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On /-independence for the étale cohomology of
rigid spaces over local fields

Yoichi Mieda

ABSTRACT

We investigate the action of the Weil group on the compactly supported f-adic étale
cohomology groups of rigid spaces over a local field. We prove that the alternating sum of
the traces of the action is an integer and is independent of £ when either the rigid space
is smooth or the characteristic of the base field is equal to 0. We modify the argument of
T. Saito to prove a result on /-independence for nearby cycle cohomology, which leads to
our /-independence result for smooth rigid spaces. In the general case, we use the finiteness
theorem of Huber, which requires the restriction on the characteristic of the base field.

1. Introduction

Let K be a complete discrete valuation field with finite residue field F, and K a separable closure
of K. We denote by Fr, the geometric Frobenius element (the inverse of the gth power map)
in Gal(F,/F,). The Weil group Wk of K is defined as the inverse image of the subgroup (Fr,) C
Gal(F,/F,) by the canonical map Gal(K/K) — Gal(F,/F,). For o € Wk, let n(o) be the integer
such that the image of o in Gal(F,/F,) is Frg(g). Put Wi = {0 € Wk | n(o) > 0}.

Let X be a separated rigid space over K. We consider the action of Wx on the compactly
supported f-adic cohomology group H!(X @k K,Qy), where ¢ is a prime number that does not
divide g. This cohomology group is defined by using the étale site of X (cf. [Hub96, Hub98b]). Our
main theorem is the following.

THEOREM 1.1 (Theorems 7.1.6 and 7.2.3). Let X be a quasi-compact separated rigid space over K.
Assume one of the following conditions:
(i) the rigid space X is smooth over K;

(ii) the characteristic of K is equal to 0.
Then for every o € WI}F, the number

2dim X . .
S (<) Te(ow; HAX @k K, Q)
i=0
is an integer that is independent of /.

Note that Hi(X ®x K,Qy) is known to be a finite-dimensional Qg-vector space when one of the
above conditions is satisfied [Hub96, Propositions 6.1.1 and 6.2.1; Hub98a, Corollary 2.3; Hub98b,
Theorem 3.1]. In the previous paper, under the same assumption, the author proved that every
eigenvalue of the action of o € W5 on H{(X®x K, Q) is a Weil number [Mie06, Theorems 4.2 and
5.5].
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For a scheme over K, the property in Theorem 1.1 was proven by Ochiai [Och99, Theorem 2.4].
However, it seems difficult to prove Theorem 1.1 by the same method as in [Och99], since the
induction on the dimension does not work well. In this paper, we modify the method in [SaT03],
which treats the composite action of an element of Wi and a correspondence.

We sketch the outline of the paper. In §2, we derive f-independence of the alternating sum of
the traces of the action of a correspondence from Fujiwara’s trace formula [Fuj97]. This result seems
well known, but we include its proof for completeness. In § 3, by using localized Chern characters,
we prove a lemma which is a refined version of [SaT03, Lemma 2.17]. This lemma is needed in § 5.
In §4, we introduce partially supported cohomology and investigate its several functorial proper-
ties. In terms of partially supported cohomology, we can describe the action of a correspondence
on the compactly supported cohomology of a scheme which is not necessarily proper. The required
properties of nearby cycles and their cohomology are also included in this section. In §5, we intro-
duce a spectral sequence converging to nearby cycle cohomology, which is a generalization of the
weight spectral sequence studied in [RZ82] and [SaT03]. By the same method as in [SaT03, §§2.3
and 2.4], we can prove the compatibility of the spectral sequence with the action of a correspondence.
In §6, we prove ¢-independence for nearby cycle cohomology by using the result in §5 and de Jong’s
alteration [deJ96]. The method is almost the same as that in [SaT03, §3|. Several applications
to algebraic geometry (not to rigid geometry) are also included (Theorems 6.2.2 and 6.3.8). Finally
in §7 we give a proof of our main result. When X is smooth over K, we can reduce our theo-
rem to the case where X is the Raynaud generic fiber of the completion of a scheme over O with
smooth generic fiber (though the reduction does not seem so immediate in comparison with [Mie06]).
In this case we can use the result in § 6. Finally, assuming that the characteristic of K is 0, we prove
our theorem for a general X by induction on dim X. In this process, we need the finiteness theorem
of Huber [Hub98a].

Notation. Let K be a field. For a scheme X (or a rigid space) over K and an extension L of K, we
denote the base change X Xgpec k¥ Spec L by Xr.. For a scheme X of finite type over K, we denote the
group of k-cycles on X by Z;(X) and the kth Chow group (the group of k-cycles modulo rational
equivalences) by CHy(X). Let X be a scheme of finite type over K and Y be a closed subscheme
of X. Put d = dim X. We denote by cly : CHy_4(Y) — HZ*(X,Qq(k)) the cycle map defined in
[Del77, cycle], where ¢ is a prime number distinct from the characteristic of K.

Convention on correspondences. Let K be a field and ¢ a prime number distinct from the charac-
teristic of K. Put A = Q. For schemes X and Y separated of finite type over K, a correspondence
between X and Y is a morphism v: I' — X X Y, where I' is a scheme separated of finite type
over K. A morphism f: X — X can be regarded as the correspondence f x id: X — X x X.
Note that this convention is different from that in [SaT03], while it is the same as that in [I1177]
and [Fuj97]. We sometimes assume that v is a closed immersion.

Let v: I' — X x Y be a correspondence such that Y is smooth and purely d-dimensional. Put
c = dimI' and 7; = pr; oy. When ~; is proper, I' induces a homomorphism between cohomology
groups

I*: HI(X,A) P, HI(T, A) 225 HIt24=2¢(y \(d — ¢)).
More generally, for a € Zi(T"), we can define a homomorphism
ot HI(X,A) — HIT222R(y, A(d — k).

It is easy to see that the map o* depends only on the rational equivalence class of a. Therefore for
an element « of the Chow group CHg(I'), we can define the map

ot HY(X,A) — HI272R(y, A(d — k).
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2. On f-independence for schemes over finite fields

2.1 The ¢-independence

2.1.1 In this section we give a result on f-independence for schemes over finite fields. Though
the result seems well known for specialists, we include its proof for completeness.

THEOREM 2.1.2. Let X be a separated smooth purely d-dimensional scheme of finite type over
F, and v: I' — X x X a correspondence such that I' is purely d-dimensional. We denote the
characteristic of Fy by p. Assume that v;: I' — X is proper. Then the number

2d
Te(I™; Hy (Xp,, Q) = > (=1) Te(I™; Hy(Xg,, Qo))
i=0

lies in Z[1/p] and is independent of £.

Proof. Let 4" : T(") — X x X be the correspondence satisfying 'ygn) = Fr’\ oy and 'yén) = 7o,
where Fry is the gth power Frobenius morphism. Take a compactification 7: I — X x X of
7: T — X x X and define 5™ : ™ L XxXin the same way. We may assume that D = X \ X
is a Cartier divisor of X. Then for sufficiently large n, any connected component of f(n) N A
which meets D is (set-theoretically) contained in D (here we identify As and X). This easily
follows from Fujiwara’s result on contractility [Fuj97, Propositions 5.3.5 and 5.4.1]. See also [Var05,
Theorem 2.1.3 and Lemma 2.2.3].

By this fact and Fujiwara’s trace formula [Fuj97, Propositions 5.3.4 and 5.4.1], there exists an
integer IV such that for every n > N and ¢ the equality

TR0, HE (X, @) = (T, Ax)xcx

holds. The right-hand side denotes the intersection number (note that '™ N Ax is proper over F,
for sufficiently large n by the argument above), which is an integer and is independent of ¢. Since
I(™W* = I'* o (Fr%)™, the number Tr(I'™* o (Fr’)"; H* (XFq,Qg)) is an integer that is independent of
¢ forn > N.

Let aygin,.-..apim, and i1, ..., Agim, be eigenvalues of I'" and Fry on Hg(XFq,Qg) respec-
tively. By [DK73, Exposé XXI, Corollaire 5.5.3], A¢; » and qd)\é_il ;. are algebraic integers. Since I'* and
Fr commute with each other, the trace of I'* o (Fr%)" on Hé(XFq,@g) is equal to Y )™ i kA p

with Ag;1,. .., Agim; permuted suitably. Therefore the theorem follows from the subsequent lemma.
O
LEMMA 2.1.3. Let p be a prime number, K a field of characteristic 0 and aq,...,0n, AM,..., A\m

elements of K such that A\, # 0 for every k and \; # X\; for i # j. Put b, = > " | oy A\}. Assume
the following conditions.

(i) There exists an integer dy such that A\, and p® )\,;1 are integral over Z for every k.

(ii) There exists an integer N such that b, € Z for every n > N.

Then «y, is algebraic over Q and b,, € Z[1/p] for every non-negative integer n.

Proof. We may assume that K is algebraically closed. Denote the algebraic closure of Q in K by
Q and the integral closure of Z in Q by Z. By the first condition above, A\, € Z[1/p]* for every k.
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Consider the matrices L,V;, € GL,,(K) defined by

M 0 -0 Al A3 o Am
B R I R B P Y
0 o --- )\m )\?+m_1 )\g—i-m—l . )\n—i—m—l

It is easy to see that V,.L® = V., for every integers r, s. Define a,b,, € K™ by

aq by,

A bn+m—l

Note that b, = Vha. By the second assumption, b, € Z™ for n > N. Thus all the entries of
a=Vy by are in Q, which is the first part of the lemma.

Put M = V' (Z™). Then L"a € M for n > 0. Let My be the Z-submodule of M generated
by {L"a},>0, which is evidently a free Z-module of finite rank. Consider the minimal polynomial
w(T) =T+ a1 T + -+ ag € Q[T] of L € End(My ® Q). Since it divides the characteristic
polynomial of L € End(My), it lies in Z[T]. Moreover, in Q[T], it divides the characteristic polyno-
mial [T, (T — \;) € Z[1/p][T] of the matrix L, therefore in Z[1/p][T] since u(T) is monic. Hence
in Z[1/p], aq divides A1 - -+ A\, € Z[1/p]*. This implies that ag € Z NZ[1/p]* and we may conclude
that ag = +p* for some integer k.

Now we will prove b,, € Z[1/p]™ by descending induction on n. By the assumption, it holds for
n > N. Let n > d be an integer. We have L"a + aL" 'a+ --- + agL" %a = 0. Multiplying by Vj,
we have b, +a1by,—1 + - -+ agb,_q = 0. Therefore the assumption by, b,_1,...,b,_qr1 € Z[1/p]™
implies

1
b, 4= —a—d(bn +aib, 1+ +ag-1by_ay1) € Z[1/p]™.
This completes the proof. O

Remark 2.1.4. In [BEO5], Bloch and Esnault gave another proof of Theorem 2.1.2 by using the
theory of relative motivic cohomology defined by Levine. They also prove the integrality of the
alternating sum of the trace in Theorem 2.1.2. They only consider the case where X has a good
compactification, but we can easily reduce the general case to their case by de Jong’s alteration

(ct. (6.1.6)).

3. Complements on cycle classes

3.1 Localized Chern characters
3.1.1 Here we briefly recall localized Chern characters. Let S be a noetherian regular scheme.

By an arithmetic S-scheme, we mean a separated scheme of finite type over S. Let ¢ be a prime
number which is invertible in S and denote Q, by A.

3.1.2 Let X be a purely d-dimensional arithmetic S-scheme and i: Y —— X a closed subscheme
of X. Let & be a bounded complex of locally free Ox-module which is exact over X \ Y. With
such &, we associate chis (£,) € CHy_o(Y)g, called the localized Chern character [Ful98, §18.1].
We denote the degree-k part of chis (&) by chify(é’.) € CHy—(Y)q. Note that in [Ful98, §18.1],
ch¥ (&) is defined as an element of CH(Y — X)q. In the notation there, chis (&) € CHy o(Y)g
here should be denoted by chis (&) N [X].
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3.1.3 We need the following property of ch{f : assume that S = Spec K where K is a field,
X is smooth over S and Y is irreducible. Let & — 1,0y be a resolution of i,Oy consisting
of locally free Ox-modules (such a resolution always exists since X is regular). Put d = dimY.
Then chfl(_d/’y(é’.) = [Y] € CHy(Y)g. This is a corollary of the Riemann-Roch theorem [Ful98,
Theorem 18.3 (3), (5)].

3.1.4 Let the notation be the same as in paragraph 3.1.2. We can associate the cohomology
class Chgfk7y((€.) € HZ(X,A(k)) for each k, which is also called the localized Chern character
(cf. [Ive76]).

3.1.5 We list some properties of chgfky needed later.

(i) The localized Chern character Chgfk7y((€.) is compatible with any pull-back.
(ii) Assume that S = Spec K where K is a field and X is smooth over S. Then we have

cl¥ (chﬁy(&)) = chfky(é'.) (cf. [Ful98, Example 19.2.6]).

3.2 A lemma on cycle classes

3.2.1 Let S = Spec A be a henselian trait and ¢ a prime number that is invertible in S. We
denote the generic (respectively special) point of S by 7 (respectively s). For an S-scheme X,
we denote its generic (respectively special) fiber by X, (respectively X).

An arithmetic S-scheme X is said to be strictly semistable if it is Zariski locally on X, étale over

Spec A[Ty, ..., T,])/(To - - T, — m) for a uniformizer 7 of A and integers n, r with 0 < r < n. Let
Dy, ..., Dy, be irreducible components of X,. We put Dy = (;c; D; for I C {1,...,m} and D) =
ch{l,...,m},#I:pH Dy for a non-negative integer p. We write a;: D; — X and a®: D®) — X
for the canonical morphisms.
LEMMA 3.2.2. Let X be a strictly semistable S-scheme of purely relative dimension d and Y a
closed subscheme of X with (d — k)-dimensional generic fiber. Assume that Y is flat over S. Then
there exists a cohomology class & € H%k (X,Qq(k)) for each prime number ¢ which is invertible in
S satisfying the following conditions:

. X
(i) fZ‘Xn = Clynn (Yn) € H}fo(XmQé(k));
.. (p)
(11) ff‘D(P) = Clg(i)my(a(p)![y]) € H%IC(P)OY(D(p%Qé(k))‘
Here we are abusing notation since D® is not a subscheme of X.

Proof. Take a resolution & — 7,0y of i,Oy by locally free Ox-modules, where 7 denotes the
canonical closed immersion Y «—— X. Put § = chgfky(é’.). Then it satisfies the first condition
above by Paragraphs 3.1.3 and 3.1.5.

We will prove that the second condition holds. Since the cycle map for a scheme over a field is
compatible with the refined Gysin map, we may assume p = 0. In other words, we should prove
&lp, = clgjmy(aé [Y]). Since Y is flat, D; 'Y < Y is a Cartier divisor. Thus a}[Y] = [D; N Y] in
CHgy—x(D;NY'). Moreover Y and D; are Tor-independent over X and &, |p, is a resolution of Op,ny
by locally free Op,-modules. Therefore by Paragraphs 3.1.3 and 3.1.5, we have

D; _ 1D D; _ 1D _ D !
&elp, = Che,kpimy(g-bi) = ClDimy(Chk,Dimy (Ca|D;)) = CIDimy(Di ny) = Clpimy(a; [Y]).
This completes the proof. ]

Remark 3.2.3. We can prove that the class & constructed above coincides with the refined cycle
class of Y defined by using the absolute purity theorem of Gabber (cf. [Fuj02]). In particular, we
have the canonical element &, € HZF(X, Z,(k)) whose image in HZF(X, Q. (k)) is equal to &.

397

https://doi.org/10.1112/50010437X06002582 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002582

Y. MIEDA

Remark 3.2.4. In the same way, we can remove the denominator k! in [SaT03, Lemma 2.17].

4. Partially supported cohomology and nearby cycle cohomology

4.1 Partially supported cohomology
4.1.1 Let K be a separably closed field and ¢ a prime number that does not divide the charac-

teristic of K. Put A = Q.
4.1.2 Consider a triple (X, Uy, Us) of schemes over K such that
U is an open subscheme of X and U, is an open subscheme of Uj. (%)

We call such a triple a x-triple. The scheme X is often assumed to be proper over K. We denote the
canonical open immersions Uy —— X and U —— U; by j1 and ji12 respectively. Put jo = ji o j1a.
A morphism f: (X,U;,Us) — (Y, V1, V3) of x-triples means a triple of morphisms f: X — Y,
f1: Uy — Vq, and fo: Us — V5, which makes the following diagram commutative.

[]2 — []i — X

N

Vo—VI—=Y

DEFINITION 4.1.3. Let (X,Uy,Us) be a -triple and F € obj D%(Us, A). We define the partially
supported cohomology H (X,Uy,Us; F) as HYX,jnRjionF) and HL(X,Up,Us; F) as HY
(X, Rj1.j121F). Note that if X is proper, H! (X,U,U;F) = HZ(U,F). Needless to say, HY,
(X,U1,Us; F) = HY(Uy, j121F) is independent of X.

414 Let f: (X,U;,Uy) — (Y,V1,V5) be a morphism of x-triples and ki: V3 «—— X,
ki2: Vo —— V] the canonical open immersions. Put ko = k1 o k9. Consider the diagram below.

J12 J1
U2—>U1—>X

Lﬁ lfl lf
k12 k1
Vo——=V1——Y
Assume that one of the following conditions is fulfilled.

(i) The right rectangle is cartesian.
(ii) The morphism f; is proper.
(iii) The morphism k; is proper.
Then we have the pull-back homomorphism
[ HL(Y, Vi, Va3 F) — HL(X, U1, Us; f3 F)

induced by the composite

k1 Rk12+ F 24, Rf.f*knRki2.F be, Rf.ju f{ Rk12.F LN Rf.juRji2«fo F,

where b.c. denotes the base change map. Moreover if f is proper (for example X and Y are proper
over K), we have the push-forward homomorphism

for HY(X, Uy, Uy; RfyF) — HE (Y, V3, Vo F)
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induced by the composite

RfiRj1jia RAF 2 RARjLRf ki F 2% RARS RkvkinF “% RbykioF.

4.1.5 Assume that one of the following conditions is fulfilled.

(i) The left rectangle is cartesian.
(ii) The morphism f is proper.
(iii) The morphism kq5 is proper.
Then we have f*: HL(Y,Vi,Vo; F) — HI(X,U1,Us; f3F) defined similarly. Moreover if f is
proper, we have f,: H{(X, Uy, Ug; RESF) — HL(Y, Vi, Va; F).

4.1.6 Next we define a cup product. Let (X,U;,Us;) be a *-triple such that X is proper and
F.,G € obj Dgtf(Ug, A). By Lemma 4.1.7 below, we can define a cup product

L
Hli(Xa U17 U27 f) ® Hg'(Xa U17 U2; g) i) H5+Q(U27f & g)
as the composite
Hli(Xa U17 U27 f) ® Hzl(Xa U17 U2a g) - Hp(Xajllel2*f) & Hq(X7 le*jl?!g)
L
— HPT(X, juRj12.F @ Rj1+j121G)
L
= HPH(X, o (F @ G))
L

= H!T(Usy, F ® G).

LEMMA 4.1.7. Let the notation be the same as above. We have the isomorphism

L L
JuRj12:F @ Rj1.j121G = jor(F @ G).

L
Proof. Denote the canonical closed immersion X \ Uy — X by 4. Since j; (j11 Rj12:F @ Rj1:J121G) =
L
F ® G, then

. L . L P L 1
J(F ®G) — juRjio«F @ Rj1:j12G — @ (juRj12+F @ Rj1+j1219) R
L
is a distinguished triangle. Moreover we have i*(ji1 Rj12+F ® Rj1sj121G) = 0 since i* Rj1.j121G = 0.
L L
Thus jiRji2«F @ Rj1ej122G = jo(F @ G). O

4.1.8 Let X, Y be proper schemes over K and U C X, V C Y open subschemes. For F &
obj ch’tf(U, A) and G € obj Dgtf(V, A), we have the following Kiinneth formula:

L L
H&(X><Y,U><Y,U><V;]—“&g):Hf!(XxKXxV,UxV;]-“gg)
= P HIU.F) e H(V,G).

i+j=q
Proof. Denote the canonical open immersions U —— X and V —— Y by j and k respectively.
By the Kiinneth formula [AGV73, Exposé XVII, Théoréme 5.4.3; Del77, Finitude, Théoréme 1.9],
we have

L L L
(Jx1)R(AIXxk)(FXRG)=R(1 xk)(j x 1)(FRG)=5hFK Rk.G.
This completes the proof. ]
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4.1.9 For simplicity, we will write H (X, Uy, Us) and H (X, Uy, Us) for HYL (X, Uy, Us; A) and
HY(X,Uy,Us; A) respectively. Let f: (X,Uy,Us) — (Y, Vi, V) be a morphism of x-triples. If the
condition in Paragraph 4.1.4 is satisfied, we have

fo HL(Y, Vi, Vo) — HL(X, U1, Us; f3A) = HL(X,Ur, Us).
Assume further that f is proper, V5 is smooth and Us, V5 are equidimensional. Then we have
o HSPYX Uy, Us)(d) — HY (X, Uy, Us; RFAA) — HY(Y, V4, Va)
where d = dim Uy — dim V5.

It is easy to see that f* and f, are dual to each other and the following projection formula holds.

PROPOSITION 4.1.10. Assume that X and Y are proper over K. For every x € H{ (Y,V;,Vs) and
y € HY(X,Uy,Uy), the equality fo.(f*(x) Uy) = U fu(y) holds in HETT**(Vy, A(—d)).

4.1.11 Next assume that the condition in Paragraph 4.1.5 is satisfied for a morphism f:
(X,U1,Us) — (Y, V1, Vo) of #-triples. Then we have
[ HY(Y, 1, Va) — HY(X, U1, Us; f5A) = HY (X, Uy, Us).
Assume further that f is proper, V5 is smooth and Us, V5 are equidimensional. Then we have
o HEPUX, UL Up)(d) — HYL(X, Uy Us; RfpA) — HL(Y, V1, Va)
where d = dim Uy — dim V5.
It is easy to see that f* and f, are dual to each other and the following projection formula holds.

PROPOSITION 4.1.12. Assume that X and Y are proper over K. For every x € H%/(Y,V1,Vs) and
y € HL(X,Uy,Us), the equality fo.(f*(z)Uy) =z U fi(y) holds in H§+q_2d(V2,A(—d)).

4.1.13 Let (X,U;,Us2) be a xtriple such that Uy is smooth and equidimensional. Let Y be a
closed subscheme of X which is purely of codimension ¢. Assume that Y NU; = Y N Uy and put
V =Y NU;. Then the diagram

2

mn

J12 J1
U2 D U1 — X

is cartesian and we have the base change map Ri!2A = id, Ri!2A — Rz'!ljlggA. By this, we have the
morphisms le*il*Rz'!QA — Rj1sj121A and

H¥(Uy, A(c)) — HX(X, Uy, Us)(c).

LEMMA 4.1.14. The image of (3152 (V) € HZ(Us, A(c)) under the map above is equal to the image
of 1 € HY(V,A) = H%(Y,V,V) under the map i,: H(Y,V,V) — HZ(X,Uy,Us)(c).

Proof. By the definition of i,, we have the following commutative diagram:

HY(V,A) =—=H!(Y,V,V)

3 (U, A(e) —= H(X, U1, Us)(c)

where the map g, is induced by the canonical map A — RibA(c)[2¢]. By [Del77, cycle,
Théoreme 2.3.8(i)], we have ig, (1) = cng(V). This completes the proof. O
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4.1.15 Let X,Y beschemes proper over K and j: U — X, j': V —— Y dense open subschemes
of X, Y respectively. Assume that U, V are equidimensional and V' is smooth. Put ¢ = dim U and
d=dimV.Let I' C UxV be a purely d-dimensional closed subscheme such that I' — U xV LN
is proper and T the closure of I'in X x Y. Then (X x Y,U x Y,U x V) and T satisfy the condition
in Paragraph 4.1.13. By Lemma 4.1.14, we can describe the action I'* of the correspondence I' by
means of partially supported cohomology, as follows.

PROPOSITION 4.1.16. Let the notation be the same as in Paragraph 4.1.15. Then T'*: H(U,A) —
H{(V,A) coincides with the composite

HI(U,A) = HL(X,U,U) 25 HE(X x V.U x v, U x V) 220, gav2e « vy(e) 225 g9V, A).

Here cl(T') denotes the image of clX*V(T') € HZ(U x V,A(c)) in HX(X x Y,U x Y,U x V)(c).

Proof. This follows immediately from Proposition 4.1.10 and Lemma 4.1.14. U

4.1.17 Let f: X’ — X be a proper morphism of equidimensional schemes over K and Z C X a
closed subscheme of X which is purely k-dimensional. Put Z’ = Z x x X’ and d = dim X’ — dim X.
Assume that X is smooth over K. Then the map id x f: X’ — X’ x X is a regular immersion. By
applying the construction in [Ful98, ch. 6] to the cartesian diagram we have the element (id x f)'[Z] €
CHpa(X').

7' —=X'xZ

)

X —X'xX

We denote it by f' Z]. Tt is well known that this construction is compatible with cycle class, i.e.
F ez (2)) = i (f'12)).

LEMMA 4.1.18. Let X, Y, X' and Y' be equidimensional schemes over K and f: X' — X,
g: Y' — Y be proper surjective generically finite morphisms over K. Put ¢ = dim X = dim X’ and
d=dimY =dimY’. Let I' C X xY be a purely d-dimensional subscheme such that the composite
F— XxY 25 X is proper. Assume that X and Y are smooth over K. Then the following
diagram is commutative.

((fxg)'T])*

Hi(X',A) Hi(Y',A)
|- l»
Hi(X,\) ———— Hi(Y,A)

Proof. First note that ((f x ¢)'[T'])* makes sense since (f x g)'[I'] is supported on (f x g)~'(I),
which is proper over X’. Take a compactification f: X — X of f: X' — X and 7: Y — Y of
g:Y' — Y. Since f and g are proper, we have T_I(X) =X and g }(Y) =Y. Put £ = cl(T) €
H2(X xY,X xY,X xY)(c). Then cl((f x g)'[T']) = (f x 9)*¢.
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Consider the following diagram.

HIX',A) 2 i (X < VX ¥, X vy 208 e (X7 s v, A(e)) —22 HI(Y', A)
fx (Fxid)« (fxid)«
HI(X,A) — s B (X x VX x VX x V) 08 ize(X x v/, A(e) —2s Hi(Y!, A)
(id xg)* (id xg)* g*
Hi(X,A)— 2~ B (X x VX x ¥, X x V) — 2 Hit2(X x Y, A(e) —22~ HI(Y, A)

! *

By Proposition 4.1.16, the composite of the upper horizontal arrows is equal to ((f x ¢)'[I'])* and
that of the lower horizontal arrows is equal to I'*. The lower left rectangle, the lower middle rect-
angle, and the upper right rectangle in the diagram above are clearly commutative. The upper left
rectangle and the lower right rectangle are commutative by the Kiinneth formula. The upper middle
rectangle is commutative by the projection formula. This completes the proof. ]

4.2 Nearby cycle cohomology

4.2.1 Let S = Spec A be a strict henselian trait and denote its generic (respectively special)
point by n (respectively s). Let K be a quotient field of A and K a separable closure of K. For an
S-scheme X, we denote its special fiber, generic fiber, and geometric generic fiber by X, X,,, and
X7 respectively. Denote the integral closure of A in K by A and put S = Spec A. For an S-scheme
f: X — S, we write f: X — S for the base change of f from S to S. Then we have the cartesian
diagrams below.

Xs—i>X<LXn XS_€>—<_'

lfs lf lfn Lfs T
s S n S

Let £ be a prime which is invertible on S and denote A = Q. For F € obj D%(X,,, A), we define
RYyxF = E*Rj*go*]: , where ¢: X7 — X, is the canonical morphism. If no confusion occurs, we
omit the subscript X of Ry x.

&

S| <—
oy

98

4.2.2 First we recall some functorialities of nearby cycles. Let f: X — Y be a morphism
between S-schemes. We define f*: Ry A — Rfs, RYx A as the composite of

Ripy A — RfofiRby A =% R Riox fy = Rfo.RibxA.

Assume further that X, Y, are equidimensional and Y, is smooth. Put d = dim X,, —dim Y. Then
we define f.: Rfs Ry A(d)[2d] — Ripx A as the composite of

RfaRoxA(d)[2d] 2% Riby Rz A(d)[2d) = Ry Rfg RN 2D Ry A.

Here the map Tr is induced by Tr: A(d)[2d] — R f%A defined as follows. Denote the structure
morphisms Xz — 7, Y — 7 by ¢x,, ¢y, Since Y, is smooth and equidimensional, we have
Rgo!yﬁA = A(dimY}))[2dim Y;)]. Therefore the trace map relative to ¢x. induces

A(dim X,)[2dim X,)] — Ry A = Rf;Rey, A = RfpA(dim Y;)[2dim Y],
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which agalndinduces A(d)[2d] — R f A. Note that if f; is flat, the composite R fpA(d)[2d] ELN
RfmR f A 2 A coincides with the usual trace map Try_ relative to fz.

LEMMA 4.2.3. Let X and Y be arithmetic S-schemes and f: X — Y a proper surjective generically

finite S-morphism. Denote the degree of f by n. Assume that X, is equidimensional, Y;, is smooth

and connected. Note that by these conditions dim X,, and dimY,, are equal. Then the composite
Ry A L5 Rfs R A L5 Ry A

is the multiplication by n.

Proof. Since Y;, is smooth and connected, we have the homomorphism

A Rfp fiA = RfgA 5 Rz RN 2D A (+)

between constant sheaves on Yz (here Tr is the map defined in Paragraph 4.2.2). By the assumption
and the generic flatness [Gro64, Théoreme 6.9.1], there exists a dense open U C Y such that f5 is
finite flat over U. Therefore over U the map (x) coincides with the composite

adj Try
A R A T

which is known to be the multiplication by n. Therefore the map (*) is also the multiplication by n.
Thus we have only to prove that the given map is equal to the composite

Ripy A Ry (adj)| Ry R f A M Ripy A.

Now we recall some basic facts on the base change map. For a commutative diagram
y! L’) X!
I, b
y =X

the following hold.

(a) For F € obj D2(Y,A), the composite
Rg.F “% RY.f*Rg.F ““% RE.R.["F = Rg.RJ." F

is equal to Rg.(adj).
(b) For F € obj D%(X, A), the composite

g F LD G REF 2 REL"FF = RELS"GF
is equal to adj.
Fact (a) is nothing but the definition of the base change map. Fact (b) is also easy.

Consider the following cartesian diagram.

By (b), the composite

T RjA D R fITRIA = REGTT R A <27 RE T R]A
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is equal to 7 (adj). Together with (a), we may infer that the composite
TRGA MY RE TR A = REGTT R A S T RE PR A 2% T RELRT, f2A
=i Rj.Rfgfil
is equal to 7" Rj, (adj).
Now consider the following diagram.

f*
Ry A =Y Rf,RfF Ry A 2%~ Rf,, Ry A
f*
Ry (adi) lb‘c'
Ripy Rfgpd —— v (a3 T Ryy A

We have just proved that the left triangle is commutative. The right triangle is commutative by the
definition of f,. Our claim immediately follows from this. O

4.2.4 Let X and Y be arithmetic S-schemes with equidimensional smooth generic fibers. Put
c =dimX, and d = dimY,. Let I' C X X5 Y be a closed subscheme with purely d-dimensional

generic fiber such that I' — X xg Y P Xois proper. Denote the closed immersion I' — X x Y
by v and put «; = pr; oy. Then we have the maps

HI(X,, RpxA) ﬁ HI(Ts, RYrA), HI(Ts, RYrA) HEN HI(Ys, Ry A).
We define I'*: H(X,, RipxA) — HI(Ys, Ripy A) as the composite of the maps above.

4.2.5 Asin §4.1, we can consider a x-triple (X, Uy, Us) over S. We will always assume that X,
Uy, Uy are arithmetic S-schemes. For such a x-triple, we consider the partially supported nearby
cycle cohomology H\' (X, Uys, Uss; Ry, A) and HY (X5, Urs, Uss; Ry, A). We have the same func-
torialities as in Paragraphs 4.1.9 and 4.1.11, the projection formulas, and the Kiinneth formula
(cf. [1194, Théoremes 4.2 and 4.7]).

4.2.6 Let (X,U,Us) be a x-triple over S such that Uy, is smooth and equidimensional. Let Y be
a closed subscheme of X such that Y, C X, is purely of codimension c. Assume that Y NU; = Y NU,
and put V =Y NU;. Then as in Paragraph 4.1.13, we have the canonical map

H{ (Uzg, Ae) — HYE Uz, Ae)) — HiE (Uzs, R, Ae)) — HEF(Xs, Urs, Uns; Ry, A(€)).
LEMMA 4.2.7. The image of clgj"(Vn) by the map above coincides with the image of 1 €
HO(Vy, Rypy A) = HY\(Ys, Vi, Vi; Ripy A) under the push-forward map

H(Y;, Vs, Vis Riby A) — HEF (X, U, Usgs Ribuy A(e))-
We denote it by cl(V;)).
Proof. Consider the diagram below.

HO(Vy, A) HO(Vg, A) HO(Vy, Rpy A) === H)(Y;, Vi, Vs; R A)

| | | l

HiE Uy, A€) —— HE (U, Ae)) —— H{E (Uss, R, Ae)) — HZE (X, Urs, Uas; RipvA(c))
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The two left rectangles are clearly commutative. As in the proof of Lemma 4.1.14, we can see that
the right one is commutative. Since the image of 1 € H%(V,,A) under the map H°(V,,A) —

H%/f,(U?m A(e)) is clgj” (V3;), the lemma follows. O

PROPOSITION 4.2.8. Let X, Y be proper arithmetic S-schemes and U C X,V C Y open subschemes
which are arithmetic S-schemes. Assume that U, and V,, are equidimensional and smooth, and put
c=dimU,,d=dimV,. Let I' CU XgV be a closed subscheme with purely d-dimensional generic

fiber such that the composite I' «— U xg V PLU s proper. Then T*: H{(Uy, RYpyA) —
H{(Vy, Ry A) coincides with the composite

H{(Us, RyyA) = H! (X, U, Us; Ry A) 25 Hq V(X X Y5, Us x Y5, Ug % Vi Ry A)
VAU, a2, x Vi, Ry A(e)) 225 HI(Vs, Riby A).
In particular, I'* depends only on Iy, (as long as I' —— U xg V' LU s proper).

Proof. This follows immediately from Lemma 4.2.7 and the projection formula. U

LEMMA 4.2.9. Let X, Y, X’ and Y’ be arithmetic S-schemes with smooth equidimensional generic
fibers and f: X' — X, g: Y’ — Y be proper surjective generically finite S-morphisms. Put
c =dimX, = dlmX’ and d = dimY, = dle’ Let ' € X xgY be a closed subscheme with
purely d-dimensional genenc fiber such that the composwe I'— X xgY P X ois proper. As in
Paragraph 4.1.17, we have (f, x g,)'[[)] € CHa((fy % g,) "1 (T')). Take T € Zy((f x g)~}(I")) whose
image in CHy((f, % g,)~1(T)) is equal to (f, x g,)'[['y]. Such T is not unique, but I'* is independent
of the choice of I by the previous proposition. Then the following diagram is commutative.

Hi(X!, RipxiA) ——= Hi(Y!, Ripy/A)
| G
HY(X,, Riox A) ——= Hi(Ys, Ry A)

Proof. As in the proof of Lemma 4.1.18, we derive the commutativity from the projection formula,
the Kiinneth formula, and Proposition 4.2.8. U

LEMMA 4.2.10. Let (X,U;,Us) be a -triple over S where U, is smooth and i: Y — X a closed
subscheme such that Y, — X, is purely of codimension c. Assume that Y NU; =Y N Uy and

put V. =Y NU;. Let £ € H(Us, A(c)) be an element satistying &|u,, = cle”(Vn). Then cl(V,)) €
H%(Xs,Uys, Uss; Ripy, A(c)) coincides with the image of & under the map

H‘%—C(UQ, A(C)) — H\z/':(U257 A(C)) B HEIC(X& U].87 U28)(C) - HE'C(X& U].87 U28; RwUzA(C))
Proof. This follows from the commutative diagram below.
Hif (U, A0)) Hif (Uas, Alc))

l

H Uy A(c))

|

HEE (U, Me)) — HE (Uss, Ripr, M) —— HZ(X s, Uss, Uas; Rip, Alc)) [

H% (X, U, Usg; A(€))

COROLLARY 4.2.11. Let the notation be the same as in Proposition 4.2.8. Let £ € HZ(U xg
V,A(c)) be an element satisfying &|y, xv, = cl(I'y). We denote by ¢ the image of § under the
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map HE(U x V,A(c)) — HI%E(US x Vs, A(c)) — HZ(Xs x Y5, Us x Y5,Ug x Vi)(c). Then I'*:
H{(Ug, Rpy A) — HE(Vy, Ripy \) coincides with the composite

Hg(U57 Rl/}UA) = H&(X& US; US; RwUA) ﬁ H&(Xs X Y97 Us X Y97 Us X VS; RwUXVA)
S HI(U, x Vi, Ry A(e) 225 HI(Va, Ryv A).
Proof. This is clear from Proposition 4.2.8 and Lemma 4.2.10. U

5. An analogue of the weight spectral sequence and its functorialities

5.1 An analogue of the weight spectral sequence

5.1.1 Let S = Spec A be a strict henselian trait as in §4.2. Let (X, Uy, Us) be a x-triple over S
such that Us is strictly semistable (cf. Paragraph 3.2.1) over S. We say that such a x-triple itself
is strictly semistable. We denote the irreducible components of Uss by DY,..., D) . We write D;
(respectively D)) for the closure of D! in X (respectively Uy). They form -triples (D;, D}, D). We
have the following maps between x-triples.

k! k.
pr . pr kL p,

" / .

Uss L Uis R X
For a subset I C {1,...,m}, put Dy = (\,c; Di, D} = iy Dj, and D} = (,c; DY For every I,
DY is smooth over s. We write ar, a7, a7, kr and k} for the maps induced by a;, a}, a/, k; and
k. respectively. For an integer p, put D) = ch{l’...’m}#[:pﬂ Dy, D'®) = HIC{L...,m},#I:p—i—l D,
and D"®) = e, my sr=pi1 DY. 1f X is purely of relative dimension n over S, they are purely
of relative dimension n — p over s. We write a®, o’®, ¢”"®) k®) and k'®) for the maps induced by
ar, ai, af, kr and k} respectively. We have the following maps between *-triples.

k /(p) (»)
D! =D)L~ Dy D) 5 ) 5 p)
la}/ la’l laj la”(P) la’(p) la(p)
12 i1 Ji2 J1
Uss —=Ujs —= X Uas Uts Xs

5.1.2 By [SaT03, §2.1], we have the monodromy filtration M, on Riy,A. This is a filtra-
tion in the category of perverse sheaves on X;. The filtration M, defines a quasi-filtered object
(R, A, (Mg Rpyy A/ M, Ripy, A)s>r) of the category Db(Us,, A) (see [SaM88, §5.2.17]). Since the
functors Rji2. and ji) preserve distinguished triangles, we have a quasi-filtered object

(jl!Rj12*R¢U2A7 (jl!Rj12* (MstUgA/MTRQ;Z)UgA))s}T)
of the category D%(X,, A).

THEOREM 5.1.3. Let the notation be the same as above. The above quasi-filtered object induces
the spectral sequence

EP = @  HFDE), DWW DIty (i) — HPT(X,, U, Uss; Ribu, A).

i1zmax(0,—p)
Proof. By [SaM88, Lemme 5.2.18], we have the spectral sequence
EP = HPYU(X,, juRji. Gr™ Ripy, A) = HY (X, Uss, Uas; Ripy, ).
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On the other hand, by [SaT03, Proposition 2.7] we have the canonical isomorphism

jl!Rj12*< P L IA(p)[-p - q]) = juRjrze G Ry, A.

p—q=r

Since juRjiosal, A = jua; RE, A = jna,RE, A = apky Rk A = a;.kyRE, A, we have the canonical
isomorphism

HPT( X, 511 Rj12+ Grjl/[p Ripy, A) = HPT4 <X57 JuRj12+ < @ a;,(p+2i)1\(—i)[—p - 21]>>

i>max(0,~p)

= @ Hq_%(XS, a&p—i_%)k!(p+2i)Rk;(p+2i)A(—i))

i>max(0,~p)

_ @ H!(i—%(D(p—i-%)’ D/(p+2i)’ D//(p+2i))(_z~)'

i1zmax(0,—p)
This completes the proof. ]

5.1.4 If X = Uy = U and X is proper over S, the spectral sequence above coincides with the
weight spectral sequence in [RZ82] up to sign (see [SaT03, p. 613]).

5.2 Functoriality: pull-back

5.2.1 Let (X,Uy,Us) and (Y, V1, V5) be strictly semistable x-triples and f a morphism between
them. Assume that the diagram is cartesian.

Up—X

N

Vi—Y
Then we have the pull-back map
f* : qu*(}/a ‘/17 V27 R¢V2A) — qu*(X7 U17 U27 R¢U2A)

5.2.2 Let EY,...,E", be the irreducible components of Va, and E; (respectively E;) a closure
of E; in Y (respectively V7). As in Paragraph 5.1.1, we have the following diagram.

!
E! — > E —' >

ib;’ lb; lbi
J1a gt

Vos —=Vis, ——=Y

We also define Ey, E}, E7, E® E'®) and E"®) as in Paragraph 5.1.1.

Since Uy and V5 are strictly semistable, we have f5 (ZZ/I E’) = 7", D! as Cartier divisors
on Us. Therefore there exists a unique map ¢: {1,...,m} — {1,...,m'} satisfying fo(D}) C Eg(i)
for every i € {1,...,m}. Renumbering the D! if necessary, we may assume that ¢ is increasing.
Then we have f(D;) C E,q;) and f1(D;) C E; @) for every i. Moreover the right rectangle of the
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following commutative diagram is cartesian.

" K ’ k
D; D; D;

T

1A l
Eu) Bl B

5.2.3 For a non-negative integer p, we put Zy, = {I C {1,...,m} | #I = #p(I) = p + 1}
and D;ﬁ(p ) = 11 Iez;, DY. We define D}p ) and D}(p ) similarly. For I € Z7,, we have a morphism
of x-triples f,(p)r: (D1, Dy, DY) — (Eso(fﬁEc/p(I)’Eg(I))v which is a restriction of f. Put f® =
L fonr: (D;p),D}(p),D}/(p)) — (EW), E'®) E"®)) Since the right rectangle of the commutative

diagram

D) KD i) KD )

f f f
lfé?) lfl(p) lf(p)
/(p) (»)
E"®) e E'(p) L E®)

is cartesian, we have the pull-back map

/(p)7 D"(p)) s HY (D(p)7 D) D"(p))_

) = Z Foonr: HL(EW) E'® Ee)) H&(DE}’),Df ’

I€T;,
ProPOSITION 5.2.4. We have a map of spectral sequences as follows.
EP" = @m0, _p) Hie (B0, Be+20) prot20)(—j) — HPM(Y,, Vi, Vag; Ry, A)
l@f(?+2i)* lf*

E{MI — @i>max(0,—p) H&—%(D(p-i-%)’ D’(p+2i), Dl/(p+2i))(_2') _ H!T_q(Xs, Uvs, Uss; Riby, A)

Proof. We have a morphism of quasi-filtered objects

(u BRI Rva A, (1 R0 (Ms Ry A/ My Ripv, A) ) s )
— (Rfsx ;ji!ij*Rq/’VzAa (R fsx s*ji!ij*(MSRQ/’VQA/MTRszA)%}T)
— (Rfs*jl!le2*f55R¢V2A7 (Rfs*jl!leQ*sz(M8R¢V2A/MTR¢V2A))S>T)-

By [SaT03, Proposition 2.11(1)], we have a morphism of quasi-filtered objects
(f;stva, fgs(MsR¢V2A/MTR¢V2A)S>r) - (RszzA? (M8R¢U2A/MTR¢U2A)S>T)7

which induces

(Rfs*jl!RjH*f;st)VgA’ Rfs*jl!Rj12*f2*s(MstV2 A/MrRﬂ)VgA)s}r
— (Rfs*jl!RjH* R¢U2A7 Rfs*jl!leQ* (MstUgA/MTRngA)s/T)-

Therefore we have a morphism of quasi-filtered objects

(J11RJ12x RV A, (11 Ry 90 (M Ripyy A /My Ripyy A)) 1)
— (RfssjuRj12« RYu, A, R fsijuiRjro« (Mg Ry, A/ My Ripy, A) s> ).
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The associated morphism of spectral sequences is as follows.
B = HP (Y, j1y Rjjp, o, Ry, A) == HM(Y, Vi, Vas; Ribr, A)
| |
EP? = HPTI( X, j11Rj19. Gr{/[p Ripy, A) == H'"(X, Urs, Uas; Ribp, A)

On the other hand, by [SaT03, Proposition 2.11(2)], we have the following commutative diagram
for every r.

1%

D, ger i1 Rt bI PV A(—p)[—p — q]

|

D,y RIsitRjtze S50/ N (—p)[~p — a) — RfsujuRijro. 3, Gr} Ripry A

|

D, s BfseinRjr2eal" P A(—p)[~p — q]

J1Rila, GrY Ripy, A

o~

RfswjuRjra« GrM Ry, A

where the horizontal arrows are the canonical isomorphisms in [SaT03, Proposition 2.7]. We know

that j|,Rjlo b 7TV = bPTVLRIA and RfejuRjineal? VA = Rfe.a® kyRE.A. Thus we have

the map blP +q)l!Rl;A — Rfs*afkp +q)kng;A induced by the composite of
RGN — RfwjuRjac 000N — RfejnRjraeat ™A,
appearing in the above diagram. We can easily see that (by taking RI'(Ys,*)) this map induces
feros. gk(pta gt pretay ., gk (peta pleta prta)y,
The proposition immediately follows from this. ]

5.3 Functoriality: cup product

PRrOPOSITION 5.3.1. Let (X,U;,Us) be a strictly semistable %-triple over S and §& € HJ}
(Xs, Uis,Uas)(1). Then the cup product with & induces a map of spectral sequences as follows.

Ef’q _ @i>max(07_p) H&—Qi(D(p-i‘Qi),Dl(p+2i)’D//(p+2i))(_Z') _— H!P;-i‘Q(XS’ Uis, Uss; RwUzA)
lUSID(p+2i) iUi
E;i?,q-i-m = Gai}max(O,—P) ch_2i+m(D”(p+2i)’A(_i + l)) = H§+q+m(U287 RwUzA(l))
Proof. We have a map of quasi-filtered objects
(JuRjr2« RYu, A, (11 Rjr2« (Mg Rpy, A/ M, Rpyr, A)) s>r)
ue . .
s (ot Ry A [m], (o (M Rebu, A /My Ribu, A) (1) [m)) 1)
and the following map of spectral sequences induced by it.
E{)’q - Hp+q(Xsyjl!Rj12* GrJ_\lp RQ[)UQA) = H!Z‘i'(I(XS’ U187 U28; RQZJUQA)
- :
EPOTT = grratm (X, |y G Ry, A1) == HETT™ (Uss, Rby, A(D))
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By Lemma 5.3.2 below, the following diagram is commutative for every r.

S - JuRj12.aL TV N(—p)[—p — q) — juRj1a. G} Ry, A

lUf LUi
By ger 320N (—p + D[—p — g +m] —= jioy GrM Ry, A(1) ]

On the other hand, the diagram below is obviously commutative.

juRj1asalPTON ———= ol REL A
lug lUﬂD(pﬂ)
JuRj2eal A1) [m) == al"* (k o k) A(1)[m)]
This completes the proof. ]

LEMMA 5.3.2. Let X be a scheme over a field and j: U «— X be an open subscheme. Let F
and G be objects of D%(U, \). Then for every morphism p: F — G and every cohomology class
€€ H"(X,A(l)) = Hom(A, j1A(1)[m]), the following diagram is commutative.

Rj.F —2 < Rj.G

Jue |ue

G F (1) [m] —= j1G(1)[m]

Proof. This follows from the diagram below, whose rectangles are easily seen to be commutative.

Rj.F 7 Rj.G
id ®¢& id ®¢&
L L

o o

5t (R F & jAQ)m]) — 415" (RjuG & jAQ)[m])

o o

I(F @ A(l)[m]) 71(G @ A()[m])

o

1%

F(1)[m] - 719G (0)[m] L

5.4 Functoriality: push-forward

5.4.1 Let X and Y be strictly semistable S-schemes and f: X — Y a morphism between
them. We assume that X (respectively Y) be purely of relative dimension n (respectively n'). Put
d = n—n'. We denote the irreducible component of X (respectively Y) by D, ..., D,, (respectively
Eq,...,E,) and define D®) (respectively E(p)) as in Paragraph 5.1.1.
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PROPOSITION 5.4.2. We have a map of spectral sequences

prat _ gy HEP2(DWH2) A (—i + d)) == HPYI2( X, Ry A(d))

l@fﬁp”i) lf*

Eipﬂ = @i}max(O,—p) Hg_Qi(E(p+2i)aA(_i)) — H5+q(}/s’ RQ[)yA)

i>max(0,~p)

where ffp) is defined as in [SaT03, § 2.3].
Proof. This follows immediately from [SaT03, Proposition 2.13]. O

5.5 Functoriality: action of correspondence

5.5.1 Let X and Y be strictly semistable S-schemes and X «—— X, Y «—— Y compactifications
over S. Assume that X (respectively Y) is purely of relative dimension n (respectively n’). Let
Dy, ..., Dy, (respectively E1, ..., E,) be the irreducible components of X (respectively Y;). Denote
D; (respectively E;) the closure of D; in X (respectively of E; in Y). Write Z; (respectively Z7)
for the defining ideal of D; (respectively E;). Let 7: Z — X xg Y be the blow-up of X xgY by
the ideal H(iﬂ-,)eA(H;:l priZ; + H?,Zl pr; Z%,), where A denotes the set {1,...,m} x {1,...,m'}.
Put Z = 7 1(X x Y). Then by [SaT03, Lemma 1.9], Z is strictly semistable over S and the
irreducible components of Z; are indexed by A as {Cj i }(;,inyea 0 that (Cj ) = D; x Ey. For I" C
{1,...,m}x{1,...,m'}, put Cp» = ﬂ(i7i,)ef,, C;,ir. We know that c®) = ]_[#I,,:pJrl Crn (see [SaT03,
Lemma 1.9]), where I” runs over all totally ordered subsets of A (the order of A is the product
order).

For I c {1,...,m} and I' C {1,...,m'} satisfying #I = #I' = p+ 1, denote by IAI' C A
the graph of the increasing bijection I — I’. Put Cfp) = HIC{l,...,m},I/C{l,,,,7m/}7#[:#1/:p+1 Cinp-
Let wrnp: Crap — Dy x Ep be the restriction of 7 and 7 C’£p) — D@ x E®) the morphism
induced by mwapr.

5.5.2 Let I' C X xgY be a closed subscheme with purely n/-dimensional generic fiber such that

the composite ' — X xgY LAN (g proper. Denote by I" the closure of I';, C X, x Y, = Z,,in Z
and put I'®?) € CH,,_,(C® NT") the refined pull-back of " to C?). By Lemma 3.2.2, there exists
a cohomology class £ € HZ'(X xg Y, A(n)) satisfying the following conditions:

(i) &lx,xy, = clx,xy, (Ty);

.. (p)
(i) &low = S qp (T'P).

()

Since I" ¢ 7~ 1(I"), the composite of C]Ep) NIV — C]Ep) I, D) x g®) 2L p) i proper. Thus
') induces the action on cohomology (I'®)*: HI(DW A) — HI(E® A) (we write I'®) again
for the restriction of T'(®) to C]Ep) NnI’).

On the other hand we have T"®) = ¥ (T'?)) € CH,y_,((D® x E®)NT). As the composite

(DP) x E®) AT «— D® x E® 2L DO s proper, I"® induces the action on cohomology
(@) g4(DW) A) — HI(E®, A). By the projection formula, these two maps are equal. Now
we state the functoriality result.

THEOREM 5.5.3. Let the notation be the same as above. Then we have a map of spectral sequences
as follows.
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EP = @ maxo,p) e (D20, (i) == HEY(X,, RyxA)
l@(rﬂ(erQi))* >

B = @ oy HE (BT, A(—i)) — HEY(Y,, Ry A)

Proof. This follows from Corollary 4.2.11 and Propositions 5.2.4, 5.3.1, and 5.4.2. U

6. On f-independence of nearby cycle cohomology

6.1 The ¢-independence of nearby cycle cohomology

6.1.1 Let K be a complete discrete valuation field with finite residue field /' = F,. We denote
the ring of integers of K by O and the characteristic of F' by p. Fix a separable closure K of K
and let F be the residue field of the integral closure of O in K, which is an algebraic closure of
F. We denote by G (respectively Gf) the Galois group Gal(K/K) (respectively Gal(F/F)). We
denote by Fr, the geometric Frobenius element (the inverse of the gth power map) in G. The Weil
group W of K is defined as the inverse image of the subgroup (Fr,) C G by the canonical map
Gg — Gp. For 0 € Wk, let n(o) be the integer such that the image of o in Gp is Frg(g). Put
Wi ={o € Wk | n(o) = 0}.

Put S = Spec Og. For an S-scheme X, we denote its special fiber, geometric special fiber, generic
fiber, geometric generic fiber by Xr, X4, Xf, X5 respectively.

Let ¢ be a prime number distinct from p.
6.1.2 The main result in this section is the following theorem.

THEOREM 6.1.3. Let X be a flat arithmetic S-scheme with purely d-dimensional smooth generic
fiber, and I' C X xg X a closed subscheme with purely d-dimensional generic fiber. Assume that
the composite ' — X xg X X ois proper. Then for any o € W;, the number

2d

Te(T* 0 0 Hy (X, RYQ)) = Y (=1)' Te(T™ 0 0 Hy( X, RYQy))
1=0

lies in Z[1/p] and is independent of £.

6.1.4 First we treat the case where X is strictly semistable over S. We need a slight generalization
of the above theorem in this case.

LEMMA 6.1.5 (cf. [SaT03, Lemma 3.2]). Let L be a finite quasi-Galois extension of K and put S’ =
Spec Or,. We denote the residue field of L by E. Let X be a strictly semistable S’-scheme which is
purely of relative dimension d. Take any o € W; Fix an embedding K — L and extend o uniquely
to an automorphism of L. We put X° = X X0, o Op. Let I' C X7 x g/ X be a closed subscheme

with purely d-dimensional generic fiber satisfying that the composite ' — X7 x g X P xo s
proper. Then the number

Tr(I™ 0 0; He (X, Ry Qy))
lies in Z[1/p] and is independent of £.

Proof. We denote the irreducible components of Xz by D1, ..., D,, as usual. Then the irreducible
components of X are Dy, ..., D%. We define T"(*) € CHy_,((D°®) x D®)) N T) for each s as in
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Paragraph 5.5.2. Then by Theorem 5.5.3 we have the following map of spectral sequences.

E{s,t _ @@max(o’_s) H£—2i( o (s+2)  Qp(—i)) = H5+t(X%7 Ripx-Qy)

l@(l—w(w%))* LF*

B = @ smax(os) Hg—%(pg”“, Qe(—i)) —— H:t (X, RpxQy)

On the other hand, we have the map of spectral sequences induced by o

Ef’t = @i}max(O,—s) H£_2i(D%+2i)’ QZ(_Z)) = Hg+t(XE’ RQZ}XQE)

0 = @, a0 HE (D, Qi) = HEH(XG, Ruixo Qo)

where @ denotes the image of o in Gg. Let aéf,)om: D%(S) — D%) be the composition cpf (o) o
7*, where ¢ denotes the absolute Frobenius morphism and f is the integer satisfying ¢ = p/. This
is a proper morphism over E. Since ¢ induces the identity map on étale cohomology, we have

(s)*

T« = 0geom. Therefore we obtain the endomorphism of a spectral sequence.

E?t = @z>maX(0 —s) Ht 2Z(D(s+2z ; Qe ( )) — Hg+t(XE’ R¢XQZ)

l(ru(erQi))*oo.(_zoJr?i)* T oo

m

By = @ismano— HE (DS, 0u(i)) — HE (X, Rox @)

Denote by I'"(*) € CHd_s((D%(S) X Dg)) N (Uéﬁ)m x id)(I'5)) the image of T"(*) under the map

CHy—s((D7®) x D)) NT) — CHy_, (DL x D)) NTy)

(ageom xid)«
-

CHys (D" % D) N (0 x id)(TF)-

Ogeom
Then (I7(8))* = (I"())* o O‘ézz)m holds. Thus we have equalities
Tr(T" o 0y; H: (X3, RYQy))
s s+21) \* S$+21)% * 5421 .
=50 Y (0T 0 o520 HE(DETE) Qy(—i))

s izmax(0,—s)
=3 Y (U (@) HH (D Qo)
5 i>max(0,—s)

n o)(s+1) _
= U T Q)

By Theorem 2.1.2, the number Tr((I"())*: H ,Qg lies in Z[1/p] and is independent of £.
Therefore Tr(I'™* o 0,; H} (X4, RYQy)) lies in Z[ 1 [1/ p]Eand is independent of £. O

6.1.6 Next we reduce Theorem 6.1.3 to Lemma 6.1.5 by de Jong’s alteration [deJ96]. We may
assume that X is connected. Since X is flat over S with smooth generic fiber, it is irreducible and
reduced. Therefore by [deJ96, Theorem 6.5] and [SaT03, Lemma 1.11], we have a finite quasi-Galois
extension L of K, a scheme Y that is strictly semistable over O with equidimensional generic
fiber, and a proper surjective generically finite S-morphism f: Y — X. Put S’ = Spec O, and
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denote the residue field of L by E as in the proof of Lemma 6.1.5. Let K’ be the inseparable
closure of K in L. Then we have a canonical isomorphism Hé(X’F, RipxQp) = Hi( X7, RyxQp),

where X' = X ®¢, Ogs. Moreover, if we fix an embedding K «—— K, the isomorphism above
is compatible with an isomorphism Wy — Wy. Therefore by replacing K and X by K’ and X’
respectively, we may assume that the extension L/K is separable.

We denote by Y’ the scheme Y considered as an S-scheme. Take any o € W; . By Lemma 4.2.9,
we have the commutative diagram below

H(YL, Rpy Q) —7 HY(Y2, Ripyo Qp) > Hi(YE, Ripy Q)

lf* lfi’ Tf*
HY(X, Rix Q) =2 Hi(X, RioxQp) —— Hi(Xg, RibxQy)
where IV € Zy((f° x f)~%T)) is an element satisfying
k= (Ff * fx)'Tk] € CHa((f% x fx) ' (Tk)),
as in Lemma 4.2.9. Together with Lemma 4.2.3, we have
Tr(I"* o 0; HL(Ye, Ripy:Qy)) = deg f - Tr(I™* 0 0; Hi(X7, RxQp))
as in the proof of [SaT03, Lemma 3.3].

Let h: HTEQal(L/K) Y™ — Y’ ®g S’ be the morphism induced by the canonical map
O ®o, O — HTeGal(L/K) Op. It is finite surjective and induces an isomorphism on generic

fibers. Therefore we have an isomorphism Hg(}%, Ry Qp) = @TEGal(L/K) Hé(YET,Rd)yTQg).

The map o.: Hﬁ(Y%, Ry Qp) — Hé(Y%U,R"L/}y/oQg) is identified with the direct sum of

o Hé(YET,Rq/)yng) — Hg(l%”, Ry orQy) under this isomorphism. For 7,7" € Gal(L/K), let
I} € Za((f7 < f7)71(T)

be an element such that (I )L = I'; |y~ -, where I'} is the base change of T’ from K to L.
’ L L

By Lemma 4.2.9 again, the (7, 7’)-component of the map

P HYT RiyerQ) — @ HA(YE Ry Q)

T€Gal(L/K) T'eGal(L/K)
induced by T'"*: Hé(}%’, Ripy 1o Q) — Hé(l%, Ry Qy) is equal to
orr s HUYET, Ribyor Qo) — HUYE, , Ribyr Qo).
Therefore the number

1
TI‘(F* O T4} H:(Xf, Rlﬁx@g)) = T3 TI‘(P/* O Ox; H:(Y%, R”(ﬁy/@g))

deg f
]' * * T
= T 7 > T, 00w HY (Y, Riy-Qy))
8 T€Gal(L/K)

lies in (1/deg f)Z[1/p] and is independent of ¢ by Lemma 6.1.5.

By the same technique as in [SaT03, p. 629], we can derive from the following lemma that the
number Tr(I'™ o 0 H} (X3, RYxQy)) is in Z[1/p]. Now the proof of Theorem 6.1.3 is complete.

LEMMA 6.1.7. Let K be a field of characteristic 0. Let a1,...,a, be distinct elements of K and

c1,...,¢ non-zero integers. Put s, = >_._; c;al™ for a non-negative integer m. Assume that there
exists an integer N > 1 such that Ns,, € Z[1/p] for every m > 0. Then s,, € Z[1/p] for every
m = 0.
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Proof. By [Kle68, Lemma 2.8], a; is integral over Z[1/p] for every i. Therefore every s,, is also
integral over Z[1/p], while it is in Q. Since Z[1/p] is normal, we have s, € Z[1/p]. O

Remark 6.1.8. The result of Bloch and Esnault [BE05] implies that the alternating sum of the trace
in Theorem 6.1.3 lies in Z (cf. Remark 2.1.4). For I' = A x (the diagonal of X), the integrality also
follows from [Mie06, Theorem 4.2].

6.2 The ¢-independence for stalks of nearby cycles

6.2.1 In this section, we give some results on ¢-independence for stalks of nearby cycles. All of
them are immediate consequences of Theorem 6.1.3.

THEOREM 6.2.2. Let X be a flat arithmetic S-scheme with purely d-dimensional smooth generic
fiber, and x € X an F-rational point. Choose a geometric point T lying over x. Then the Weil
group Wy acts on the stalk (R')xQy)z. For every o € W;, the number

d

Tr(ow; (R YxQo)z) = Y _(—1) Tr(ow; (R'Yx Qo))

i=0
is an integer that is independent of £.

Proof. Put U = X \ {z}. Then we have the following Wx-equivariant exact sequence:
— H\{(Uz, Ry Q) — HY X7, Rpx Q) — (R'YxQp)y — H T (Uz, RipyQq) — .
Therefore we have the equality
Tr(ow; (R Yx Qo)z) = Tr(ow; Hy (X7, RyxQp)) — Tr(ow; H (Ug, RypuQp)).
Since each term of the right-hand side lies in Z[1/p] and is independent of ¢, so is the left-hand side
Tr(ow; (R xQo)z).
The integrality follows from Remark 6.1.8 (note that since we only use the case I' = Ax, we do

not need the result of Bloch and Esnault). O

COROLLARY 6.2.3. Let the notation be the same as in Theorem 6.2.2. Then the integers
d d

dimg, (R*xQo)z = Y _(=1)" dimg, (RYxQ)z, Sw(R*¢¥xQp)z = > (—1)" Sw(R'pxQu)z
i=0 i=0
are independent of £. Here Sw denotes the Swan conductor.

Proof. These are immediate consequences of Theorem 6.2.2 (for the part of the Swan conductor,
see [Och99, Corollary 2.6]). O

Remark 6.2.4. The above corollary gives weak evidence of Deligne’s conjecture on Milnor numbers
[DK73, Exposé XVI, Conjecture 1.9]. The statement of the conjecture is the following.

CONJECTURE 6.2.5. Let K" be the maximal unramified extension of K and put S™ = Spec Our.
Let X be a purely d-dimensional flat arithmetic S""-scheme. Assume that X is regular and that the
structure morphism X — S" is smooth outside a unique closed point x € X3. Put

dimtotg,(R*¢Fy), = dimp,(R* ¢ Fy), + Sw(R* O F),,
p(X/S", x) = lengtho,  Ext'(Qx/s, Ox)s-
Then the equality
dimtoty, (R*¢ Fy), = p(X/S™, )

holds. (The original conjecture allows a more general base trait. See [Org03].)
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This conjecture is solved in the cases below:

(i) d =0 (see [DKT73, Exposé XVI, Proposition 1.12]);
(ii) the point x is an ordinary double point (see [DK73, Exposé XVI, Proposition 1.13]);
(iii) the characteristic of K is positive (see [DK73, Exposé XVI, Theorem 2.4]);
(iv) d =1 (see [Org03, Corollaire 0.9]).
Moreover, [Org03, Théoreme 0.8] Orgogozo proved that the conductor formula of Bloch implies the
above conjecture.
Since
dimtoty, (R* ¢ Fy), = dimp, (R*YFy), + Sw(R*YF), — 1
= dimg, (R*¥Q¢)e + Sw(R*YQp), — 1
(the last equality follows from the universal coefficient theorem), from Corollary 6.2.3 we see that

the left-hand side of the equality in Conjecture 6.2.5 is independent of ¢, while the right-hand side
is obviously independent of /.

6.3 The £-independence for open schemes over local fields

6.3.1 In this section, we consider an analogue of [SaT03, Theorem 0.1] for open schemes over
local fields.

DEFINITION 6.3.2. Let X be an arithmetic S-scheme and H C X a closed subscheme of X. We may
write H = Hy, U H’', where H' is contained in the special fiber of X and H, — S is flat. The pair
(X, H) is called a strictly semistable pair if the following conditions hold (cf. [deJ96, 6.3]):

(i) X is strictly semistable over S;

(ii) H is a strict normal crossing divisor of X.
(iii) Let H; (i € I) be the irreducible components of Hj,. For each J C I, the scheme Hjy = (", ; H;

is a union of schemes which are strictly semistable over S.

Moreover, if H is flat over S (namely, H = Hy,), we call (X, H) a horizontal strictly semistable pair.
For a strictly semistable pair (X, H), the pair (X, Hy) is a horizontal strictly semistable pair.

LEMMA 6.3.3. Let (X, H) be a horizontal strictly semistable pair over S. Put U = X \ H and denote
the canonical open immersion U —— X by j. Then the canonical morphism

T RYrQr — Rpx (7 Qo)

is an isomorphism. In particular, if X is proper over S, we have an isomorphism H 2(UF’ Ry Qy)
He(Uge, Qo).

>~

Proof. Since the problem is étale local, we may assume that
X =SpecOkTh,....T,)/(Tyy1--Ts—m), H=V(Ty---T,) C X,
where 7 is a uniformizer of K (cf. [11104, 1.5(d)]). Put
X1 =SpecOk[Trs1,-- -, Tl /(Tyg1 - Ts — 7).

Then (X, H) = (A§ x5 X1,Z x5 X1), where Z C A% is the divisor defined by 7' --- T, = 0. By
the Kiinneth formula for Ry (see [I1194, Théoreme 4.7]), we may reduce the lemma to the case
(X,H) = (A%, Z). This case is treated in [DK73, Exposé XIII, Proposition 2.1.9]. O
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6.3.4 The following proposition is an analogue of Lemma 6.1.5.

PROPOSITION 6.3.5. Let L be a finite quasi-Galois extension of K and put S’ = Spec Or,. We denote
the residue field of L by E. Let X be an arithmetic S’-scheme with purely d-dimensional generic
fiber and assume that there exists a compactification X — X over S’ such that (X, X \ X) is
a strictly semistable pair over S'. Take any o € I/V["{F . Fix an embedding K —— L and extend o
uniquely to an automorphism of L. We put X° = X x¢o, /o Op. Let I' C X7 xg X be a closed
subscheme with purely d-dimensional generic fiber such that the composite ' — X7 x g X LN '€
is proper. Then the number
Te(I'7, 0 04 Hy (X7, Qo))

lies in Z[1/p] and is independent of £.

Proof. By Lemma 6.3.3, H(X7, Q) & H.(X%, RYxQy) and Hg(X%,Qg) o Hg(X%, Rx+Qy) hold.
Moreover we can easily see that the map I'} : Hz(X%, Qp) — Hé(Xf, Qy) corresponds to the map
r*: Hg(X%, RixoQp) — H:(X%, RYxQy) (cf. Proposition 4.2.8). Thus the number

Tr(rz © U*a H: (Xfa Qf)) = TI'(P* © U*’ H: (Xfa RTZJXQK))
lies in Z[1/p] and is independent of ¢ by Lemma 6.1.5. O

6.3.6 Let X be a scheme which is smooth and separated of finite type over K. Take a compactifi-
cation X «—— Z over S. Namely, Z is a scheme which is proper and flat over S, containing X as
an open subscheme. Put Y = Z \ X. By de Jong’s alteration [deJ96, Theorem 6.5], there exist a
finite extension L of K, a connected arithmetic O-scheme W, a proper surjective generically finite
S-morphism f: W — Z such that (W, f~1(Y)) is a strictly semistable pair over S’ = Spec Oy, Let
H be the horizontal part f~1(Y), of f~%(Y). Then (W, H) is a horizontal strictly semistable pair
over S’ such that (W \ H)xg — X is a proper surjective generically finite K-morphism.

By Lemma 6.3.7 below, we can take L as a quasi-Galois extension of K.

LEMMA 6.3.7. Let (X, H) be a horizontal strictly semistable pair over S. Let L be a finite extension
of K and put S" = SpecOp. Then there exists a blow-up 7: X’ — X xg S’ whose center is
contained in the special fiber such that (X', 7=1(H)) is a horizontal strictly semistable pair over S’.

Proof. We may take the same blow-up as in [SaT03, Lemma 1.11]. O

THEOREM 6.3.8. Let X be a purely d-dimensional scheme which is smooth and separated of finite
type over K, and I' C X x X a purely d-dimensional closed subscheme such that the composite
F— X x X 25 X is proper. Let Z, L, (W, H), f: W — Z be as in Paragraph 6.3.6 (we take L
as a quasi-Galois extension of K ). Put U = W \ H and write g: U, — X for the restriction of f.
Assume that the composite (g x )~ (') — U xg U 25 U is proper ((g x g)~(I') denotes the
closure of (g x g)™(I') C Uy x U in U xg U). Then for any o € W3}, the number

2d

Te(T™ 0 0. Hy (X7, Q) = > (=1 Tr(T" 0 0; Hi( X7, Q0))
=0

lies in Z[1/p] and is independent of £.

Proof. As in Paragraph 6.1.6, we may assume that the extension L/K is separable. Put V = Uy.

We denote by V' the scheme V considered as a scheme over K. We have V] = HTeGal( Ly V7
Take any o € Wit and put I = (¢ x g)'[['] € CHy((¢° x ¢)~1(T")). For 7,7 € Gal(L/K), put
I =T% |-+, where I'} is the base change of I from K to L. As in Paragraph 6.1.6, we have
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the equality

1
Bl ers HoXm Q@) = gory 2 Tilor 00 H(VE, Q).
T7€Gal(L/K)

By the assumption, for each 7,7" € Gal(L/K), there exists a cycle T/T,T/ € Zy(UT xg U™ such
that (T/T’T/) r =17, and the composite |T/T’T/| « U™ xg U™ 2L U is proper. Therefore we may

reduce our theorem to Proposition 6.3.5. ]

7. On ¢-independence for rigid spaces

Let the notation be the same as in the previous section. We consider rigid spaces over a complete
discrete valuation field K as adic spaces locally of finite type over Spa(K, Ok ) (cf. [Hub94]). We
denote a scheme by an ordinary italic letter such as X, a formal scheme by a calligraphic letter
such as X', and a rigid space by a sans serif letter such as X. For a scheme X over S = Spec Ok, we
denote the completion of X along its special fiber by X”. For a formal scheme X over Spf Oy,
we write AT for its Raynaud generic fiber. It is the analytic adic space d(X) in [Hub96, 1.9].

7.1 Smooth case

7.1.1 In this section, we prove our main theorem for smooth rigid spaces. We derive the following
consequence from the result in the previous section.

COROLLARY 7.1.2. Let X be an arithmetic S-scheme with smooth generic fiber and X the rigid
space (X8, Then for every o € W}, the number

2dim X

Tr(ow; Hy (X, Qo)) = D (1) Te(ow; Hi (X, Qo))
1=0

is an integer that is independent of /.
Proof. We may assume that X is connected and flat over S. We have a W-equivariant isomorphism
H!(X3%,Qp) = H)( X%, RpxQq) (see [Hub96, Theorem 5.7.6]). Applying Theorem 6.1.3 to I' =
X <A—X> X xg X, we see that for every o € W['g the number

Tr(oy; H) (X5, Qp)) = Tr(ow; H) (X7, RYxQp))

lies in Z[1/p] and is independent of ¢. On the other hand, we know that every eigenvalue of the
action of o € Wit on H! (X%, Q) is an algebraic integer [Mie06, Theorem 4.2]. Therefore the rational
number Tr(o,; H} (X%, Qy)) is an algebraic integer, i.e. an integer. O

DEFINITION 7.1.3. A formal scheme X of finite type over O is said to be of type (SA) (smoothly
algebraizable) if there exists an arithmetic S-scheme X with smooth generic fiber such that X' = X"
A rigid space X over K is said to be of type (SA) if there exists a formal scheme X of type (SA)
over Ok such that X = Xrie,
LEMMA 7.1.4. Let X be an arithmetic S-scheme with smooth generic fiber. Then the following hold.
(i) Every admissible blow-up of X" is of type (SA).
(i) Every open formal subscheme of X" is of type (SA).
Proof. (i) Take a uniformizer 7 of K. Let Z be an open ideal of Oxx. Since the topology of Oxnx is

the m-adic topology and X7 is noetherian, there exists an integer n satisfying 7*Ox C Z. Denote by
7’ the unique ideal of Ox containing 7"Ox such that Z/7"Oxr =TI’ /7"Ox. It is clear that Z'Oxa
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coincides with Z. Then the admissible blow-up of X" by Z is equal to the m-adic completion of the
scheme X’ obtained by the blow-up of X by Z’. The generic fiber of X’ is obviously smooth.

(ii) We can identify the underlying topological space of X" with that of Xp. Let U be an open
formal subscheme of X”*. Then U = X \ (Xr \ U) is an arithmetic open subscheme of X satisfying
Ur = U as topological spaces. The generic fiber of U is smooth and U" = U. ]

COROLLARY 7.1.5. Let X = (X\)"® be a rigid space of type (SA) over K. Then every quasi-compact
open subspace U of X is of type (SA).

Proof. Since U is quasi-compact, there exist an admissible blow-up ) — X’ and an open formal
subscheme U C ) such that U = U"8 (see [BL93, Lemma 4.4]). By Lemma 7.1.4, Y and U are of
type (SA). This completes the proof. O

THEOREM 7.1.6. Let X be a quasi-compact separated rigid space which is smooth over K. Then for
every o € W;, the number

Tr(ow; He (Xg, Qo))
is an integer that is independent of /.

Proof. By [Mie06, Corollary 2.5], there exists a finite open covering {U;}i<i<m of X consisting of
rigid spaces of type (SA). Corollary 7.1.5 ensures that each intersection U;, N---NU;, is of type
(SA). Thus by Corollary 7.1.2, for every o € W3¢, the number

Tr(ow Ho (Uiy 0o N UG )5, Qo))
is an integer that is independent of /. On the other hand, we have the spectral sequence below:
B = @ HUUn 00U Q) = H (X Q).
1<y < <ig<m

Therefore the number

Telow H Q) =3 (-1 3. TrlowiHe((Uy 0N Vi) Q)
s=1 1< < <ts<m
is also an integer that is independent of £. O

7.1.7 From now on we consider ordinary cohomology. First we establish the analogous result as
in [Mie06, Theorem 4.2].

THEOREM 7.1.8. Let X be a quasi-compact separated rigid space which is smooth over K. Then
for every o € WI'(F, every eigenvalue o € Q, of its action on H "(X?, Q) is an algebraic integer.
Moreover, there exists a non-negative integer m such that, for any isomorphism t: Q, = C, the
absolute value |u(a)| is equal to ¢™(7)™/2,

Proof. We may assume that X is connected. Put d = dimX. By the Poincaré duality [Hub96,
Corollary 7.5.6], every eigenvalue « of o, on H Z'(X?, Q) is of the form qo)d /B, where (3 is an
eigenvalue of o, on H, Ed_"(Xf, Qy). Therefore o is an algebraic number and there exists an integer

m such that, for any isomorphism ¢: Q, — C, the absolute value |¢(/)| is equal to g@)rm/2,

Thus we have only to show that « is an algebraic integer. By the same method as in [Mie06,
§4], we can reduce the theorem to the case X = (X”)"8, where X is strictly semistable scheme
over S. Furthermore by using an analogue of weight spectral sequence, we may reduce the claim
to Lemma 7.1.9 (cf. [Mie06, proof of Proposition 4.7]). O

LEMMA 7.1.9. Let X be a scheme separated of finite type over Fy. Then every eigenvalue of the action
of Fry on Hi(XFq,Qg) is an algebraic integer (here Fr, € Gal(F,/F,) is the geometric Frobenius
element).
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Proof. We may assume that X is irreducible. By de Jong’s alteration [deJ96], we may assume
that there exist a proper smooth scheme X and a strict normal crossing divisor D of X such
that X = X \ D. Let Dq,...,D,, be the irreducible components of D. Put D; = Nies Di for
Ic{l,...,m} (D;=X for I = @) and D*) = Lrcqr,... my 21—k D1- By the spectral sequence

—k,n n— k n
El Fontk =H k(D%q)7Qé(_k)) = H (XFQ7QZ)7
D)

is proper smooth over F, a result from [DK73, Exposé XXI, Corollaire 5.5.3] ensures that « is
integral over Z. ]

the eigenvalue « occurs as an eigenvalue of Fr7,, on H"‘k(D%k),Qg(—k)) for some n, k. Since D)

THEOREM 7.1.10. Let X be a quasi-compact separated rigid space which is smooth over K. Then
for every o € WE, the number
2dim X ' '
Te(s H* (X, Q) = > (—1) Tr(os H (X, Q1)
i=0

is an integer that is independent of /.

Proof. By Theorem 7.1.8, it is sufficient to show that the number Tr(o,; H*(X%,Q)) is a
rational number that is independent of /. We may assume that X is connected. Put d = dim X.

Let ag;1,...,00m,; be the eigenvalues of o, on Hé(X?, Qg). Then the eigenvalues of o, on H2d—i
(X%, Qy) are q"(")'dag_jl, ces ,q”(")‘da;}mi by the Poincaré duality. Therefore it is sufficient to prove

that Z?j&mx Z;n:il(—l)iae_’i ; is a rational number that is independent of £. For every non-negative

integer k, by applying Theorem 7.1.6 to o* € W, we can see that Z?jémxzyzl(—l)ia’zm is a
rational number that is independent of £. As in the proof of Lemma 2.1.3, we may conclude that
S 2dimX Z;'Zl(—l)zae_il ; 1s a rational number that is independent of £. O

7.2 General case
7.2.1 In this section, we prove our main theorem for general rigid spaces over local fields of

characteristic 0. We need the following continuity theorem of Huber, which is stronger than [Hub98b,
Proposition 2.1(iv)] (cf. [Mie06, Theorem 5.3]).

THEOREM 7.2.2. Assume that the characteristic of K is equal to 0. Let X be a quasi-compact
separated rigid space over K and Z a closed analytic subspace of X. Write U for X \ Z. Then for
every pair of prime numbers ¢, ¢’ which do not divide q, there exists a quasi-compact open subspace
U" of U such that the canonical maps Hg’(u’?, Z¢) — H(Uz, Zy) and Hg(U’?, Zp) — Hi(Uz, Zy)
are isomorphisms for every i.
Proof. This is due to [Hub98b, (II) in the proof of Theorem 3.3]. We briefly recall the argument
there. By [Hub98a, Corollary 2.7], there exists g9 > 0 such that for every 0 < £ < ¢y the canonical
map H!(U(g)w, Z/VZ) — HE(Ug, Z/{Z) is an isomorphism. Here we write U(e) for P(g) in [Hub98a,
2.6]. By the long exact sequence of cohomology groups derived from the short exact sequence of
sheaves

0 — 2/02 25 2/ — 7)007 — 0,
we see inductively that the canonical map H!(U(g)w, Z/"Z) — H!(U, Z/{"Z) is an isomorphism
for every 0 < € < g9 and n. In the same way, there exists €1 > 0 such that for every 0 < ¢ < e; and n
the canonical map H:(U(e)z, Z/0™Z) — H!(Uz,Z/{"Z) is an isomorphism. Put €2 = min{eq, &1}
and U = U(ez). Then U’ is quasi-compact and both of the canonical maps
are isomorphisms.
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On the other hand we have the canonical isomorphisms

n n
lim HY(U, Z/0"Z) = Hi(U%, Zy), lim HY(Ug, Z/0"7) = H](Ug, Zy)
n n

(see [Hub98b, Theorems 3.1 and 3.3]). Therefore the canonical homomorphisms
Hé(U%,Zﬁ) I Hé(UF7Z€)7 Hé(U%vzf’) I Hé(Ufazf’)
are isomorphisms. O

THEOREM 7.2.3. Assume that the characteristic of K is equal to 0. Let X be a quasi-compact
separated rigid space over K. Then for every o € WL, the number

2dim X

Tr(ow; He (X, Qo) = Y (=1) Tr(o; Hi(Xgz, Qu))
1=0

is an integer that is independent of £.

Proof. Let £ and ¢’ be prime numbers which do not divide ¢ and o € I/V["{F . We prove by induction
on dim X that the numbers

Tr(ow; H: (X, Qr)),  Tr(ow; H (X5, Qr))

are integers and are equal. We may assume that X is reduced. Let Z be the singular locus of X. It is
a closed analytic subspace whose dimension is strictly less than dim X. Thus we have only to show
our claim on Hé(U?, Qy) and Hé(U?, Qur), where U = X\ Z. Take an open subspace U’ C U as in
Theorem 7.2.2. Then we have the isomorphisms

Hé(u%7 QZ) = Hz(va Qf)’ Hz(U%v Qf/) = Hé(U?, QZ’)
by Theorem 7.2.2. Therefore by Theorem 7.1.6 the numbers
Tr(ow; Hi (U, Qr)),  Tr(ow; HI(Ug, Qr))

are integers and are equal. This completes the proof. ]
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