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CENTRALISERS IN WREATH PRODUCTS

by J. D. P. MELDRUM
(Received 28th November 1977)

In this paper, the centraliser of an arbitrary element of a wreath product is
determined. One application of this is to find the breadth of a wreath product
(Theorems 21 and 22), a problem which was raised in discussion with Dr. I. D.
Macdonald. Another application is to groups generated by elements generating their
own centralisers (Theorem 20).

Let A and B be two groups. Define

AB = {f: B -* A; f(b) = e for all but a finite number of elements of 6}

to be a group by defining the product pointwise

fg(b) = f(b)g(b) for all bGB.

Then AB is a restricted direct power of copies of A indexed by elements of B. Define
B as a group of automorphisms of AB by

Then AwrB is the semidirect product of AB by B determined by this definition. A
recent paper on wreath products with a good bibliography is C. Wells (3).

If A and B are finite p-groups, then so is A wr B. The class of a finite p-group will
denote its nilpotency class. The breadth of a finite p-group is defined as b where pb is
the size of the largest conjugacy class of the group. So p* is the index of the smallest
centraliser. If c is the class of the group, there is a conjecture that

A recent paper dealing with this conjecture is Macdonald (1), which has a good
bibliography.

Let fgGG = A wr B, where fGAB, g G B, and let dh G CG(fg), where d E. AB,
h<=B.

Lemma 1. dh G CG(Jg) if and only if
(i) h G CB(g),

{xx) d(xg) = f(xT'd(x)f(xh) for all xGB.

Proof, dh E Ca(Jg) if and only if (dh)~lfg dh = fg if and only if h'ld~'fg dh = fg
if and only if d^fd^h-'gh = fg if and only if gh = g and d-"fdg"h = f,

that is

hECB(g) and d'lfdg" = /*"'.
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162 J. D. P. MELDRUM

The latter condition is

or

Corollary 2. / / dh G Cc(Jg) then

d(xgn+l) = f(xgnrl ... f{xyxd(x)f(xh)... f(xhg")

for all n^O.

Proof. By induction on n, using Lemma 1.

We use o(g) to denote the order of the element g of a group. For reasons that are
obvious from Corollary 2, we will define

fix, g) = f(xg-")f(xg-n+l)... f(xgm)

where

(i) if o(g) is infinite, then f(xg~') = e for i > n and f(xg') = e for / > m,
(ii) if o(g) is finite, then n = 0 and o(g)- 1 = m.
Another aspect that will occur several times is that elements of CB(g) will permute

the left cosets of Gp(g) under the right regular representation since xGp(g)h =
xhGp(g). This permutation will be denoted p(h).

From now on until further notice, h will always denote an element of CB(g)-

Case 1. o(g) is infinite.

In this case f(x,g) is uniquely defined for each left coset of Gp(g). We use p as
defined above. Then p is a homomorphism from CB{g) to the group of permutations of
the left cosets of Gp(g). Since

xhxGp{g) =xh2Gp(g)

if and only if h,Gp(g) = h2Gp(g), the kernel of p is Gp{g).
Let X be the set of left cosets of Gp(g). Partition X into {Xf; i G /} where

X, = {xGp(g):f(x,g) = g,).

So Xi consists of all left cosets of Gp(g) with a common value for f(x,g). Note that /
is finite.

Since p(CB(g)) permutes the left cosets of Gp(g), it permutes the set {f(x, g)} of
values of f(x, g) under an obvious extension of the definition of the action of p(/i). We
consider

H(fg) = {h 6 CB(g); p(h) stabilizes X, for i £ /}.

Thus H(Jg) consists precisely of those h G CB(g) such that f(x, g) = f(xh, g) for all
xGB.
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Theorem 3. Let o(g) be infinite. Then dh G CG(fg) if and only if
(i) h G H(fg),

(ii) d(xg'k+n) = / (Jcg -*^- 1 ) - 1 . . . fixg-'r'fixhg-")... f(xhg-k+n-1) for alln^X and k
is defined by f(xg~') = e= f(xhg'') for I > k, d(xg~') = eifl^k.

Proof._ By definition H(fg)CCB(g). So h&CB(g). Since hEH(fg), we have
f(x, g) = f(xh, g). Hence for sufficiently large n, d(xg~k+n) = e. Also for only finitely many
left cosets of Gp{g) do we have f(xg') ^ e for any i. So d is well defined as an element of
AB. From (ii), it is obvious that d(xg) = f(x)'}d(x)f(xh) for all xElB. Thus dh satisfies the
conditions of Lemma 1 and we have sufficiency.

We now consider necessity. We can assume the results of Lemma 1 and Corollary
2. Let k be defined as in (ii) of Theorem 3. Since d(xg~') = e for sufficiently large
values of /, we can use Corollary 2 and the definition of k to deduce that d(xg~') = e
for / > k. For sufficiently large values of n, we have by definition

f(x,g) = f(xg " » ) . . . f(xg'k+n-'),

f(xh, g) = Hxhg~k)... f{xhg-k+n'1).

Also by Corollary 2,

d(xg-k+") = Hxg-k+l"Y'... Hxg-krld(xg-k)f(xhg-k) ... Hxhg-"^-')

= f(x,grlf(xh,g)

for sufficiently large values of n, and this must be e as d G.AB. Hence f(x,g) =
f(xh,g). This must hold for all values of x. Thus h GH(fg). We have also shown
above that d(xg~') = e xil^k and then the necessity of (ii) follows from Corollary 2.

Corollary 4. Let g G B have infinite order. Then Cc(fg) is isomorphic to H(Jg).

Proof. From Theorem 3, using the map dh-*h and noting that d is uniquely
defined, given / and h.

Corollary 5. Let gE.B have infinite order, and satisfy CB(g) = Gp(g). Then
Coifg)=Gp(fg).

Proof. Immediate from Corollary 4.

Lemma 6. Let K C CB(g)- Then the orbits of p(K) consist of left cosets of
KGp(g).

Proof. This is verified easily directly from the definition of p.

Corollary 7. Let g EB have infinite order. Let f G AB satisfy f(x,g) = e for all
x G B. Then CG(fg) is isomorphic to CB(g).

https://doi.org/10.1017/S0013091500016278 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016278


164 J. D. P. MELDRUM

Proof. This follows immediately from Theorem 3 and Lemma 6.

Corollary 8. Let gGB have infinite order. Let f G AB satisfy |{/(JC, g); xGB} | ? 2.
/ / CB(g)IGp(g) is torsion-free, then CG(Jg) = Gp(fg).

Proof. If X-, = {xGp(g); f(x, g) = g,} and g-,* e, then X-, is finite since / G AB. So Xt

cannot satisfy Lemma 6 for any K C CB{g) such that K D Gp(g) if CB(g)IGp(g) is
torsion-free. Now apply Corollary 4.

Corollary 9. Let g E. B have infinite order. If X, = {xGp(g); f(x, g) = g,} consists of
a single coset of Gp(g) for some gh then CG(g) = Gp(fg).

Proof. If \Xj\ = 1, then Xt cannot be a union of left cosets of Gp(g) of the form
xKGp(g) with K3 Gp(g). Now apply Lemma 6 and Corollary 4.

Corollary 10. Let B have a set of generators of infinite order. Then G can be
generated by a set of elements which generate their own centralisers.

Proof. Let B = Gp{bt; i G /, o{b{) is infinite).

By choosing suitable /ff of the type //,(*) = e for all but x = bt, fjj(bj) = at, where a, runs
through a generating set of A, we can apply Corollary 9 to get the result.

There are a number of results along these lines which could be stated. But we will
turn to the next case now.

Case 2. o(g) is finite.

Let o(g) = m. In this case f(x, g) is not uniquely defined for a given coset of
Gp(g). For this case we have that

fix, g) = f(x)f(xg)... f(xgm-1).

Note that

/(**,*) = /(*)-'/(*, *)/(**")

Lemma 11. Let gGB have finite order m. Let dh e Ca(fg)- Then f(xh,g) =
d(x)xf(x, g)d(x).

Proof. By Corollary 2, and using the fact that gm = e,

d(x) = d(xgm) = f(xgm-lyl... /(*)-'</(*)/(*/!). ..

= f(x,gyld(x)f(xh,g)

giving the result we want, after a slight rearrangement.
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Define K(fg) by

K(Jg) = {/i£ CB(g); f(xh, g) is a conjugate of f(x, g) for all x G J3}.

Lemma 12. K(Jg) is a subgroup of B, and g G K(fg).

Proof. Since /(xg, g) = /(*)-'/(*, g)/(x) and g G CB(g), so g G X(/g) and K(fg) is
not empty. Let ht, h2G K(fg). Suppose

f(xhh g) = b,(x)-l?(x, g)bi(x), ( = 1,2.

Then f(x, g) = bi{x)f{xhi, g)b,{x)-\ / = 1,2. So

?, g) = b2(xhdhxhu g)b2(xh{)-1

Hence hth J1 G K(fg) and we have proved the lemma.

Lemma 13. Let g have finite order. Let dh G CG(fg). Then {f(x, g); x G yGp(h) for
some fixed y} forms a conjugacy class in A.

Proof. Directly from Lemma 11.

Lemma 14. // f(x, g) # e for some x G B and g G B has finite order, then dh G
satisfies o(h) is finite.

Proof. This follows quickly from Lemma 13.

Theorem 15. Let o(g) be finite. Then dh G CG(Jg) if and only if
(i) h G K(fg),

(ii) d(xg) = f(xyld(x)f(xh),
(iii) // f(x, g) r6 e for some x G B, then o(h) is finite,
(iv) f(xh, g) = d(xTxhx, g)d(x).

Proof. We prove necessity first. The definition of K(fg) and Lemma 11 show that
(i) and (iv) are necessary. Lemma 14 shows the necessity of (iii). Lemma 1 shows the
necessity of (ii).

Since K(Jg)C CB(g), (i) and (iv) give sufficiency by Lemma 1.
Theorem 15 is just a restatement of earlier results which enables us to specify

exactly the elements of CG(fg). Given fg G G, we first determine K(fg), which we
know contains Gp(g). If f(x, g) # e for some x G B, then we can only choose elements
h in K(fg) of finite order. Any power of g is such an element. We can now determine
dEAB such that dh G CG(fg). Theorem 15 (iv) determines the coset of CA(f(x, g)) to
which d(x) belongs. Then Theorem 15 (ii) determines the values of d{xg') for
1 =£ i < o(g). If f(x, g) = e for all x G B, then there is no restriction on the choice of h
in K(fg). Note that any possibility of a double definition for d(x) due to Theorem 15
(ii) is taken care of by Theorem 15 (iv) and if d(x) is chosen to satisfy Theorem 15
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(iv), then d(xg) defined by (ii) satisfies

d(xg)-[f(xg, g)d(xg) = f(xhyld(xylf(x)f(xg, g)f(xyld(x)f(xh)

= f(xh)-ld(xylf(x, g)d(x)f(xh)

= f(xhylf(xh,g)f(xh)

= f(xgh,g)

namely Theorem 15 (iv) with xg replacing x.
Let X be the set of left cosets of Gp{g) in B.

Theorem 16. Let fg G G, and let o(g) be finite. Then there is a homomorphism
from CG(fg) onto K(fg) sending dh -> h, whose kernel is isomorphic to
nxE7-C^(/(jc, g)), where T is a left transversal of Gp(g) in B and XI denotes
restricted direct product.

This result follows from the remarks above. We look at two special cases.

Lemma 17. Let g G B have finite order. Then C0(g) is isomorphic to
(Ux£T A)CB(g).

This is a well-known result, namely dh G. CG(g) if and only if h G CB(g) and d is
constant on left cosets of Gp(g).

Lemma 18. Let e^ f G AB. Then K(f) is a torsion group and CG(J) is isomorphic
to (T1X(EB CA(f(x)))K(f).

Proof. This follows directly from Theorems 15 and 16 once we remember that
f(x, e) = f(x) and f(x, g) # e for some x, since e?± f.

Lemma 19. Let A and B be non-trivial groups. Let g £ f l have finite order. Then
CG(Jg)> Gp{fg).

Proof. Let fg satisfy CG(fg) = Gp(fg). Then we must have K(fg) = Gp(g) by
Theorem 16. Also given dh G CG(Jg), d must be uniquely determined by h, as h = gl

for some i and then dh = (fg)'. So the kernel of the homomorphism described in
Theorem 16 must be the identity. But this is obviously impossible. If g = e, the result
follows directly from Lemma 18.

Theorem 20. Let G = A wr B, A and B be non-trivial groups. Then G is generated
by a set of elements which generate their own centralisers if and only if B can be
generated by a set of elements all of which have infinite order.

Proof. The sufficiency follows from Corollary 10 and the necessity from Lemma
19.

https://doi.org/10.1017/S0013091500016278 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016278


CENTRALISERS IN WREATH PRODUCTS 167

As an application of this work we consider the breadth of the wreath product of
two finite p-groups.

We first note that the breadth of a finite p-group G is given by b(G) = b, where p*
is the index of the smallest centraliser in G. Let G = Awrfi where A and B are finite
p-groups. By Theorem 16

Cc(/g)= n CA(f(x,g))K(fg)
xer

where fg G G. So we seek to make CA(f(x, g)), K(Jg) and T as small as possible. But
there is a conflict between the first and the last two of these.

Let A have order p", B have order pb and exponent p ' . Let the breadth of A be w.

Theorem 21. Let G = A wr B have constants as defined above. Then the breadth
of G is

(i) ap" - (a - w)pb~' + b - e

if A has two distinct conjugacy classes of maximal size,
(ii) apb -(a- w)p"'e + max{y, b-e-x}

if A has only one conjugacy class of maximal size, x is defined by p *"" is the size of the
second largest conjugacy class in A, y is defined as pb'y = min(|CB(g)|; O(g) = p').

Proof. Let g E B have order p'. Then / « e, and the transversal T of Gp(g) has
order p*"'.

(i) Suppose A has two distinct conjugacy classes of maximal size. Then choose /
such that f(x, g) lies in one of these conjugacy classes for all but one of the cosets of
Gp(g), and in the other one for the remaining coset of Gp(g). This will ensure that
K(fg)= Gp(g). So if we choose g to have maximal order, namely p ' we have made
Cdfg) as small as possible. Hence the breadth of G is the exponent of

apb+bj-l,a-w)pb-' . t _ apbHa-w)pl>-'+b-e

i.e., the breadth of A is apb - (a - w)pb~' + b - e.
(ii) Suppose A has only one conjugacy class of maximal size, and let x, y be

defined as in the statement of the theorem. If we try to follow the same process as in
(i), we find that either all the f(x, g) lie in the same (maximal) conjugacy class, and
then K(Jg) = CB(g), or one of J{x, g) lies in the second largest maximal class and then
K(fg) = Gp(g). In the first of these cases we get a conjugacy class size

apb+bl-(a-w)pl>-' _ p*>-y = papb-(a-w)p>'-'+y

Note that b — y > e, i.e. b — e s= y by definition of y. In the second case we get a
conjugacy class of size

apb+blp(a-wXpb-'-l) . a-w+x . e

_ — apb— (a-w)pb-'-x+b-e

So the breadth of G is at least

apb - (a - w)pb~' + max{y, b-e-x}.

https://doi.org/10.1017/S0013091500016278 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016278


168 J. D. P. MELDRUM

If we choose g not to be of maximal order then we would replace e by j < e in the
formula, and increase the last term by max {e — j , y ' - y } , where pb'y =
m\n(\CB{g)\\o(g) = pi).

The second term would decrease by

(a - w)p"-' -(a - w)pb~' = (a - w)p"-'(pe-> - 1).

Obviously e-j^(a - w)pb~'{p'~' - 1). But b - y' s* ; and so y'^b-j. Hence y ' - y «£
b - j . It is easy to check that pz - z s= pz~' for positive integral values of z. Hence
(a - w)p"-'- (y'- y) s? (a - w)p"-'-1 and thus

(a - w)pb~' - ( a - w)pb-' - (y ' - y) s (a - M O P * " ' " 1 - (a - H O P * " ' ^ 0.

So by choosing g not to be of maximal order we get a smaller conjugacy class. This
finishes the proof of the theorem.

Theorem 22. Let A be a cyclic group of order p", B a cyclic group of order pb.
Then the breadth of A wr B is equal to the class of Awr B less one if and only if a = 1
orb = 1.

Proof. The class of A wr B is pb + {a - l)p*"'(p - 1), and the breadth of A wr B
is apb — a. Then

ap" ~a=pb + (a- \)p"~\p - 1) - 1 if and only if

(a - l)(p* -pb'\p - 1)) = a - 1 if and only if

( a - l ) p * - ' = a - l if and only if

a = 1 o r p M = 1.

This gives the result.

The case a = 1 might have been expected. But the case b = 1 is somewhat surprising.
The class of general wreath products is given by D. Shield (2). To do a precise
comparison between this and the breadth of A wr B would involve a good deal of
analysis which would not be in character with the rest of this paper.
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