ON FACTORS OF A GRAPH

EBAD MAHMOODIAN

Let G be a graph with multiple edges. Let f be a function from the vertex set $V(G)$ of G to the non-negative integers. An f-factor of G is a spanning subgraph F of G such that the degree (valence) of each vertex x in F is $f(x)$. A theorem of Fulkerson, Hoffman and McAndrew [1] gives necessary and sufficient conditions to have an f-factor for a graph G with the odd-cycle property; i.e., if G has the property that either any two of its odd (simple) cycles have a common vertex, or there exists a pair of vertices, one from each cycle, which is joined by an edge. They proved this theorem using integer programming techniques, with a rather long proof. We show that this is a corollary of Tutte's f-factor theorem.

The f-factor theorem of Tutte with a slight modification in notations and formulation is as follows.

Theorem [2]. Let G be a graph with multiple edges, and let f be a non-negative function defined on $V(G) . G$ contains an f-factor if and only if for every partition (S, T, U) of vertices of G, we have
(1) $\sum_{a \in T} f(a) \leqq \sum_{a \in S} f(a)+\sum_{\substack{a \in T \\ b \in T \cup}} c_{a b}-q(S, T)$
where $c_{a b}$ is the number of edges joining a to b, and $q(S, T)$ is the number of components C of $\langle U\rangle$ (the induced subgraph of G on the vertices U) such that

$$
\begin{equation*}
B(C, T)=\sum_{a \in C} f(a)-\sum_{\substack{a \in C \\ b \in T}} c_{a b} \tag{2}
\end{equation*}
$$

is odd. (For simplicity we write $a \in C$ instead of $a \in V(C)$.)
Corollary [1]. Assume that G has the odd-cycle property. Then G has an f-factor if and only if
i) $\sum_{a \in V(G)} f(a)$ is even, and
ii) for every partition (S, T, U) of $V(G)$
(3)

$$
\sum_{a \in T} f(a) \leqq \sum_{a \in S} f(a)+\sum_{\substack{a \in T \\ b \in T \cup U}} c_{a b}
$$

Proof. The necessity of the conditions is trivial.

[^0]Define $\delta(S, T)$ to be the difference of both sides in (1), i.e.

$$
\delta(S, T)=\sum_{a \in S} f(a)-\sum_{a \in T} f(a)+\sum_{\substack{a \in T \\ b \in T \cup}} c_{a b}-q(S, T) .
$$

Substituting from (2)

$$
\begin{aligned}
& \delta(S, T)=\sum_{a \in S} f(a)-\sum_{a \in T} f(a)+\sum_{\substack{a \in T \\
b \in T}} c_{a b} \\
& \quad+\sum_{c \subset U}\left(-B(C, T)+\sum_{a \in C} f(a)\right)-q(S, T) \\
& =\sum_{a \in S \cup U} f(a)-\sum_{a \in T} f(a)+\sum_{\substack{a \in T \\
b \in T}} c_{a b}-\sum_{C \in U} B(C, T)-q(S, T)
\end{aligned}
$$

or
(4) $\delta(S, T)=\sum_{a \in V(G)} f(a)-2 \sum_{a \in T} f(a)+\sum_{\substack{a \in T \\ b \in T}} c_{a b}-\sum_{c \subset U} 2\left\lceil\frac{B(C, T)}{2}\right\rceil$
where $[X]=$ minimal integer $\geqq x$.
To prove sufficiency, we show that if G satisfies the hypothesis, then there exists a partition (S, T, U) for which $\delta(S, T)$ is minimal and $q(S, T) \leqq 1$. If $\sum_{a \in V(G)} f(a)$ is even, then (4) implies that $\delta(S, T)$ is even; hence (1) is satisfied.

Let (S, T, U) be any partition of $V(G)$ for which $\delta(S, T)$ is minimal. Then at most one of the components of $\langle U\rangle$ can have any odd cycles; all the other components are bipartite graphs. Let C be one such component; $V(C)=$ $C_{1} \cup C_{2}$, where $\left\langle C_{1}\right\rangle$ and $\left\langle C_{2}\right\rangle$ are totally disconnected subgraphs.

Let C^{\prime} be any component of $\langle U\rangle, C^{\prime} \neq C$; then

$$
B\left(C^{\prime}, T \cup C_{1}\right)-B\left(C^{\prime}, T\right)=-\sum_{\substack{a \in \in^{\prime} \\ b \in C_{1}}} c_{a b}=0
$$

Hence,

$$
\begin{aligned}
\delta\left(S \cup C_{2}, T \cup C_{1}\right)-\delta(S, T)=-2 \sum_{a \in C_{1}} f(a) & +\sum_{\substack{a \in C_{1} \\
b \in T}} c_{a b}+\sum_{\substack{a \in T \\
b \in C_{1}}} c_{a b} \\
& +\sum_{a, b \in C_{1}} \epsilon_{a b}+2\left[\frac{1}{2} B(C, T)\right] .
\end{aligned}
$$

Since C_{1} is totally disconnected, $\sum_{a, b \in C_{1}} c_{a b}=0$. A similar relation holds with C_{1} replaced by C_{2}. Adding those two we find

$$
\begin{aligned}
{\left[\delta\left(S \cup C_{2}, T \cup C_{1}\right)-\delta(S, T)\right]+[\delta(S \cup} & \left.\left.C_{1}, T \cup C_{2}\right)-\delta(S, T)\right] \\
& =-2 B(C, T)+4\left[\frac{1}{2} B(C, T)\right] .
\end{aligned}
$$

The right side is 0 if $B(C, T)$ is even, and 2 if $B(C, T)$ is odd. As all δ 's are even, either $\delta\left(S \cup C_{1}, T \cup C_{2}\right)$ or $\delta\left(S \cup C_{2}, T \cup C_{1}\right)$ equals $\delta(S, T)$, i.e., is also minimal.

In this manner all bipartite components of $\langle U\rangle$ can be removed, leaving a partition $\left(S^{*}, T^{*}, U^{*}\right)$ in which U^{*} has at most one component. Hence $q\left(S^{*}, T^{*}\right)$ $\leqq 1$, while $\delta\left(S^{*}, T^{*}\right)$ is minimal.

There are further applications of Tutte's f-factor theorem in [3].

References

1. D. R. Fulkerson, A. J. Hoffman and M. H. McAndrew, Some properties of graphs with multiple edges, Can. J. Math. 17 (1965), 166-177.
2. W. T. Tutte, A short proof of the factor theorem for finite graphs, Can. J. Math. 6 (1954), 347-352.
3. - Spanning subgraphs with specified valencies, Discrete Math. 9 (1974), 97-108.

Community College of Philadelphia, Philadelphia, Pennsylvania

[^0]: Received June 14, 1976. The contents of this note are taken from the author's Ph.D. Thesis, Department of Mathematics, University of Pennsylvania, supervised by Professor Albert Nijenhuis.

