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Abstract. We characterize some isometric immersions of a compact Riemannian
manifold into a tube of S"(A) or CP"(A) (in fact, in some more general spaces in the real
case) around a totally geodesic S''(A) or C/"'(A) respectively, with the norm of the mean
curvature of the immersion bounded from above. This bound depends on the radius of
the tube, and is related with the mean curvature of its boundary.

1. Introduction. There are some known theorems stating that a compact sub-
manifold in a space form with large mean curvature cannot be included in a small
geodesic ball. Among these, there are the results of Jorge and Xavier [7], getting
estimates for the mean curvature of complete submanifolds included in a geodesic ball,
Markvorsen [11], giving a rigidity theorem for compact hypersurfaces with bounded mean
curvature and contained in a geodesic ball, and the authors [2], giving results analogous to
those of Markvorsen, as well as some new results for Riemannian submanifolds of a
complex space form which are included in a geodesic ball. The problem of the
immersibility of a complete Riemannian manifold into a tube of the euclidean space was
considered by Hasanis and Koutroufiotis [6] and generalized by Kitagawa [8] to
immersions into tubes of Riemannian manifolds with sectional curvature bounded from
above. They got lower bounds for the supremum of the length of the mean curvature. In
the first part of this paper (Theorems 1.1 and 1.2) we consider this problem for
immersions of compact manifolds. This stronger condition gives also stronger results: we
have that if the supremum of the length of the mean curvature attains its lower bound,
then the immersion is contained in the boundary of the tube; moreover, if the
codimension is one, then the immersed manifold is a Riemannian covering of the
boundary of the tube, and the tube must be an Eschenburg's tube (see its definition in
section 2, and [3]). For bigger codimension, and for immersions in the sphere, we also get
an splitting theorem (Corollary 1.2.1) which reduces the problem of immersions into tubes
to immersions into balls. In the second part (Theorem 1.3) we consider the problem of the
immersibility of a compact Riemannian manifold of dimension m into a tube of C/"'(A)
around a totally geodesic C/"'(A), and show that the supremum of the length of the mean
curvature of the immersion is bounded from below by a number which depends on the
radius of the tube, and is related with the mean curvature of the tubular hypersurface. We
show that the problem of getting immersions where the bound is attained is equivalent to
the problem of getting minimal immersions of compact manifolds of dimension
m — 2q - 1 into a CP"~''~\ In particular, geodesies in £P"~'i~] correspond to immersions
of compact manifolds M of dimension 2q + 2 into a tube in CP"(\) around C/"'(A) where
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the supremum of the length of its mean curvature attains its bound, and the universal
covering of these manifolds M is a product of a geodesic sphere in a CP<?+I and U.

All the manifolds considered in this paper will be assumed to be connected. In order
to state with more precision our results we give some notation.

Given a real number A, let sA be the real function which is the solution of the problem

s" + \s = 0, 5(0) = 0, *'(0) = l,

and let cA, taA and coA be the real functions

They satisfy

taA = A—, coA= —.

CA — — ASA, CA + A.SA — 1 , S 4 A ~ S A C A ) C4A — CA A.SA.

Let (M, (,)) be an n-dimensional Riemannian manifold, and let P be a connected
compact totally geodesic Riemannian submanifold of M of dimension g a l . Let r :M-^* R
be the distance to the submanifold P in M. Let us denote by dr the gradient of r in M. If
cut(P) is the cut locus of P in M, for every point x e M - (cut(P) U P), the P-radial
sectional curvature atx is the sectional curvature of any plane of TXM containing dr(x) (see [5]).

Given any positive real number p, the tube Pp of centre P and radius p in M is the set
of those points x e M such that distance(P,jc) <p. The tubular hypersurface dPp of centre
P and radius p in M is the set of the points x e M such that distance(P, x) = p.

If p < distance(P, cut(P)), then Pp is diffeomorphic, by the exponential map, to the
set of the vectors in the normal bundle NP to P (in M) of length s p, and dPp is actually a
smooth hypersurface of M and is also the boundary of Pp. This will be the situation in this
paper.

Note that if M is a manifold with boundary dM and P c Int(M), then the above
definitions are still valid. In particular, when M is the Eschenburg manifold %k

p associated
to a vector bundle n:%->P (see Section 2), then %k = Pp and d%p = dPp, where P is
identified with the 0-section of n:%->P. So, we call %k

p an Eschenburg tube. The A in %k
p

reflects the fact that %k
p has constant P-radial sectional curvature A.

Our main results for the Riemannian case are the two following theorems and its
corollary.

THEOREM 1.1. Let P be a compact q-dimensional submanifold of a Riemannian
n-dimensional manifold M with P-radial sectional curvature bounded from above by A. Let
ip:M -* M be an isometric immersion of a compact m-dimensional manifold, \^q <m<
n (m^2q if A ^0) , with mean curvature H satisfying m \H\ < \(q - m)coA(p) + q taA(p)|,
where p is a^ real number with 0 < p <distance(P,cut(P)) and, if A>0, 0 < p <

n

tli(M)<zdPp, mH = ((q - m)coA(p) + q taA(p))dr and r J / c

for every x e M, where p is the starting point of the geodesic y realizing the distance from P
to il>(x), t is the distance from P to <p{x), and r, is the parallel transport along y from p to
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Moreover, if m = n — 1, //ien Pp is isometric to an Eschenburg tube %), {see Section 2
for its definition), ifi is an embedding up to a covering map, and M is isometric (up to a
Riemannian covering) to d"Sx

p.

Let us remark that the hypothesis p s p o : = - r = arccos •»/—, for A > 0 , is necessary,
V A \ m

because for p > p0 we have d%Po c %x
p, and the mean curvature of d^Po is 0.

Moreover, if m>max{q,n — q— 1}, by applying Theorem 1.1 to the tube
5"~<7~1(A)(^/2VA)-P = 5"(A) - Int(59(A)p) for p>p0, we get that if ip:M—>S"(\) is an
immersion such that <p(M) c S"(\) - Int(59(A)p) and m \H\ < \(q - m)coA(p) + q taA(p)|,
then tp(M)<zdSq(\)p, that is, for p^p0 the obstruction is to be contained in S"(\)-
Int(5"(A)p), not in Sq(X)p.

Any of these results, applied to the case A > 0 and p = p0, proves that, for m = n - 1,
the only minimal immersion in Sq(\)po is the boundary of this tube, or a Riemannian
covering of it, that is, a Riemannian covering of the generalized Clifford torus. There are
many examples of minimally immersed tori in S3 (cf. [12]). The above argument shows
that the only one contained in one of the "halves" of S3 determined by the Clifford torus
is the Clifford torus itself.

Given any Riemannian manifold M, we shall denote by nM: M^M its universal
covering, with the induced Riemannian metric on M. In the next Theorem, px and p2 will
denote the projections of (P, cx(t)

2gP)X S"~q~l(l/sx(t)
2) onto the first and the second

factor, respectively.

THEOREM 1.2. Let P be a compact q-dimensional Riemannian manifold. Let %x
p be an

Eschenburg tube of radius p > 0 (with p < —?= arccos \\~<~7= if A > 0) associated to a
VA \ m 2VA

trivial vector bundle % = PxW~q-*P with a trivial connection D. Let M be an
m-dimensional compact Riemannian manifold, l^q <m <n (m^2q ; /AsO) , and let
il/iM—t'gp be an isometric immersion with mean curvature H satisfying m\H\<\(q -
m)coA(p) + q taA(p)|. Then there exist a compact Riemannian manifold G of dimension
m — q, a Riemannian submersion TT:A/—»G and a minimal isometric immersion <f>:G—>
S"~q~\l/sl(p)) such that p2 ° & = </» ° n. Moreover M is isometric to (P, cK(p)2gP) x G.

We remark that when A > 0 and P = Sq(\), the tube %k
p of Theorem 1.2 is isometric

to the tube Sq(k)p of radius p around Sq(\) in 5"(A). In this case we have the following
stronger result, a splitting theorem which, for the sphere, reduces immersions into a tube
to immersions into a ball (actually, into a sphere).

COROLLARY 1.2.1. Let M be an m-dimensional compact Riemannian manifold, and let
(I/:M^S"(\) be an isometric immersion with mean curvature H satisfying m \H\ s
VX \(q — m)cot(V\p) + q tan(VAp)|, where Kq <m<n, p being a real number with

1 [q
0 < p < -7= arccos -J—. / / ip(M) c Sq(\)p, then

MM) c dSq(X)D = Sq(—. V ,) X S"-"-1! - / / - xVy ' K Jp W(VAp)/ W(VAp)
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and there exists a compact Riemannian manifold G of dimension m — q such that
M = S9(A/COS2(VA p)) X G, and there is a minimal isometric immersion $:G—»
S"-q-i(\/sm2(V\p)) such that 41 = id X </>.

Let us now consider the complex protective space CP"(A) of real dimension 2n and
constant holomorphic sectional curvature 4A, and CP''(A) a CPn(\), and let / , 3€ and V
be the distributions defined by # = (Jdr), Wx = x,T€Pq{K) (where t = distance
(JC,C/"'(A))), and TXCP"(\) = K®%®&®0,).

In Section 5 we shall see that the distribution %{®$ is integrable with leaves
isometric to d9B%^]p- (the geodesic sphere of radius p' in C/W+1(A)), with p' =

- p and the quotient dCP''(\)/%®# is isometric to C/"I~*~1(A/sin2(VAp)). We

shall denote by n:dCPq(\)p^CP"~c'~\\hm2(V\ p)) the quotient map, which is a
Riemannian submersion.

Then we shall prove

THEOREM 1.3. Let m, n and q be integer numbers satisfying 1n>m >1q. Let M be a
compact Riemannian manifold of dimension m and let \p: M —» CP"(\) be an isometric
immersion with mean curvature H satisfying

m \H\ s VX \{2q + l)tan(VXp) + (2q - m)cot(VX p)|,

1 l2q + \ K
where p < ^ arccos A / ^ J < ̂ - // MM) c CP"(A)P,

MM) c 3CPf'(A)p, mH = V\ ((2q + l)tan(VAp) + (2g - m)cot(V\ p))dr.

Moreover,
(a) if m = 2n - \, M is isometric to CP''(A)P fl/id i/< is an embedding.
(b) /f m <2n - 1, f/ien \\f\M ̂ >dCPc'{k)p is minimal and there exist a compact

manifold G of dimension m—2q-\,a Riemannian submersion n:M^>G and a minimal
isometric immersion <£:G—>£/"'"''"'(A/sin2(V\ p)) such that the diagram

M > dCP"(A)p

•1 1"
G -±^ CP"-*-'(A/sin2(VA p)),

« commutative.
(bl) If m = 2q + \, then iji is an embedding and M is isometric to dBq.^\,..
(b2) / / 2n =2q + 4, and m=2q + 2, then G = 5', (/> tf a geodesic of

52(4A/sin2(VA p)), a«d r/ie universal covering M of M is isometric to the product

We thank K. Grove for showing us the reference [1], which is a necessary tool for our
proofs of Theorems 1.2 and part (b2) of 1.3.

2. Eschenburg's tubes. Eschenburg's tubes were defined in [3] as a generalization of
tubes around S''(A) in 5"(A) that were appropriate to get some more general versions of
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the classical Heintze-Karcher's comparison theorems for the quotient of the volume of a
tube by the volume of its centre. Here we shall recall the definitions and the main
properties that we shall need in our context.

Let n: (£—»P be a vector bundle of rank n — q over a compact Riemannian manifold
P of dimension q, with a fibre metric and a metric connection D. Let %p = {v e % | |v| < p}

(with p £ —-j= if A > 0). A metric on %p was defined in [3] as follows: on the tangent to

the fibres %P4, we take the metric dt2 + s*{t)2gSn _t, where gs«-i-> is the standard metric of
the sphere S"~q~l in U"~q of radius 1, and on the horizontal distribution defined by the
connection D we take \XU\* = cA(|u|) \X'm\, where X'm = n^JiX). Moreover we declare the
horizontal and vertical distributions to be perpendicular.

The manifold %p with this metric is the model space %x
p. It is a Riemannian manifold

with boundary d%p = {v e % \ \v\ = p}, a tubular hypersurface of radius p around P, which
is totally geodesic in %p. Moreover, the map n:d%>p—>(P,cx(p)gP) is a Riemannian
submersion. In fact, for any t <p, the tubular hypersurface dP, of radius t around P in %x

p

is precisely d%x.
For every n-dimensional Riemannian manifold M and every ^-dimensional compact

totally geodesic submanifold P of M, S(r) will denote the (1, l)-tensor field defined on
M - (P Ucut(/J)) by S(r) = -VAdr, where V denotes the covariant derivative in M. The
restriction of S{r) to dP, is the Weingarten map of dP,, and S(r)dr = 0.

Let us consider the distribution Sif on M defined by 9£X = T<TPP, where p is the
starting point of the geodesic y(t) realizing the distance from P to x, and t =
distance(P, *) , and r, is the parallel transport along this geodesic. Let V be the
distribution given at each point x by the subspace Vx of TXM defined by the orthogonal
decomposition TXM = 3€x®Vx®(dr). _

Let S,(r) be the tensor field on M - (P U cut(Z')) defined by

"taA(r)/l

(SA(r)A)x = •{ -coA(r)/4 if A s % where t = distance(/\x), (2.1)
.0

When M = %, then R(r) = Rx(r), and S(r) = 5A(r) (see 6.3 in [3] and formula (2.5) in
[10]).

The following lemma of J. H. Eschenburg will be a key step in the proof of Theorem
1.1.

LEMMA 2.1. Let M be a Riemmanian n-manifold, and P a totally geodesic compact
submanifold of dimension q. If the radial sectional curvature on P, is at most A for some

t < distanced, cut(P)), if A<0, and t < mini distance^, cut(P)),r4=j, if A>0,
then

S(r) < SA(r) for every x e P,.

Moreover, if the equality holds on dPp for some p^t, then there is a vector bundle %—* P
of rank n—q and an isomorphism of vector bundles ip'.JfP-^'g such that the map
<t>:Pp-^> %x

p given by <f>(x) = exp ° i// ° exp^'(x) is an isometry.
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3. Proof of Theorem 1.1. Given the isometric immersion i//:A/—>M, r ° if/ will also
be denoted by r. By dj we shall denote the vector field in M defined as the preimage by
<//„. of (the component of) dr (tangent to ip(M)). I f / :R-»R is any function, we shall
denote by f(r) the function / ° r: M —»IR.

From now on, V, A and H will denote, respectively, the covariant derivative of M, the
laplacian of M and the mean curvature vector of the immersion ip: M —» M. We have

A/(r) = -f"(r) \dj\2 +/ '(/•){£ (S(r)eh e,) ~ m(H, d,)}. (3.1)
i-i=i J

This formula can be obtained by the same computations that in the case of P being a
point (see, for instance [2]). Now, from the hypothesis R(t) < R*(t) and Lemma 2.1, one
gets

A/(r) < -f"(r) \dj\2 +f'(r)\ £ (S,(r)eh e,) - m(H, dA (3.2)

We compute the value of (5A(r)e,, e,) for points in dP, n M, using (2.1), and orthonormal
bases {hu... ,hq) of ^ifand {vq+u... ,un_,}of V:

(S,(r)eh e,) = (sx(r)( J (eh h,)h, + 2 <«/.

q n—\ \ q n—\

Zl(ei,hj)hi+ S <e,,uA-K + (e,,ar)ar) = £(e,-,/zy)2taA(0- E (ehvk)
2co

y=l A:=f/+I ' / = ! h=q+\

= i(enhi)
2(ta,(t) + cox(t))-(fJ(ehhj)2+ ^

>=1 V = 1 k=q+\

Then, if m > q,

2 (S*(r)ehe) = (2 1 <«;,*y>2)(taA(O + coA(/))

m

~ £ (1 - (eh 3,)2)coA(f) < <7(taA(0 + coA(0) - m coA(f) + |aj|2 coA(r)
i=\

= (q~ m)coA(r) + q taA(f) + \dj\2 coA(r).

By substitution of this inequality in (3.2), we get

A/(r) < {-f{r) + co J'(r)) \dj\2 +f'(r){<p - m(H, dr)),

where </> is the function defined by

</>(0 = (<7 ~ "i)coA(0 + g taA(f).

It can be easily checked that

lim 6(t) = - x
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and
-\s2

x-cl A 1 A

t ( ) ( )
A 1 A
— =-(q-m) — + q — .
C 5 C\Since /n > g , we have that A > 0 implies </>' >0. Further, it is easy to see that

(m - 2q)c\ + q
<p = n

which is positive if A < 0 and m > 2q.
If AsO, then <f> is negative and increasing in the interval ]0, z+(4>)[, where

z+ = i n f { , > 0 | , =0} z+ = - if A = 0 a n d z + = ^-arccos / ^ if A > 0
vA \ m

Finally, if A < 0, then <f> is negative and increasing if m > 2q.
Our hypotheses imply that <f> is negative and increasing, and that m \H\<-<f>, so

that, taking a function/such tha t / ' =sA, we have
I - m(H, 3r»

(3.3)

Then, by the Hopf principle, we have that A/(r) = 0, and all the inequalities we have
m a

used to get (3.3) must be inequalities, which implies r = constant = p, X 2 (eh hj) = q, i.e.
/=i y=i

hj e ({eh... ,e,,,}), which means %P<=TM, and mH = cf>(p)dr. Moreover, if m = n-l,
then /?(r) = /?A(r) and 5(r) = 5A(r) at every point of Pp, which, by Lemma 2.1, gives the
last statement of the theorem.

4. Proof of Theorem 1.2. First, let us observe that the Eschenburg tube %p

associated to a trivial vector bundle ? = P x R " ' ' with a trivial connection D, is the
warped product Bp XCA(O^\ where t is the distance to the centre of Bp, the geodesic ball of
radius p in the space form IK"~'7(A) of constant sectional curvature A. Then, for each
( e ] 0 , p ] , the tubular hypersurface 9P, in this space is isometric to (P,cx(t)

2g,>) X
S"~q~\\lsK(t)2), and the distribution $f on dP, is integrable and its leaves are isometric to
(P, Ci(t)2g,>). The condition dK^(x) a tp^T^M proved in Theorem 1.1 implies that every
such leaf containing a point of if(M) is contained in <p{M). ty induces a distribution cF on
M which will also be integrable with compact leaves. These leaves are covering spaces of
(P, cA(p)2gP). Since 3> is a regular foliation, there exists a structure of differentiable
manifold on the space of its leaves G = MIS', and there is a commutative diagram

M 1 > dPp = d%p

* " 2

where TT is the natural projection, we have identified dP, with Px S" '' ', via the above
isometry, and (f> is the induced map between the quotients. Since i// is an immersion, so
also is 4>, and we can consider on G the metric induced from that of 5"~''~'(l/.sA(p)2)
through <f). Further, it is easy to see that the map M -^-(P,cx(p)2g,>)x G, given by
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i° ip(x),n(x)) is a local isometry. In particular, n is a Riemannian submersion. A
straightforward computation shows that the mean curvature of <p(M) in dPp vanishes.
Then, </> is also minimal (see Lemma 2 in [9]). Moreover, it follows from Theorem A of
[1] that M is isometric to (P, c^(p)2gP) X G.

Corollary 1.2.1 follows from the above proof. First, note that the leaves have the
form n~\z) for zeG. Now we observe that, since in this case P = S''(X) is simply
connected, the covering maps (/?, ° ijj)\rt-l(z):K~l(z)^(P,cii(p)2gl,) = S''(\/cA(p)2) are
isometries, and hence the map M—»S''(A/cA(p)2) X G defined above is bijective. In fact, it
has an inverse defined by (y,z)>-»(pi ° *l>\ir-Hz))~x(y)- From the definition of the maps,
we have that, modulo this isometry, ip = idx <$>.

5. Proof of Theorem 1.3. In CP"(A), with CP"(A) c CP"(A), the distributions $,
Si?, and T are defined by:

$ = (Jdr), %= r,7CP'(A), (t = d(x, CP"(\))),
(5.1)

TXCP"W = K © % ©A- © <3r>.

If {hu... ,h2l,}, {v2(/+i,. -• , W2/1-2} a re local orthonormal frames of $? and V, the
Weingarten map Sc

x(t) of dCP"(A), satisfies

51(0U = taA(0 id, 5c
A(0|v= -coA(r) id, SXtyjdr = -

Now, if {eu .. . , e,,,} is an orthonormal basis of M, we have

2<l 2/1-2

Then,

m in ,2,i

(t) + co,(t))-Y,[^(ehhj)2 +

{ej,Jdr)
2co^(t) = 2<7(taA(f) + coA(r))

m

[l-(ehJBr)
2-(ehdr)

2)co,(t)-^(
i=\

(t) + coA(0) - m coA(r) + (\(Jdr)
T|2 + |aJ|2)coA(0

Then, from (3.1), i f / ' ( r )>0, we get

< -/"(r) |a7|2 +/'(r){2<j(taA(r) + coA(r)) - m coA(r) + \dj\2

+ |(A)T|2 (coA(r) - co4A(r)) - m(H, dr)}

= l^l2 ( - /"(0 +/'(r)coA(r)) +/ '(0(coA(0 - co4A(r)

+ /'(r){29(taA(r) + coA(r)) - m coA(r) - wi<//, fl
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If we take the function / s o that f'(r) = sA(r), then

A/(r) < A S^p-\(Jdr)
T\2 + s,(r){(2q - m)coA(r) + 2q taA(r) - m(H, dr)}

~ A £ T T + ^W{(2<7 - ™)coA(r) + 2q taA(r) - m<//, d,)}

- m)coA(r) + (2<? + l)taA(r) - m(H, dr)}.

Since the function a defined by a(t) = (2q -ra)coA(r) + (2q + l)taA(/) behaves like
the function <f> in Section 3, we have

*f(r)£ *A(r){(29 - m)coA(p) + (2q + l)taA(p) + m \H\) < 0.

Then, A/(r) = 0, which implies r = p, H = a(p)dr, ^ c ^ / , J W , #xcil/^TxM, and, if
m=2n - 1, then iKM) = dCPq(\)p, which finishes the proof of part (a) of Theorem 1.3.

In order to prove part (b), let us recall that in CP"(A),

"-\\)p; with p ' = ^

and that if $T, T", ^ ' are the distributions on CP"(A) defined as in (5.1) but starting from
CP"-"-'(A) instead of CP"(A), then

3t = Y, T = X, f=£. (5.2)

As we have proved above, the existence of the isometric immersion implies that
W®J><=4i*(TM), so that T ' S j f ' c ^ r M ) . In particular, if we consider the value of
the distribution Y' ®$>' at a point yN(p) of the tubular hypersurface of radius p about P,
(V®f)yN(l>) is the tangent space to expp{v e JfpCP"~''~\\) \ \v\ = p'}, where p =

yN{—-7=V which is a geodesic (2q + l)-sphere dB'j^ and a totally geodesic submanifold

of dCP''(\)lt. Thus, the distribution "X®$ defines a regular foliation f o n M with totally
geodesic leaves isometric to dB'£l

p', and G - M/^ is a differentiable manifold. The above
argument shows that each leave of V ®$' contained in dCP''(\)p determines a point of
C/>"- ' / - ' (A). In fact, we can consider the map U:dCPq(\)p = aCP"""~'(A)p.->

CP"~'!~\\), given by yN(p)>-* 'YN['Z~1=J- NOW, since the derivative of the exponential

map can be expressed in terms of the Jacobi fields, it can be easily seen, from the
expressions of the Jacobi fields of CF"(A) (see [4]) that fl is a Riemannian submersion up
to a constant factor sA(p)2 in the metric of dCPq(\)p. In this way we get a Riemannian

submersion n:dCP"(\)p^CP"'q'](——j) whose fibres are the leaves of T®$' and
W P ) /

are totally geodesic submanifolds of dCPq(\)p. Let </> be the induced map making the
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diagram

M 1 > dCP"(A)p

"I I"
commutative, and let us consider on G the metric induced through <j) by that of

CP"-'i~l I - j . (From the definition it follows that </>„, is injective.) Then n is a

W P ) /
Riemannian submersion. In fact, since II is a Riemannian submersion, one has, for every
X,Y e ($?©/)""- (the horizontal distribution of the submersion n)\

<<M**> 4>*"*Y> = {n^tXji^Y) = (x, Y).

A straightforward computation shows that the mean curvature of \p:M —>dC/*'(A)
vanishes, and then, it follows from Lemma 2 in [9] that <p ls also minimal.

When m - 2q +1, at each point dK@$> must be equal to the tangent space to tp(M),
so that we must have >f/(M) = dB^p-, M must be a geodesic sphere in CP'/+1(A), and tj/ is
an embedding.

If In = 2q + 4 and m = 2q + 2,it follows from above that ip{M2q+2) = XTX (a geodesic

/ 4 \ \
of S2[ r) , which implies, II being a Riemannian submersion, that M is a compact

manifold admitting two orthogonal totally geodesic foliations, one of dimension 1, the
other with leaves isometric to dB'l^ (the fibre of FI). It follows from Theorem A in [1]
that the universal cover M of M is the Riemannian product of bBq

c^]p- (which is simply
connected) and U, the universal cover of 51.

REFERENCES

1. R. A. Blumenthal and J. J. Hebda, De Rham decomposition theorems for foliated
manifolds, Ann. Inst. Fourier, Grenoble 33 (1983), 183-198.

2. F. J. Carreras, F. Gimenez and V. Miquel, Immersions of compact Riemannian manifolds
into a ball of a complex space form, Math. Z. 225 (1997), 103-113.

3. J.-H. Eschenburg, Comparison Theorems and Hypersurfaces, Manuscripta Math. 59 (1987),
295-323.

4. F. Gimenez, Comparison theorems for the volume of a compact submanifold of a Kahler
manifold, Israel J. Math. 71 (1990), 239-255.

5. R. E. Greene and H. Wu, Function Theory on Manifolds Which Possess a Pole, Vol. 699
(Springer-Verlag, 1979).

6. Th. Hasanis and D. Koutroufiotis, Immersions of Riemannian manifolds into cylinders,
Arch. Math. 40 (1983), 82-85.

7. L. P. Jorge and F. V. Xavier, An inequality between the exterior diameter and the mean
curvature of bounded immersions, Math. Z. 178 (1981), 77-82.

8. Y. Kitagawa, An estimate for the mean curvature of complete submanifolds in a tube,
Kodai Math. J. 7 (1984), 185-191.

9. H. B. Lawson, Jr., Rigidity Theorems in rank-1 symmetric spaces, J. Diff. Geom. 4 (1970),
349-357.

https://doi.org/10.1017/S0017089500032389 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032389


ISOMETRIC IMMERSIONS 107

10. A. Lluch and V. Miquel, Bounds for the First Dirichlet Eigenvalue attained at an Infinite
Family of Riemannian Manifolds, Geometriae Dedicata 61 (1996), 51-69.

11. S. Markvorsen, A Sufficient Condition for a Compact Immersion to be Spherical, Math. Z.
183 (1983), 407-411.

12. T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer.
J. Math. 92 (1970), 145-173.

FRANCISCO J. CARRERAS:

DEPARTAMENTO DE GEOMETRIA Y TOPOLOGI'A

UNIVERSIDAD DE VALENCIA

BURJASOT, VALENCIA

SPAIN

e-mail: carreras@uv.es

VICENTE MIQUEL:

DEPARTAMENTO DE GEOMETRI'A Y TOPOLOGI'A

UNIVERSIDAD DE VALENCIA

BURJASOT, VALENCIA

SPAIN

e-mail: miquel@uv.es

FERNANDO GIMENEZ:

DEPARTAMENTO DE MATEMATICA APLICADA

E.T.S.I. INDUSTRIALES

UNIVERSIDAD POLITECNICA DE VALENCIA

SPAIN

e-mail: fgimenez@mat.upv.es.

https://doi.org/10.1017/S0017089500032389 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032389

