γk

f l
k(t)ψ(t, x)

γk−1
γk 1{k �=l} − 1

1 − γk

f j
k(t)ψ(t, x)

γk−1
γk

)
,

0 = Uj(T , x). (25)
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The solution to the Equation (25) can be expressed as the solution to the following equations:
d

dt
f j
i (t) = r̃j

i(t)f
j
i (t) −

∑
l:l �=j

μ̃
jl
i (t)

(
f l
i (t) − f j

i (t)
)− gi(t)1{i=j},

f j
i (T) = 0.

With μ̃jl
i and r̃j

i defined as

μ̃
jl
i (t) =μ∗jl(t)

γi−1
γi μjl(t)

1
γi 1{l=i} + 1

γi

(
(γi − 1)μ∗jl(t) +μjl(t)

)
1{l �=i},

r̃j
i(t) =γi − 1

γi

(
r +

∑
l:l �=j

μ∗jl(t)

)
+
∑
l:l �=j

μjl(t)
1

γi

−
∑
l∈J

μ̃
jl
i (t) +

(
α− r

σ

)2
γi − 1

2γ 2
i

.

The derivation is presented in Appendix A. Note here that the indicator function elegantly indicates that
the utility weight of state i appears only in the subproblem i and only in (the differential equation for)
the state-wise f corresponding to exactly that same state i. Also, note the interpretation of μ̃ and r̃. The
intensities μ̃ are formed as sums of a geometric and an arithmetic means of the two intensities μ and
μ∗. The geometric mean is taken with respect to the transition into the state to which the subproblem
belongs. The arithmetic mean is taken with respect to all other transitions. The artificial interest rate r̃
contains elements from the financial market plus the impact of the multistate model. The impact from the
multistate model is a difference between the arithmetic and the geometric means of the exit intensities
μj· and μ∗j·. The system of differential equations for the human capital a becomes

d

dt
aj

i(t) = raj
i(t) −

∑
l:l �=j

μ∗jl(t)
(
al

i(t) − aj
i(t)
)− Yi(t)1{i=j},

aj
i(T) = 0.

Again, note the indicator function elegantly indicates the income in state i appears only in the subproblem
i and only in (the differential equation for) the state-wise human capital corresponding to exactly that
same state i. This follows from the convention that all income in a particular state is earned for the
subproblem of that state exclusively. This concludes our verification. Since these systems of differential
equations for both f and a are linear, they have unique solutions and we have, thus, found a solution to
the HJB. This means the value function candidate consisting of (13) and (14) is indeed the optimal value
function and we write

Uj(t, x) = Vj(t, x) =
∑
k∈J

1

1 − γk

f j
k(t)γk (xk + aj

k(t))
1−γk ,

x =
∑
k∈J

xk.

Furthermore, the optimal controls formulated in (21) can as previously mentioned be written without
the function ψ . First, turning to the optimal investment strategy from (17), we find

π ∗j(t, x) = − (α − r)

σ 2

ψ(t, x)

x ∂

∂x
ψ(t, x)

= α− r

σ 2

hj(t, x)

x
.

By the definition of hj(t, x) =∑
k∈J

1
γk

f j
k(t)ψ(t, x)− 1

γk and by using the definition of ψ(t, x) from (8) for
all j ∈ J , we get

π ∗j(t, x) = α− r

σ 2

∑
k∈J

1
γk

(xk + aj
k(t))

x
.
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Second, for all j ∈ J , the optimal consumption strategy in state j is by (8) given as

c∗j(t, x) = gj(t)ψ(t, x)
− 1
γj = gj(t)

f j
j (t)

(xj + aj
j(t)).

Third, for the optimal insurance benefit, we look at a transition from the state j to the state k, for all
possible states k �= j where the insured can jump to have

b∗jk(t, x) =
(
μ∗jk(t)

μjk(t)

)− 1
γk

ψ(t, x)− 1
γk f k

k (t) − (xk + ak
k(t)).

Again by (8) for all k �= j ∈ J , we have

b∗jk(t, x) =
(
μ∗jk(t)

μjk(t)

)− 1
γk f k

k (t)

f j
k(t)

(xk + aj
k(t)) − (xk + ak

k(t)).

For each subproblem, the system of functions (a, f ) relates to the solution found by Kraft and Steffensen
[2008b] as we discuss in the following section. However, solving this system for each subproblem is
in our case followed by an initial allocation of capital to the different subproblems, and through that
part relating the xk, k ∈ J , to each other, also these subproblems become entangled. General analyti-
cal results about how the state variation of risk aversion impacts the controls are left for future work,
but a concrete example where the impact can be illustrated and intuitively explained is presented in
Section 5.

4.3. Comparison
We finalize this section on the verification by comparing the system of differential equations for f and
a with those obtained by Kraft and Steffensen [2008b] and further specified in Kraft and Steffensen
[2008a]. They also have functions f and a like ours, but things are simpler since the risk aversion γ does
not depend on the state. If we let γ be constant the double notation becomes redundant, and we are back
with one single value function in the form

Vj(t, x) = 1

1 − γ
f j(t)γ (x + aj(t))1−γ .

In that case, we do not have to divide the problem into subproblems corresponding to insurance, income,
and consumption for every single state. Then we can perform all the calculations above once and reach
a single system of differential equations for f and a single system of differential equations for a. They
become

d

dt
f j(t) = r̃j(t)f j(t) −∑

l:l �=j

μ̃jl(t)
(
f l(t) − f j(t)

)− gj(t), f j(T) = 0,

d

dt
aj(t) = raj(t) −∑

l:l �=j

μ∗jl(t)
(
al(t) − aj(t)

)− Yj(t), aj(T) = 0,

with

μ̃jl(t) =μ∗jl(t)
γ−1
γ μjl(t)

1
γ ,

r̃j(t) =γ − 1

γ

(
r +

∑
l:l �=j

μ∗jl(t)

)
+
∑
l:l �=j

μjl(t)
1

γ
−
∑
l∈J

μ̃jl(t) + (
α− r

σ
)2 γ − 1

2γ 2
.

This is the same system as the one obtained in Kraft and Steffensen [2008b]. We note as it was done
both there and in Kraft and Steffensen [2008a] that we can write f and a as certain conditional expected
present values. The function f is the value of future utility weights under a measure with intensities μ̃
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and state-dependent interest rates r̃, and the function a is the financial value of future income, that is

f j(t) = Ẽx,j

[∫ n

t

e− ∫ s
t r̃(u)dudϒ(s)

]
,

aj(t) = E∗
t,j

[∫ n

t

e−r(t−s)dA(s)

]
.

Here, ϒ is the process of accumulated utility weights and A(t) is the process of accumulated income.
Like in the general case, we note the interpretation of the artificial parameters μ̃ and r̃. The intensity
μ̃ is now a simple geometric mean of μ and μ∗. The part with the arithmetic mean from the general
case has vanished because one never jumps to a state which is part of a different subproblem. Namely,
there is only one single problem, and all jumps relate to entrance into that single problem. Further, the
artificial interest rate r̃ is again the combination of the (usual) market terms and then the multistate
market impact which is, simply, the difference between the arithmetic and the geometric means of exit
transition intensities. We mention here that this interpretation of the artificial assumptions underlying f
in terms of geometric and arithmetic means is mentioned by neither Kraft and Steffensen [2008b] nor
Kraft and Steffensen [2008a]. Apart from giving insight, it also helps in the implementation phase.

5. Numerical example
In this section, we illustrate with a numerical example the scope of our setup with state-dependent risk
aversion. We illustrate the expected development over time of the wealth process and the consumption
process for an individual who controls consumption, investment, and disability insurance before and
after retirement. The numerical illustrations are based on the three-state model as illustrated in Appendix
B: 4, interpreted as state 0: Active; state 1: Disabled; and state 2: Dead. We assume that μ10 = 0 which
together with the obvious μ21 =μ20 = 0 leads to closed form solutions. The life insurance scheme con-
sists of a disability sum of b01, paid out upon transitioning to the disabled state 1 and then added to
the wealth allocated to consumption during the disability. During disability, the individual receives no
labour income, and the disability sum serves as insurance to cover the maintenance of the desired level
of consumption. There is no life insurance present which is optimal since we assume that there is no
utility from the bequest.

The disability intensity is defined as μai(t) =μ01(t) = Ae(t+z) log (B), and the nondifferential death inten-
sity as μad(t) =μid(t) =μ02(t) =μ12(t) = C + 10D+E(t+z)−10 with constants defined in Table 1. Note that
we assume so-called nondifferential mortality where disability does not accelerate death. The utility
functions are defined in (2), and for numerical calculations, we choose the exponential function as the
time-weight function g(t) = e−ρt, where ρ is the utility discount factor relating the utility of payments at
different points in time to each other. In all illustrations, we consider an insured at age 30 at initializa-
tion who retires at age 70. We study the wealth and consumption patterns for the two cases where the
individual becomes disabled at age 50 and age 80, respectively. Normally, at least in this case of nondif-
ferential mortality, getting disabled after retirement does not change the consumption pattern since the
event does not influence the financial situation. However, here consumption changes because the risk
aversion changes, and this holds even after retirement.

Figure 1 illustrates the benchmark case with the same risk aversion in both states, 0 and 1, namely
γ0 = γ1 = 2. As in the Appendix B: 4, the wealth is allocated at initialization for two subproblems: One
for consumption while active and another for consumption as disabled. The allocation is done such that
the marginal indirect utility at t = 0 is the same in each state. In other words, the insured does not gain
further from moving wealth between the subproblems regarding the state active and the state disabled,
respectively. Recall that the function ψ(t, x) represents exactly this marginal indirect utility as

ψ(t, x) = ∂

∂xk

Vj
k(t, xk) = f j

k(t)γk (xk + aj
k(t))

−γk , ∀k ∈ J .
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Table 1. The parameters used in the numerical examples.

Parameters Description Value
z Age at initialization 30
T Time of retirement 40
x0 Initial wealth 400 000
Y Constant income rate in USD until retirement or disability 45 000
ρ Impatience factor for all states 0.05
r The constant drift of the risk-free asset 0.02
α The constant drift of the risky asset 0.05
σ The constant volatility of the risky asset 0.2
A Parameter for mortality intensity 0.0000005
B Parameter for mortality intensity 1.14
C Parameter for disability intensity 0.000400
D Parameter for disability intensity 4.58
E Parameter for disability intensity 0.051
Note: r, α and σ are thought of as corrected for inflation.
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Figure 1. For γ0 = γ1 = 2. Left: The expected wealth allocated for the states. Right: The optimal
consumption (the two curves overlap).

We denote the initial wealth by x0, deviating from the more usual x0 since the latter denotes the wealth
allocated to subproblem 0 at an arbitrary time point. We denote the initial allocations to the two subprob-
lems by x0 and x1 such that we have the constraint x0 = x0 + x1. Thus, we solve the following equation
for x0

f 0
0 (0)γ0 (x0 + a0

0(0))−γ0 = f 0
1 (0)γ1 (x0 − x0)−γ1 , (26)

and define x1 = x0 − x0, to obtain the optimal allocation at initialization. The figures contain expected
wealth where the expectation is taken over financial risk but not over state risk. Thus, the wealth dynam-
ics are state-wise in the state dimension but not in the financial dimension. When disability occurs, the
wealth allocated to consumption as active is lost but the wealth allocated to consumption as disabled,
together with the disability sum paid out, takes over financing the consumption as disabled (left). Note
that, from the onset of disability even after retirement, the wealth is larger for consumption as disabled
than for consumption as active although the consumption rates in the two states are the same. This is
because the wealth for consumption as active only finances that consumption rate until death or disabil-
ity (and pays for the disability insurance) whereas the wealth for consumption as disabled finances the
same consumption rate until death.

Figure 1 illustrates (right) that the consumption level is the same regardless of the state, resulting in
the same consumption curve independent of the time of disability. The optimal strategies are computed
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Figure 2. For γ0 = 2.2, γ1 = 2. Left: The expected allocated wealth. Right: The optimal consumption.
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Figure 3. For γ0 = 2, γ1 = 2.2. Left: The expected allocated wealth. Right: The optimal consumption.

in the Appendix B. The wealth allocated to consumption as disabled follows (left) the dotted and dash-
dotted lines, respectively. If disability occurs at age 50, the wealth allocated to that problem jumps to the
dotted line and that jump is financed by the disability sum paid out. A similar but smaller jump in the
disability wealth, also paid by the disability insurance, happens at age 80 if disability occurs then. The
allocated wealth at initialization is found by solving (26), resulting in at time t = 0, x0 = $293, 883.4 and
x1 = $106, 116.6. We are now going to investigate how splitting in different risk aversion changes the
figures.

We illustrate first a higher risk aversion for the active state than the disabled state, γ0 > γ1, in Figure 2.
The effect on the wealth allocation (left) at initialization is that a higher proportion of initial wealth
is allocated to consuming as disabled than in the benchmark case, since solving (26) results in x0 =
$124, 643.6 and x1 = $275, 356.4. The wealth of the disabled is higher than the wealth of the active
individual no matter when disability occurs.

This conforms with the observation (right) that, upon disability, the consumption jumps upwards to
a higher level but with a steeper slope downwards.

The steeper slope shows that the preference for a stable level of consumption is not as high during
disability as it is while being active, due to the fall in risk aversion. When the need for stability is lowered
upon disability, the impatience factor ρ makes the individual accelerate consumption compared to before
the disability occurred. This is the case since we have that ρ > r, such that the individual is impatient
for consumption relative to the market.

Another factor that affects the slope is that γ actually does not only represent aversion towards risk
but also parametrizes the co-called Elasticity of Inter-temporal Substitution (EIS). The risk aversion
expresses the willingness to gamble, and an individual with a higher risk aversion is less willing to
gamble. The EIS expresses a willingness to substitute consumption over time, and an individual with a
higher elasticity is more willing to substitute consumption over time. It is beyond the scope of this paper
to enter further into the delicate distinction of these different meanings of the parameter γ .
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If the risk aversion in the active state is lower than in the disabled state, γ0 < γ1, we find the patterns
in Figure 3. The wealth allocated (left) for consumption as disabled is now lower than in the benchmark
case in Figure 1, and at initialization we get from from (26) that x0 = $357,176.8 and x1 = $42,823.2.
We even see that only if disability occurs before age 60 (roughly, when the dotted line crosses the solid
line), the disabled individual holds a larger wealth (until around age 60) than the active individual of the
same age. The wealth held by the disabled individual is mainly financed by the disability insurance sum
paid out.

The consumption (right) begins at a higher level than in the benchmark case but has a steeper down-
ward slope. As was the case for the disabled individual in Figure 2, this follows from a smaller need for
stability together with impatience for consumption. Upon disability, the consumption jumps to a lower
but more stable level because the risk aversion is going up.
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Appendix A
From Equation (25), we rewrite the term containing (x + ak

k(t) −∑
l:l �=k xl), by changing the order of

summation and recalling that xk = f j
k(t)ψ(t, x)− 1

γk − aj
k(t) into∑

k∈J

μ∗jk(t)1{k �=j}(x + ak
k(t) −

∑
l:l �=k

xl)ψ(t, x)

=
∑
k∈J

μ∗jk(t)1{k �=j}xψ(t, x)

+
∑
k∈J

μ∗jk(t)1{k �=j}
(

ak
k(t) −

∑
l:l �=k

(f k
l (t)ψ(t, x)− 1

γl − ak
l (t))

)
ψ(t, x),

=
∑
k∈J

μ∗jk(t)1{k �=j}xψ(t, x) +
∑
k∈J

∑
l∈J

μ∗jk(t)1{k �=j}a
k
l (t)ψ(t, x)

−
∑
k∈J

∑
l∈J

μ∗jk(t)1{k �=j}f
k
l (t)ψ(t, x)

γl−1
γl ,

=
∑
k∈J

μ∗jk(t)1{k �=j}xψ(t, x) +
∑
k∈J

∑
l∈J

μ∗jl(t)1{l �=j}a
l
k(t)ψ(t, x)

−
∑
k∈J

∑
l∈J

μ∗jl(t)1{l �=j}f
l
k(t)ψ(t, x)

γk−1
γk . (A.1)

Further, using
ψ(t, x)
∂

∂x
ψ(t, x)

= −hj(t, x) and xψ(t, x) =∑
k∈J f j

k(t)ψ(t, x)
γk−1
γk − aj

k(t)ψ(t, x), we find that

0 =
∑
k∈J

(
γk

1 − γk

ψ(t, x)
γk−1
γk

d

dt
f j
k(t) +ψ(t, x)

d

dt
aj

k(t)

)

+
∑
k∈J

(r +
∑
l:l �=j

μ∗jl(t))
(

f j
k(t)ψ(t, x)

γk−1
γk − aj

k(t)ψ(t, x)
)

+
∑
k∈J

1

2

(α− r)2

σ 2

1

γk

f j
k(t)ψ(t, x)

γk−1
γk

+
∑
k∈J

γk

1 − γk

gk(t)ψ(t, x)
γk−1
γk 1{k=j} +

∑
k∈J

Yk(t)ψ(t, x)1{k=j}

+
∑
k∈J

∑
l∈J

μ∗jl(t)1{l �=j}a
l
k(t)ψ(t, x)

−
∑
k∈J

∑
l∈J

μ∗jl(t)1{l �=j}f
l
k(t)ψ(t, x)

γk−1
γk 1{l �=k}

+
∑
k∈J

γk

1 − γk

μ∗jk(t)
(μ∗jk(t)

μjk(t)

)− 1
γk
ψ(t, x)

γk−1
γk f k

k (t)1{k �=j}

+
∑
k∈J

∑
l:l �=j

μjl(t)

(
1

1 − γk

f l
k(t)ψ(t, x)

γk−1
γk 1{k �=l} − 1

1 − γk

f j
k(t)ψ(t, x)

γk−1
γk

)
, (A.2)

0 = Vj(T , x).

https://doi.org/10.1017/asb.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.25


124 Mogens Steffensen and Julie Bjørner Søe

We realize that every term in this expression is a sum over k ∈ J . If we now take each element in the
sum to be zero, also the sum of these elements over k ∈ J is zero. This creates a separate system of
differential equations for f and a, respectively, related to each subproblem. The system reflects that even
for the subproblem k we have a list of state-wise functions f and a corresponding to the different states,
corresponding to the double state scripting of both f and a. First, we consider the system for f and point
out the system for the subproblem i,

d

dt
f j
i (t) =

(γi − 1

γi

(r +
∑
l:l �=j

μ∗jl(t)) + (α− r)2

σ 2

γi − 1

2γ 2
i

+
∑
l:l �=j

μjl(t)

γi

)
f j
i (t)

− gi(t)1{i=j} −μ∗ji(t)
γi−1
γi μji(t)

1
γi f i

i (t)1{i �=j}

−
∑
l∈J

1

γi

(
(γi − 1)μ∗jl(t) +μjl(t)

)
1{l �=j}f

l
i (t)1{l �=i},

=
(
γi − 1

γi

(r +
∑
l:l �=j

μ∗jl(t)) + (α− r)2

σ 2

γi − 1

2γ 2
i

+
∑
l:l �=j

μjl(t)

γi

−
∑
l:l �=j

(
μ∗jl(t)

γl−1
γl μjl(t)

1
γl 1{l=i} + 1

γi

(
(γi − 1)μ∗jl(t) +μjl(t)

)
1{l �=i}

))
f j
i (t)

− gi(t)1{i=j} −
∑
l:l �=j

(
μ∗jl(t)

γl−1
γl μjl(t)

1
γl 1{l=i}

+ 1

γi

(
(γi − 1)μ∗jl(t) +μjl(t)

)
1{l �=i}

) (
f l
i (t) − f j

i (t)
)

,

f j
i (T) = 0.

To reach a tighter notation, we define

μ̃
jl
i (t) =μ∗jl(t)

γi−1
γi μjl(t)

1
γi 1{l=i} + 1

γi

(
(γi − 1)μ∗jl(t) +μjl(t)

)
1{l �=i},

r̃j
i(t) =γi − 1

γi

(
r +

∑
l:l �=j

μ∗jl(t)

)
+
∑
l:l �=j

μjl(t)
1

γi

−
∑
l∈J

μ̃
jl
i (t) +

(
α− r

σ

)2
γi − 1

2γ 2
i

.

This simplifies the differential equation for f to

d

dt
f j
i (t) = r̃j

i(t)f
j
i (t) −

∑
l:l �=j

μ̃
jl
i (t)

(
f l
i (t) − f j

i (t)
)− gi(t)1{i=j},

f j
i (T) = 0.

The system of differential equations for a becomes

d

dt
aj

i(t) = raj
i(t) −

∑
l:l �=j

μ∗jl(t)
(
al

i(t) − aj
i(t)
)− Yi(t)1{i=j},

aj
i(T) = 0.
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Appendix B
Example of Calculations
In this section, we focus on the three-state model illustrated in Figure 4. Repeating the core calculations
of the verification, in that case, serves two purposes. First, the derivation is fruitful as a confirmation of
the more general result because the notation without summation over states can be more reader-friendly.
Second, the results of the three-state model are the formulas underlying the numerical illustration in the
following Section.

In the model illustrated in Figure 4, the value function and the implicit function for the marginal
indirect utility are described as

VZ(t)(t, x) = VZ(t)
0 (t, x0) + VZ(t)

1 (t, x1) + VZ(t)
2 (t, x2),

x = f Z(t)
0 (t)ψ(t, x)− 1

γ0 − aZ(t)
0 (t) + f Z(t)

1 (t)ψ(t, x)− 1
γ1 − aZ(t)

1 (t)

+ f Z(t)
2 (t)ψ(t, x)− 1

γ2 − aZ(t)
2 (t). (B.1)

The candidate value function is given by VZ(t)
i (t, xi) = 1

1−γi
f Z(t)
i (t)ψ(t, x)

γi−1
γi for i = 0, 1, 2. The dynamics

of the total wealth for t ∈ [0, T] are given in terms of the stochastic differential equation,

dX(t) =
(

rX(t) + (π 0(t)X(t)(α− r) + Y0(t)

− c0(t) −μ∗01(t)b01 −μ∗02(t)b02)1{Z(t)=0}

+ (π 1(t)X(t)(α− r) + Y1(t) − c1(t) −μ∗10(t)b10 −μ∗12(t)b12)1{Z(t)=1}

+ (π 2(t)X(t)(α− r) + Y2(t) − c2(t) −μ∗21(t)b21 −μ∗20(t)b20)1{Z(t)=2}
)

dt

+ (b01dN01(t) + b02dN02(t)) + (b12dN12(t) + b10dN10(t))

+ (b21dN21(t) + b20dN20(t)) + σπ 0(t)X(t)dW(t)1{Z(t)=0}

+ σπ 1(t)X(t)dW(t)1{Z(t)=1} + σπ 2(t)X(t)dW(t)1{Z(t)=2}.

We specify the HJB equation for state 0, that is, conditional on the policyholder being in state 0. This
corresponds to the top script 0. Note that the subscripts 1 and 2 appear several times, as all three sub-
problems corresponding to income, consumption, and insurance of jumps into each state are all relevant
to a policyholder in state 0. The HJB equation is similar if the policyholder is in states 1 and 2, with
(some of) the top scripts replaced accordingly. We have

0 = γ0

1 − γ0

ψ(t, x)
γ0−1
γ0

d

dt
f 0
0 (t) +ψ(t, x)

d

dt
a0

0(t) + γ1

1 − γ1

ψ(t, x)
γ1−1
γ1

d

dt
f 0
1 (t)

+ψ(t, x)
d

dt
a0

1(t) + γ2

1 − γ2

ψ(t, x)
γ2−1
γ2

d

dt
f 0
2 (t) +ψ(t, x)

d

dt
a0

2(t)

+ sup
c0,π0,b01,b02

{
(rx + π 0x(α − r) + Y0(t) − c0 −μ∗01(t)b01 −μ∗02(t)b02)ψ(t, x)

− 1

2
(π 0)2x2

∂

∂x
ψ(t, x) + u0(t, c0)

+μ01(t)
(

V1
1 (t, x1 + b01) + V1

2 (t, x2) + V1
0 (t, x0)

− V0
0 (t, x0) − V0

1 (t, x1) − V0
2 (t, x2)

)
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Figure 4. Example of state space with three states, with the true mortality intensities.

+μ02(t)
(

V2
2 (t, x2 + b02) + V2

1 (t, x1) + V2
0 (t, x0)

− V0
0 (t, x0) − V0

1 (t, x1) − V0
2 (t, x2)

)}
.

0 = V0(T , x).

Using xi = x −∑
k:k �=i xk, for i = 1, 2, 3, we find the optimal controls, conditional on being in state 0, as

c∗0(t, x) = g0(t)ψ(t, x)− 1
γ0 , π ∗0(t, x) = − (α − r)

σ 2

ψ(t, x)

x ∂

∂x
ψ(t, x)

,

b∗01(t, x) =
(μ∗01(t)

μ01(t)

)− 1
γ1
ψ(t, x)− 1

γ1 f 1
1 (t) − (a1

1(t) + x − x2 − x0),

b∗02(t, x) =
(μ∗02(t)

μ02(t)

)− 1
γ2
ψ(t, x)− 1

γ2 f 2
2 (t) − (a2

2(t) + x − x1 − x0).

By inserting the optimal controls into the HJB equation, we find

0 = γ0

1 − γ0

ψ(t, x)
γ0−1
γ0

d

dt
f 0
0 (t) +ψ(t, x)

d

dt
a0

0(t) + γ1

1 − γ1

ψ(t, x)
γ1−1
γ1

d

dt
f 0
1 (t)

+ψ(t, x)
d

dt
a0

1(t) + γ2

1 − γ2

ψ(t, x)
γ2−1
γ2

d

dt
f 0
2 (t) +ψ(t, x)

d

dt
a0

2(t)

+ rxψ(t, x) − (α− r)2

2σ 2

ψ(t, x)2

∂

∂x
ψ(t, x)

+ Y0(t)(ψ(t, x) + γ0

1 − γ0

g0(t)ψ(t, x)
γ0−1
γ0

−μ∗01(t)
γ1−1
γ1 μ01(t)

1
γ1 f 1

1 (t)ψ(t, x)
γ1−1
γ1 −μ∗02(t)

γ2−1
γ2 μ02(t)

1
γ2 f 2

2 (t)ψ(t, x)
γ2−1
γ2

+μ∗01(t)(x − x0 − x2 + a1
1(t))ψ(t, x) +μ∗02(t)(x − x0 − x1 + a2

2(t))ψ(t, x)

+ 1

1 − γ1

μ∗01(t)
γ1−1
γ1 μ01(t)

1
γ1 f 1

1 (t)ψ(t, x)
γ1−1
γ1

+ 1

1 − γ2

μ∗02(t)
γ2−1
γ2 μ02(t)

1
γ2 f 2

2 (t)ψ(t, x)
γ2−1
γ2

+μ01(t)V1
0 (t, x0) +μ02(t)V2

0 (t, x0) +μ01(t)V1
2 (t, x2) +μ02(t)V2

1 (t, x1)

− (μ01(t) +μ02(t))
( 1

1 − γ0

f 0
0 (t)ψ(t, x)

γ0−1
γ0

+ 1

1 − γ1

f 0
1 (t)ψ(t, x)

γ1−1
γ1 + 1

1 − γ2

f 0
2 (t)ψ(t, x)

γ2−1
γ2

)
.

0 = V0(T , x).
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Note that we have changed the order of summation to illustrate clearly the similar change of order of
summation in the general case. Further we use that xi = f j

i (t)ψ(t, x)− 1
γi − aj

i, for all i ∈ {0, 1, 2}.

0 = γ0

1 − γ0

ψ(t, x)
γ0−1
γ0

d

dt
f 0
0 (t) +ψ(t, x)

d

dt
a0

0(t) + γ1

1 − γ1

ψ(t, x)
γ1−1
γ1

d

dt
f 0
1 (t)

+ψ(t, x)
d

dt
a0

1(t) + γ2

1 − γ2

ψ(t, x)
γ2−1
γ2

d

dt
f 0
2 (t) +ψ(t, x)

d

dt
a0

2(t)

+ (r +μ∗01(t) +μ∗02(t))
(

f 0
0 (t)ψ(t, x)

γ0−1
γ0 − a0

0(t) + f 0
1 (t)ψ(t, x)

γ1−1
γ1 − a0

1(t)

+ f 0
2 (t)ψ(t, x)

γ2−1
γ2 − a0

2(t)
)

+ (α− r)2

2σ 2

(
1

γ0

f 0
0 (t)ψ(t, x)

γ0−1
γ0 + 1

γ1

f 0
1 (t)ψ(t, x)

γ1−1
γ1 + 1

γ2

f 0
2 (t)ψ(t, x)

γ2−1
γ2

)

+ Y0(t)(ψ(t, x) + γ0

1 − γ0

g0(t)ψ(t, x)
γ0−1
γ0

+ γ1

1 − γ1

μ∗01(t)
γ1−1
γ1 μ01(t)

1
γ1 f 1

1 (t)ψ(t, x)
γ1−1
γ1 + γ2

1 − γ2

μ∗02(t)
γ2−1
γ2 μ02(t)

1
γ2 f 2

2 (t)ψ(t, x)
γ2−1
γ2

−μ∗01(t)(f 1
0 (t)ψ(t, x)

γ0−1
γ0 + f 1

2 (t)ψ(t, x)
γ2−1
γ2 ) +μ∗01(t)(a1

1(t) + a1
0(t) + a1

2(t))ψ(t, x)

−μ∗02(t)(f 2
0 (t)ψ(t, x)

γ0−1
γ0 + f 2

1 (t)ψ(t, x)
γ1−1
γ1 ) +μ∗02(t)(a2

2(t) + a2
0(t) + a2

1(t))ψ(t, x)

+μ01(t)
1

1 − γ0

f 1
0 (t)ψ(t, x)

γ0−1
γ0 +μ02(t)

1

1 − γ0

f 2
0 (t)ψ(t, x)

γ0−1
γ0

+μ01(t))
1

1 − γ2

f 1
2 (t)ψ(t, x)

γ2−1
γ2 +μ02(t))

1

1 − γ1

f 2
1 (t)ψ(t, x)

γ1−1
γ1

− (μ01(t) +μ02(t))
( 1

1 − γ0

f 0
0 (t)ψ(t, x)

γ0−1
γ0 + 1

1 − γ1

f 0
1 (t)ψ(t, x)

γ1−1
γ1 + 1

1 − γ2

f 0
2 (t)ψ(t, x)

γ2−1
γ2

)
.

0 = V0(T , x).

Using the notation of r̃ji and μ̃jl
i , the solution can be expressed as the solution to following differential

equations for f and a, respectively,

d

dt
f 0
0 (t) = f 0

0 (t)r̃00(t) − g0(t) −∑
k:k �=0 μ̃

0k
0 (t)(f k

0 (t) − f 0
0 (t)), f 0

0 (T) = 0,

d

dt
f 0
1 (t) = f 0

1 (t)r̃01(t) −∑
k:k �=0 μ̃

0k
1 (t)(f k

1 (t) − f 0
1 (t)), f 0

1 (T) = 0,

d

dt
f 0
2 (t) = f 0

2 (t)r̃02(t) −∑
k:k �=0 μ̃

0k
2 (t)(f k

2 (t) − f 0
2 (t)), f 0

2 (T) = 0,

d

dt
a0

0(t) = ra0
0(t) −∑

k:k �=0 μ
∗0k(t)(ak

0(t) − a0
0(t)) − Y0(t), a0

0(T) = 0,

d

dt
a0

1(t) = ra0
1(t) −∑

k:k �=0 μ
∗0k(t)(ak

1(t) − a0
1(t)), a0

1(T) = 0,

d

dt
a0

2(t) = ra0
2(t) −∑

k:k �=0 μ
∗0k(t)(ak

2(t) − a0
2(t)), a0

2(T) = 0.
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The differential equations for f are three three-dimensional system of differential equations, namely
one system consisting of (f 0

0 , f 1
0 , f 2

0 ), another of (f 1
1 , f 0

1 , f 2
1 ), and the last system of (f 2

2 , f 1
2 , f 0

2 ). The three
systems are not intertwined, but each system must be solved numerically as a three-dimensional system
of the ordinary differential equation.

If; however, we consider the special case where the one policyholder does not return to a left state
the numerical calculation becomes easier as then the three-dimensional system reduces to three one-
dimensional ordinary differential equations that can be solved one at a time. This is what occurs if
“recovery” intensities are zero, μ20 =μ10 =μ21 = 0. This is the model implemented in the numerical
illustration below.

The intuitive interpretation of the f functions is that f j
i measures how important it is to consume in

state i in the future given being in state j today. The jump from state j to state i occur with preference-
weighted intensity μ̃jl

i or passing through another state l.
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