But from the identity (1),

$$
\psi_{x}^{\prime}\left(x_{u}, y_{u}, u\right) \cdot \frac{d x_{u}}{d u}+\psi_{v}^{\prime}\left(x_{u}, y_{u}, u\right) \frac{d y_{u}}{d u}+\psi_{u}^{\prime}\left(x_{u}, y_{u}, u\right) \equiv 0 ;
$$

hence (1) and (2) are equivalent to

$$
\psi\left(x_{u}, y_{u}, u\right) \equiv 0 \text { and } \psi_{u}^{\prime}\left(x_{u}, y_{u}, u\right) \equiv 0 .
$$

Any envelope-locus is, therefore, represented in the relation between x and y which is the eliminant of u from the equations

$$
\psi(x, y, u)=0, \psi_{u}^{\prime}(x, y, u)=0
$$

The full locus of this eliminant-equation may be geometrically described as
(i) the locus of ultimate points of intersection of "consecutive" curves of the family ; and therefore as
(ii) the locus of points in the $x y$-plane at which the equation $\psi(x, y, u)=0$ has two roots in u equal ;
it obviously includes, on the description (i), the envelopes and multiple-point loci ; and the description (ii) of this locus leads to the conclusion that the envelopes are also included in the " p-discriminant" of the differential equation that represents the family.

On the teaching to beginners of such transformations as

$$
-(-a)=+a .
$$

By D. C. M•Intosh, M.A.

