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Abstract. I will review the basic principles and some of the most recent 
developments of parameter-free reconstructions of cluster mass profiles from 
the distortions of background galaxy images. 

1. Introduction 

The discovery of cluster lensing in the form of giant luminous arcs was 
immediately recognized as a new tool for determining the mass in the inner 
part of the lensing clusters. Less dramatic image distortions as seen in 
arclets (Fort et al. 1988) and in the coherent image alignments (Tyson et al. 
1990) have increased the angular extent over which mass estimates can be 
obtained - out to about 1 Mpc in some cases (see, e.g., Bonnet et al. 1994). 
A detailed account of the observation, theory and modeling of arc clusters is 
given in Fort & Mellier (1994). In their pioneering paper, Kaiser & Squires 
(1993; hereafter KS) have shown that the observed image ellipticities can 
be directly translated into an estimate for the surface mass distribution of 
the cluster lens, without the need for fitting parametrized mass models. 
The underlying idea is that the image distortions are caused by the tidal 
gravitational field, which in turn is directly related to the mass distribution. 
The KS inversion method, described in the next section, has already been 
applied to a number of clusters (Fahlman et al. 1995; Smail et al. 1995), 
and further applications can be found elsewhere in these proceedings (see 
contributions by N. Kaiser, C. Seitz); at least in one case a surprisingly 
large mass-to-light ratio was found (Fahlman et al. 1995). The faint level 
to which background galaxies can now be imaged, with the corresponding 
high number density of objects, together with the imaging capability of 
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the HST, the improvements in ground-based imaging, the increase of the 

field of view, and the development of improved inversion techniques, render 

the mass inversion from image distortion a unique tool for studying the 

mass distribution in clusters of galaxies. Here I shall review some of the 

latest developments of techniques for the reconstruction of the cluster mass 

distribution. 

2. The "classical55 Kaiser & Squires method 

The shear (or tidal field) is described by a traceless symmetric 2 x 2 tensor, 

or, equivalently, by a two-component quantity, for which we shall use the 

complex shear 7 , which is related to the dimensionless surface mass density 

κ through 7(0) = i / R 2 d ¥ V(e-e')K(#),with V(z) = l/(Zl -iz2)
2. The 

inversion of this convolution-type integral can be easily obtained in Fourier 

space and yields (KS) 

Κ(Θ) = - I ά2Θ' Ue[V*(e - Θ') 7(e')] + * o , (1) 

where Ko is an arbitrary constant, unconstrained from the k = 0 mode of 

the Fourier transform, and an asterisk denotes complex conjugation. Hence, 

(1) yields a parameter-free estimate of the surface mass distribution, up to 

an overall additive constant, which, however, can be constrained due to 

the non-negativity of the mass. Several modifications of this "classical" 

KS method have been recently suggested in the literature: (a) In general, 

the shear 7 is not an observable; however, in the case of weak distortions 

(κ <C 1, | 7 | <C 1) the observable is directly related to 7 (see Sect.3). The 

generalization to the strong lensing regime is described briefly in Sect.4. (b) 

The integral in (1) extends over the 'whole sky', whereas actual data fields 

are finite. The leads to a bias of (1) at the boundaries of the data field; 

the generalization to unbiased estimators are described in Sect.5. (c) The 

integration constant in (1) describes an invariance transformation, which 

leaves image ellipticities unchanged; this invariance can be broken by in-

voking magnification effects, which will be briefly outlined in Sect.6. 

3. The observable: distortion 

Unless stated otherwise, we shall, for simplicity, consider in the follow-

ing the case that the distance ratio Dds/Ds is the same for all back-

ground sources, which is a good approximation for Zd & 0.2. From the 

tensor Qij of second brightness moments one defines the complex eUiptic-

ity χ = (Q11 - Q22 + 2iQi2)/trQ. The locally linearized lens equation yields 

a transformation between the source and image ellipticity, χ(5) = X̂ (x, #), 
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where g = 7 / ( 1 — κ) is the 'reduced shear'. With the fundamental assump-

tion, underlying all these reconstruction methods, that the intrinsic orien-

tation of the sources are random, (χ^) = 0, this translates to an equation 

determining g: (x^8\x,g)) = 0, where here the angular brackets denote a 

local average over images, i.e., one introduces a smoothing length. As it 

turns out, this equation always has two solutions - if g is a solution, so 

is l/<7*. Hence, the observable is the distortion (Kochanek 1990, Miralda-

Escudé 1991, Schneider & Seitz 1995) δ = = ,^Γ*)*. In the case 

of weak lensing (κ < 1, | 7 | < 1), 7 « 6/2 « - (χ) / 2 can be 'observed'. 

The resulting value for δ is independent of the intrinsic ellipticity distri-

bution, but the accuracy of the estimate decreases for broader intrinsic 

distributions. If the intrinsic ellipticity distribution is known, a maximum 

likelihood estimate yields more precise values for <$, except if the former is 

a Gaussian. 

4. Non-linear generalization of K S 

The KS inversion (1) can now be written in a form which accounts also for 

the strong lensing regime, by setting 7 = (1 — n)g: 

η{θ) = - [ d 2 0 ' [1 - K(tf)]Ke[V*(e - θ') g(tf)] + KQ, (2) 

with a = 6(1- sign(det A)yJ\ - \6\2J / \6\2, and A is the Jacobi matrix of 

the lens equation. The integral equation (2) for κ can be solved iteratively 

(Seitz & Schneider 1995a). The resulting mass distribution κ(θ) is then 

determined up to a global invariance transformation (Schneider & Seitz 

1995) 

η(θ) -+ λκ(θ) + (1 - λ ) , (3) 

which is the mass sheet degeneracy pointed out by Gorenstein, Falco & 

Shapiro (1988) and which leaves the observable δ invariant. In the linear 

(weak lensing) case, this reduces to the additive constant in ( l ) . 1 

5. Unbiased finite-field inversions 

The second modification mentioned in Sect.2 was to account for the finite-

ness of the data field U G IR 2 . There are two quick fixes to deal with the 

2 If the redshift distribution of the sources becomes important, i.e., if Dds/Ds is not 
nearly the same for all sources, this degeneracy is broken, but unless the cluster is nearly 
critical, an approximate invariance transformation still holds (Seitz Sz Schneider 1995c). 
For critical clusters, the breaking of invariance is stronger and may be used, at least in 
principle, to fix the mass density uniquely. 
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IR2-integral in (1) : one is to set 7 = 0 for θ £ U (used in the presently 
published reconstructions), or, arguably more reasonable, to extrapolate 
the shear 7 outside ZY, as suggested in Seitz & Schneider (1995a) and quan-
titatively tested in Bartelmann (1995). The success of these fixes depends 
on the mass distribution and the CCD field ZY, as discussed below. The 
road for an unbiased finite-field inversion was paved by Kaiser (1995) who 
pointed out that the gradient of κ is related to a combination of derivatives 
of the shear components. He showed that 

where the vector field U contains first derivatives of the components of the 

shear 7 , or, alternatively, the gradient of Κ = ln( l — κ) is related to the 

reduced shear g and its first derivatives, which is combined to the vector 

field u. In the linear case, where 7 is an observable, the first of eq.(4) 

shows that κ can be determined only up to an additive constant, whereas 

in the general case, Κ can be determined from the observable g only up 

to an additive constant, so that we reobtain the mass sheet degeneracy 

mentioned in the previous section. Either of the two equations (4) can be 

integrated by path integration - selecting the first for illustration, that 

becomes n{9) = JßQ dl · U + κ(0ο)> where öo G ΖΥ is a reference point, and 1 
denotes an integration curve. Averaging over a set { 0 o } of starting points, 

a generalization reads κ(θ) = Σ{θ0}
 w(^o) JßQ dl · U / Σ { 0 Ο } w(Oo) + const., 

where the ιν(θο) are arbitrary weight factors; this yields a set of unbiased 

finite-field inversions. There remains a huge freedom in selecting the set 

{0o}> the weights ιν(θο) and the curves connecting θο and 0, and different 

choices have been suggested by Schneider (1995) and Kaiser et al. (1995). 

The reason why different choices are not equivalent is that the vector field 

U is obtained from observations and thus is not a gradient field in general -

if it were a gradient field, even a single line integration would be sufficient. 

The 'noise' of U is handled differently by different choices. However, the 

rotational component of U is a noise contribution which is readily identified 

as such, and one can construct a finite-field inversion formula which is 

designed to filter out this rotational component, 

where the kernel function H was explicitly constructed in Seitz & Schneider 
(1995b); in that paper we have also performed extensive simulations on 
synthetic data to show that (5) is the best unbiased finite-field method yet 

VK = U and VK = u, (4) 
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published. The application of (5) is not more complicated than that of (1) , 
so there is no reason not to apply this unbiased estimator. 2 

6. Breaking the degeneracy: Magnification effects 

Under the transformation (3) , the magnification transforms as μ - » / / / λ 2 , 
i.e. magnification can be used to break the invariance. Two methods have 
been suggested: Broadhurst et al. (1995; see also contribution by A. Taylor) 
point out that the local number density n ( > S) of background sources with 
flux > S is changed according to n ( > S) = UQ(> S/μ)/μ (no: unlensed 
counts). Assuming locally a power law no oc S~a one has n/no = μ ^ " 1 ) . 3 

Whereas density fluctuations of the background source population may be 
a problem for local determination of the magnification, the effect averaged 
over the whole data field should be able to break the mass sheet degeneracy. 

A second method was proposed by Bartelmann & Narayan (1995, see 
also contribution by M. Bartelmann), using the fact that the surface bright-
ness I of images is unchanged by lensing. A source of angular size RQ thus 
retains its surface brightness, and its image attains the size R = y^/Ißo- If 
(Ro) (I) denotes the mean size of sources with surface brightness J, an es-
timate of the local magnification is μ — ((R) (/)/ (R0) ( i ) ) 2 , where (R) (J) 
is the local average of image sizes with surface brightness I.4 

2 The importance of the modifications of the KS method discussed in this and the 
previous section depends on the data set and the mass distribution. For example, if one 
has a fairly large C C D field centered on an isolated cluster, the finite-field corrections will 
be moderate, and except for the central part of the cluster, the resulting mass distribution 
will only be weakly affected by the non-linear corrections. However, if there is a significant 
mass component close to the edge, or outside of the data field, or if the data field is small, 
or if one is interested in the distribution in the central part of the cluster, these corrections 
no longer provide 'minor modifications', but are essential. The W F P C 2 images of cluster 
centers can be used to construct their mass profile, as demonstrated in the contribution by 
C. Seitz for the cluster 0939+4713 (Seitz et al. 1995), and one should not even think about 
attempting this reconstruction without the two modifications discussed here (of course 
we did to see the - huge - differences). Note that the aperture densiometry (Kaiser 1995), 
also discussed in the contribution by J. Miralda-Escudé, yields unbiased lower limits of 
the mass inside circular apertures. 

3 Whereas the faint blue galaxies have α « 1 and are thus unusable for this effect, the 
red galaxies appear to have flatter counts, α ~ 0.4, so that magnification depletes the 
number counts locally. In fact, this depletion has been seen in the inner part of A1689 
(Broadhurst 1995) and in C10939 (Seitz et al. 1995). 

4 T h e intrinsic size (Ro) (I) can be obtained from images in empty fields. The ac-
curacy of the local determination of μ depends of course on the intrinsic width of the 
size distribution at fixed surface brightness; in the galaxy model used in Bartelmann Sz 

Narayan (1995), this comes out to be Δ In R ~ 0.5. With such a distribution, the size 
effect alone can provide a reasonable estimate of the surface mass distribution. But even 
if the width of the intrinsic size distribution turns out to be significantly broader, the 
size effect averaged over the data field allows breaking of the degeneracy. 
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7. Conclusions 

Unbiased, non-linear cluster reconstruction methods, generalizing the orig-

inal KS method, have been developed; they are quantitatively tested on 

synthetic data, are easy to apply, and therefore should be applied! In cases 

where the center of a cluster should be reconstructed from HST images, 

the modifications discussed here are essential. Currently we (with S. Seitz, 

M. Bartelmann & R. Narayan) are developing an improved inversion tech-

nique which (1) avoids the introduction of an arbitrary smoothing length 

needed for performing the local averages, (2) accounts for both the dis-

tortion and the magnification effects in a single step, and (3) yields an 

objective measure for the quality of the reconstruction. The method max-

imizes the likelihood for the observed image ellipticities and sizes (and/or 

local number densities) with respect to the surface mass density described 

on a grid. In order to avoid overfitting the data, the likelihood function is 

regularized. See the contribution by S. Seitz for some details. Whereas this 

method is significantly more complicated than the direct inversion (1) or 

(5) , the effort is still negligible compared to obtaining the data, and it most 

likely will increase the accuracy of the inversion substantially. 
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