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The main objective of the present work is to explain the physical mechanisms occurring
in droplet-laden homogeneous shear turbulence (HST) with a focus on the modulation of
turbulence kinetic energy (TKE) caused by the droplets. To achieve such an objective,
first, we performed direct numerical simulations (DNS) of HST laden with droplets
of initial diameter approximately equal to twice the Taylor length scale of turbulence,
droplet-to-fluid density and viscosity ratios equal to ten and a 5 % droplet volume fraction.
We investigated the effects of shear number and Weber number on the modulation of
TKE for Sh ~ 2 and 4, and 0.02 < We,,,s < 0.5. Then, we derived the TKE equations for
the two-fluid, carrier-fluid and droplet-fluid flow in HST and the relationship between the
power of surface tension and the rate of change of total droplet surface area, providing
the pathways of TKE for two-fluid incompressible HST. Our DNS results show that, for
We, s = 0.02, the rate of change of TKE is increased with respect to the single-phase
cases, for We,,s = 0.1, the rate of change of TKE oscillates near the value for the
single-phase cases and, for We,,,s = 0.5, the rate of change of TKE is decreased with
respect to the single-phase cases. Such modulation is explained from the analysis of
production, dissipation and power of surface tension in the carrier-fluid and droplet-fluid
flows. Finally, we explain the effects of droplets on the production and dissipation rate
of TKE through the droplet ‘catching-up’ mechanism, and on the power of the surface
tension through the droplet ‘shearing’ mechanism.

Key words: homogeneous turbulence, multiphase flow

1. Introduction

The interaction of dispersed droplets and turbulence is important in many natural and
industrial processes, e.g. rain formation (Shaw 2003), liquid-liquid emulsion (Berkman
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& Calabrese 1988), spray cooling (Qin et al. 2014) and spray atomization in combustors
(Sirignano 1983; Faeth, Hsiang & Wu 1995). In these flows the droplet volume fraction is
typically of the order of 1-10 % such that the turbulence is altered by droplet feedback
on the surrounding fluid and by droplet—droplet interactions, placing the flow in the
four-way coupling regime (Elghobashi 1994). A review on the state-of-the-art of direct
numerical simulations (DNS) of turbulent flows laden with droplets or bubbles is provided
by Elghobashi (2019).

The main objective of the present work is to explain the physical mechanisms
occurring in droplet-laden homogeneous shear turbulence (DLHST) with a focus on the
modulation of turbulence kinetic energy (TKE) caused by the droplets when compared
with single-phase homogeneous shear turbulence (HST). Kida & Tanaka (1992) explained
the physical mechanisms of TKE production in single-phase HST via DNS. Mashayek
(1998) used DNS to study the modulation of HST at low Mach number by droplets of size
smaller than the Kolmogorov length scale and found that the presence of non-evaporating
droplets decreases the TKE of the carrier phase. Ahmed & Elghobashi (2000) explained
the physical mechanisms responsible for the modulation of TKE budget in HST by
sub-Kolmogorov solid particles via DNS and found that the presence of particles can
decrease TKE production. Nicolai et al. (2014) conducted both DNS and experiments
for the one-way coupling regime of HST laden with solid particles of the size of the
Kolmogorov length scale and reported the preferential concentration and orientation of
particle clusterings. Tanaka & Teramoto (2015) and Tanaka (2017) performed DNS of
HST laden with finite-size particles of diameter ten times the Kolmogorov length scale
(Do ~ 10n) and reported enhanced dissipation near the particle surface, in accordance
with the findings of Lucci, Ferrante & Elghobashi (2010) for particle-laden decaying
isotropic turbulence with particles from 16 to 35 Kolmogorov length scales. Kasbaoui,
Koch & Desjardins (2019a) studied clustering of sub-Kolmogorov particles in HST via
DNS and found three mechanisms leading to significant particle clustering. Kasbaoui
(2019) performed DNS of particle-laden HST in the two-way coupling regime and found
that the ratio of TKE production to dissipation increases or decreases with respect to that
of the single-phase case depending on the particle mass loading.

In comparison to solid particles, droplets can deform, develop internal circulation, break
up and coalesce with other droplets. Thus, with respect to the modulation of HST with
solid particles, the interaction of finite-size droplets and HST is expected to reveal new
physical mechanisms. For decaying isotropic turbulence laden with droplets of initial
diameter of Taylor length-scale size, via DNS, Dodd & Ferrante (2016) explained the
physical mechanisms of droplet/turbulence interaction and the pathways of TKE between
droplets, carrier fluid and the interface between the two. Their results showed that the
droplet-carrier-fluid interface represents a sink or source of TKE through the power of the
surface tension due to the fluctuating velocity, ¥, , which acts as a sink (source) of TKE
when the total surface area of the interface increases (decreases). In decaying isotropic
turbulence, the absence of mean shear translates to the absence of production of TKE.
Thus, the next step of complexity in our understanding of droplet/turbulence interaction,
including the effects of shear on droplets and the effects of droplets on the production of
TKE, is studying DLHST.

The DNS of droplet-laden statistically stationary homogeneous shear turbulence
(SS-HST) has been studied by Rosti ef al. (2019). In our opinion, this work has three
weaknesses, which we discuss herein. Firstly, in § 1 of their study the following question
was posed as one of their three objectives: ‘How does the dispersed phase change
the turbulent kinetic energy budget?’ In experiments, HST exhibits unbounded growth
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of length scales and of TKE (Tavoularis & Karnik 1989). Statistically stationary HST
artificially constrains the growth of the large scales of the turbulent flow to the domain
size, which produces ‘bursting’ events, i.e. sudden reductions of TKE. These sudden
modulations of TKE are not due to the droplets, and affect the droplet dynamics as well.
Thus, the bursting events have an effect on the rate of change of TKE, which may mask
the effects of droplets on the TKE budget. Thus, while for single-phase flows, Sekimoto,
Dong & Jiménez (2016) found similarities between SS-HST and the logarithmic layer in
wall turbulence, we discourage its use for studying two-way or four-way coupling effects
in particle-, droplet- or bubble-laden turbulent flows. This is analogous to the critique of
studying two-way coupling effects for particle-laden forced isotropic turbulence, which
forces the turbulence to a statistically stationary state, instead of decaying isotropic
turbulence (Elghobashi & Truesdell 1993; Elghobashi 2019; Ferrante & Elghobashi 2022,
p- 93). Secondly, Rosti et al. (2019) used the standard second-order Adams—Bashforth
(AB») scheme to integrate the governing equations in time. This scheme is weakly unstable
for simulations of HST performed with higher resolutions and longer simulation times
(Schumann, Elghobashi & Gerz 1986; Kasbaoui et al. 2017). Although no instability was
reported by Rosti et al. (2019), the AB, scheme can cause a spurious increase of the TKE
energy spectrum at high wavenumbers, as shown herein in § 2.2.1. Finally, in their § 3.3,
Rosti et al. (2019) included the relationship ¥, = (—o/V,,) dA/dt between the power of
the surface tension due to the fluctuating velocity and the rate of change of the total
droplet surface area. While such a relationship was derived by Dodd & Ferrante (2016)
for isotropic turbulence, such an equation is not applicable to HST due to the presence of
a mean velocity with shear. The equations for the power of surface tension for HST are
derived from basic principles in Appendix C and reported and analysed in § 3.3.4.

In the present work we consider finite-size droplets larger than the Taylor length-scale
size at the time of release (Do ~ 219, where A is the Taylor length scale and the subscript
0 means at droplet release time) in HST without gravity. We ensure that the simulation
is physically meaningful by monitoring the expansion of the length scales, and we ensure
that the two-point velocity autocorrelation in the x direction diminishes to zero in less
than half the length of the computational domain. We perform a parametric study of DNS
of DLHST in which we vary the Weber number based on the root-mean-square (r.m.s.)
velocity of turbulence and the shear number.

The paper is organized as follows. The mathematical description is presented in § 2,
which includes the governing equations (§2.1) and the numerical method FastRK3P*
(§2.2) that solves the issue of weak instability for simulating HST while being
computationally efficient. Next, the results are presented and discussed in § 3, starting with
a description of the initial conditions and the droplet parameters (§ 3.1). We introduce the
TKE budget for droplet-laden flows in § 3.2, which is derived in Appendix B. We compare
the time evolution of TKE in single-phase HST to that of DLHST, and explain the physical
mechanisms of the droplet/turbulence interaction and the modulation of TKE due to the
droplets in § 3.3. Finally, we summarize the findings of this work in § 4.

2. Mathematical description
2.1. Governing equations

The non-dimensional governing equations for an incompressible flow of two immiscible
fluids with mean shear in the absence of gravity are

V.u=0, 2.1a)
972 A9-3
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where u = u(x, 1) is the fluid fluctuating velocity, S = dU/dz is the mean shear rate
where U is the mean velocity, p = p(x, ) is the pressure, p = p(x, ) is the density, u =
w(x, 1) is the dynamic viscosity, 8’ = §'(x, 1) is the strain-rate tensor of the fluctuating
velocity (8" = %[Vu + (Vu)T)). Here, Re and We are the Reynolds and Weber numbers,

respectively, which are defined as

Ugﬁc’ We — pUL
He o

Re = (2.2a,b)

where U , L, Oc» ite and ¢ denote, in order, the reference dimensional velocity, length,
carrier-fluid density, carrier-fluid dynamic viscosity and surface tension coefficient used
to non-dimensionalize the governing equations (2.1a) and (2.15). The subscripts ¢ and d
indicate the carrier fluid and droplet fluid, respectively. Throughout the paper, all quantities
are dimensionless unless they are accented with ~. Also, note that Re = 1/v., where v, =

te/pe and We = 1/o; thus, we may use Re~! or We™! instead of v, or o throughout the
paper. We have chosen to non-dimensionalize the density and dynamic viscosity in (2.15)
by choosing the carrier fluid as the reference phase, such that p. = 1 and p. = 1. Here,
[ = fo(x, 1) is the force per unit volume due to surface tension,

fo =Kd($)n, (2.3)

where k = k(x, t) is the curvature of the droplet interface, n = n(x, t) is the unit vector
that is normal to the interface and directed towards the interior of the droplet, § is the
Dirac § function that is needed to impose f', only at the interface position and s is a
normal coordinate centred at the interface, such that s = 0 at the interface. Figure 1 of
Dodd & Ferrante (2016) illustrates the direction of the interface normal n and the sign of
the interface curvature «.

2.2. Numerical method

In Dodd & Ferrante (2016) we employed a new pressure-correction method for simulating
incompressible two-fluid flows called FastP* (Dodd & Ferrante 2014). This method
reduces the variable coefficient Poisson equation that arises in solving the incompressible
Navier—Stokes equations for two-fluid flows to a constant coefficient equation, which,
depending on the boundary conditions, e.g. for periodic boundary conditions, can be
solved with a fast Fourier transform (FFT)-based, fast Poisson solver rather than multigrid.
FastP* uses the AB, scheme to integrate the governing equations in time. This scheme is
known to be weakly unstable for simulating HST, particularly for higher resolutions and
longer simulation times (Schumann et al. 1986; Kasbaoui et al. 2017). Kasbaoui et al.
(2017) showed that this instability arises from using solutions from previous time steps in
flux calculations. In order to solve this issue, we have developed a new numerical method
for simulating DLHST called FastRK3P* that combines FastP* (Dodd & Ferrante 2014)
with FastRK3 (Aithal & Ferrante 2020). FastRK3 is a third-order Runge—Kutta (RK3)
pressure-correction method for solving the incompressible Navier—Stokes equations,
which requires solving the Poisson equation of pressure only once per time step versus
three times for a standard RK3 methodology (Aithal & Ferrante 2020). Also, Aithal,
Tipirneni & Ferrante (2022) have shown that FastRK3 preserves the temporal accuracy
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of the underlying standard RK3 methodology even if the Poisson equation for pressure is
solved only once per time step versus three for standard RK3. Thus, by combining these
two methodologies, FastRK3P* has two main qualities: first, it does not use the solution
from the previous time step to advance the solution in time, which is required by AB», and,
second, it only requires one solution of the Poisson equation for pressure per time step. The
first quality ensures that the issue of weak instability for simulating HST 1is solved, and
the second makes the solver faster than the standard RK3 or Crank—Nicholson methods
that require solving the Poisson equation multiple times per time step. FastRK3P* can be
seen as the FastRK3 methodology extended to two-fluid immiscible flows, or as FastP*
methodology using FastRK3 time integration instead of AB».

In §2.2.1 we describe the FastRK3P* method that is used to solve numerically
the two-fluid governing equations (2.la) and (2.10). This method is coupled to the
volume-of-fluid (VoF) method presented in § 2.2.2, which is used to capture the motion
of the droplet interface analogously to Dodd & Ferrante (2014).

2.2.1. FastRK3P*

We solve the governing equations (2.1a) and (2.1b) throughout the whole computational
domain, including the interior of the droplets. The domain is a rectangular prism with side
lengths (Ly, Ly, L;) = (2L, L, £), where £ = 1. The governing equations are discretized
in space in an Eulerian framework using the second-order central difference scheme on a
uniform staggered mesh.

The solution algorithm begins by advecting the volume fraction of the droplet fluid,
C(x, t), based on the known velocity field #". The volume fraction has value C = 0 in
the carrier fluid, C = 1 in the droplet fluid and 0 < C < 1 in cells containing the droplet
interface. After computing C"! (§2.2.2), the density and viscosity can be computed at
time level n + 1 as

n+1 — Cn+1 o1 — Cn+1 i
") = paC"(x) + pel x)] } o

W (x) = paC () + pell — L]

Runge—Kutta methods are a family of multi-step iterative methods that construct
approximate velocities at intermediate time steps, starting with the velocity at time level
n, to obtain the velocities at time level n + 1. First, the computation of the approximate
velocity omits the pressure term in (2.10) and the second term on the right-hand side in
(2.1b) is omitted. This term represents the advection of momentum by the mean velocity
and is accounted for later in the solution algorithm by a ‘shear-remapping’ operation. The
momentum operator for the right-hand side of (2.15) with the omitted terms is defined as

1 n+1VCn+1
V. <2lun+lsl>:| + W [Kf} , (25)
e Iz

M) = -V - (uu) — Swi + L [

Re pn-i-l

where the surface tension force, f;, of (2.10) has been substituted by using Brackbill’s
continuum surface force approach (Brackbill, Kothe & Zemach 1992),

f, = %KVC, (2.6)

where p = %(,01 + p2). The interface curvature «"*! is computed using the
height-function method (Cummins, Francois & Kothe 2005) with improvements
developed by Lopez et al. (2009).
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The solution algorithm proceeds by calculating three intermediate velocities for the
three stages of the RK3 algorithm using the FastRK3 method of Aithal & Ferrante (2020)
as

uf = u" + JAM@W"), (2.7)
* n n « 1 Vo
u2 =u —+ At |:—M(u ) + 2M (ul — gAtW>i| s (28)
u; =u + At |:ZM (ul —gAZW) +ZM (l«lZ—gAlW)}, 2.9)

where the V¢ terms represent a pressure-like field that correct u] and u} to be
approximately divergence-free. For FastRK3P*, these terms are defined as

Vv vpl"
oYl (2.10)
pn-l—l 0
The right-hand side of (2.10) is computed and stored at each time step according to the
FastP* pressure splitting
vp1" 1 1 1
[—p] — V' + (— - —) Vp*. @2.11)
P o P po

Next, the advection by the mean velocity is accounted for by the ‘shear-remapping’
operator that maps local values of velocity to values computed upstream according to the
magnitude of the local mean velocity by using Fourier interpolation. The advection of
mean velocity is, thus, applied to 3 with the ‘shear-remapping’ operator as

iy = ul(x — A1SzD). (2.12)
The pressure is computed by solving the Poisson equation (Dodd & Ferrante 2014)
2 n+1 P0 P0 v
vt =v. [(1_ an)Vp*] +EV-u§, (2.13)
where we have split the pressure gradient term (Dong & Shen 2012) as
1 1 1
n+1 n+1 *

where pg = min(pq, p2) and p* = 2p" — p”‘l. The advantage of using (2.14) is that
it yields a constant coefficient Poisson equation (2.13) that can be solved efficiently
using direct methods. Equation (2.13) is solved directly using a combination of a
two-dimensional FFT in the x—y plane and Gauss elimination in the z direction (Schmidt,
Schumann & Volkert 1984). Finally, we update the velocity field by applying the pressure
correction to i3 as

Wt =0 — At |:in"+1 + ( L i) Vp*] . (2.15)
£0 et po
Figure 1 shows the difference in the TKE spectra when using AB> versus the FastRK3
method to simulate HST with shear number (Sh = S/ (uyms/1)) Sho & 2, i.e. case Aj (see
table 1). The TKE spectrum from the AB, method shows unphysical fluctuations at higher
wavenumbers, while the spectrum from the FastRK3 method decays as expected at high
wavenumbers.
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Figure 1. Spectrum of TKE, E(x), for single-phase HST at £S5 = 2 for Rejo = 52 and Sho ~ 2, using the

AB» (dotted line) and FastRK3 (solid line) time-integration schemes. The wavenumber, «, is normalized by
ko =27/L.

Case t r* Re,  Rey Upms e n x 1073 A Y4 7, 9] T
0.0 — 400 134 0181 0.127 1.40 0.017 0.058 0.025 0.096 0.323
01 — 438 135 0.164 0.071 1.61 0.021 0.065 0.033 0.128 0.395

Ay 05 00 519 145 0152 0.038 1.89 0.026  0.075 0.045 0.169 0.490
1.7 12 829 265 0.259 0.072 1.61 0.029 0.091 0.033 0.111 0.352

Ay 03 0.0 530 152 0172 0.060 1.69 0.024 0.069 0.036 0.141 0.401
09 06 932 286 0311 0.205 1.24 0.024 0.072 0.020 0.076  0.233

Table 1. Flow parameters (dimensionless) at initial time (# = 0), shear activation time (¢t = 0.1), droplet
release time (¢, = 0.5 for case Ay, and 7, = 0.3 for case A4) and at the final non-dimensional time (t = 1.7
for case Ay, and r = 0.9 for case A4). Here, r* is defined in (3.4). Cases A, and A4 are the single-phase HST
flow with Sho ~ 2 and Sho &~ 4, respectively (see table 2).

2.2.2. Volume-of-fluid method
In the VOF method the sharp interface between the two immiscible fluids is determined
using the VoF colour function, C, which represents the volume fraction of the droplet
fluid in each computational cell. In our VoF method the interface between the two
fluids is reconstructed using a piecewise linear interface calculation (Youngs 1982). The
interface reconstruction in each computational cell consists of two steps: the computation
of the interface normal n = (ny, ny, n;) and the computation of the interface location.
The algorithm that we use to evaluate the interface normal is a combination of the
centred-columns method (Miller & Colella 2002) and Youngs’ method (Youngs 1982)
known as the mixed-Youngs-centred method (Aulisa et al. 2007).

If we consider a characteristic function x that has value x = 1 in the droplet fluid and
x = 0in the carrier fluid, x is governed by the following advection equation:

3
a—):—l—u-szO. (2.16)
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Figure 2. Schematic showing the shear-periodic boundary conditions in the z direction.

The volume fraction C; j x of grid cell i, j, k is related to the characteristic function x by

the integral relation
1
Cijk() = — f / / X (x, 1) dx, (2.17)
V() V()

where V) is the volume of the i, j, k cell. The volume fraction C is advanced in time using
the advection algorithm of Weymouth & Yue (2010), which is mass conserving, and wisps
are redistributed and suppressed using the method of Baraldi, Dodd & Ferrante (2014).

2.2.3. Shear-periodic boundary conditions

In HST, periodic boundary conditions are applied in the streamwise x direction and
spanwise y direction. In the z direction, in which the mean carrier flow velocity varies
(U(2), figure 2), the shear (S = dU/dz) requires shear-periodic boundary conditions that,
for a generic dependent variable f, are expressed as

fO,y, L) =f(x—1tSL;, y,0,1). (2.18)

Depending on the choice of S and time step At, the x position (x — £SL;) on the
right-hand side of (2.18) may fall in between grid points. The boundary values in the
z direction of velocity and pressure are computed using Fourier interpolation. The VoF
variables, such as the interface normal, plane constant and curvature, are discontinuous
and, thus, computing their boundary values via Fourier interpolation would be inaccurate.
The way that we impose shear-periodic boundary conditions for the VoF variables is
explained next. All VoF variables are located at cell centres along with the pressure
field, while velocities are located at the staggered cell faces. FastRK3P* computes the
momentum operator at staggered grid locations. In order to solve (2.15) numerically, the
surface tension term, f,, must be computed on the staggered cell faces by averaging
the values at the two nearest cell centres. In order to compute f, at the z boundaries,
the shear-periodic boundary conditions need to fill the values of the VoF variables in
a number of ‘ghost cells’ in the z direction next to the bottom and top boundaries in a
two-step process. First, the VoF variables from a slab of four cells in the z direction are
copied from the interior, next to the bottom (and top) boundary, to the ghost cells next
to the top (and bottom) boundary at the same x, y locations. Next, the VoF advection
algorithm is employed to shift the values of the ghost cells in the x direction by the
corresponding distance Ax = StL, in accordance with (2.18). Next, for both the top and
bottom z boundaries, from the VoF variables in the four ghost cells, the interfaces are
reconstructed and the curvature is computed, such that f, can be computed at the cell
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centres in the first ghost cells according to (2.3). Finally, £, is interpolated from the cell
centres to the staggered cell faces at the z boundaries.

3. Results and discussion
3.1. Initial conditions and droplet properties

3.1.1. Carrier flow parameters and initial conditions
The initial turbulent velocity field is generated by prescribing the TKE spectrum, E(k ), and
ensuring that the velocity field is isotropic, divergence free with respect to the discretized
form of the continuity equation and that the velocity cross-correlation spectra, R;j(k),
satisfy the realizability constraint (Schumann 1977).

The initial energy spectrum at time ¢t = 0 is prescribed as (Pope 2000, § 6.5.3)

2/3 _

E(k) = 1.5[eg kB L) e, 3.1)

where « is the wavenumber, &g is the initial dissipation rate of TKE, L = kg/ 2 /€0, where
ko 1s the initial TKE, f7 is given by

L 11/3
Jukl) = (m) , 3.2)

and f), is given by

1/4
Folien) = exp {—5.2 {[(Kn)4 n cﬂ . c,,}} , (3.3)

where ¢, = 3.579 and ¢,, = 0.440. The constants ¢z and ¢, are calculated such that E(k)
and 2Re 'k 2E(k) integrate to ko and &g, respectively. The values of the dimensionless
parameters at t = 0 were ko = 4.867 X 1072, gp = 1.243 x 10~} and Re = 1.27 x 10*.
These parameters yield an initial Reynolds number based on the Taylor length scale
of Rey =40 (Rey = A(k> /3)1/ 2 /v). The non-dimensional time step used is Af =
0.1Ax/(SL;).

The initial velocity field is allowed to develop with periodic boundary conditions and
without shear (i.e. as decaying isotropic turbulence), until the skewness of the velocity
derivative S, has reached ~ —0.50. At that time, a constant mean velocity gradient S = 5
or § = 10, which corresponds to an initial shear number Shy ~ 2 or Shy ~ 4, respectively,
is imposed to the flow field. These values of Sh are below the strong shearing regime
(Sh > 20) that can be described using rapid distortion theory (Pearson 1959; Moffatt
1965; Kasbaoui, Koch & Desjardins 2019b). In order to ensure that our simulations are
physically meaningful, we check that nk,,,, > 1 at all times, where k,qx = TN is the
maximum resolved wavenumber and N = 600 is the number of grid points in the y and
z directions, while N, = 2N. Additionally, we check that the two-point Eulerian velocity
autocorrelation in the x direction diminishes to zero in less than half the length of L, = 2L
at all times. To satisfy this condition, the domain length in the x direction is double its
length in the y and z directions.

Table 1 shows the dimensionless flow parameters at different times for the droplet-free
flows (cases Ay and Ay): £ and 7, are the integral length and time scales, respectively;
Rey is the Reynolds number based on £; A is the Taylor length scale;  and 7, are the
Kolmogorov length and time scales, respectively.
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Case S Wepns We  @=pa/pc v =pRa/lbe  Pm (o

A5 —  — — — 0 0
Ay 10— — — — 0 0

Al 5 o 1 1 0.05 005
Al 10 o o 1 1 0.05 0.5
B, 5 002 162 10 10 05 005
B, 10 002 127 10 10 05 005
C; 5 01 8l 10 10 05 005
C, 10 01 632 10 10 05 005
D 5 05 405 10 10 05 005
D, 10 05 36 10 10 05 005

Table 2. Simulation properties (dimensionless) at droplet release.

3.1.2. Droplet properties
We perform two simulations of single-phase flow, A, and A4, and eight simulations of
DLHST (table 2). Cases A3 and A} are limiting cases in which the viscosity and density
ratios are unity and the Weber number is infinity. We analyse the effects of varying
the shear number Sh = S/(uy,5/1) and the initial droplet Weber number based on the
r.m.s. of velocity fluctuations We,,; = Dou%mspc /o, where [ is the integral length scale
of turbulence and Dy is the initial droplet diameter. In cases Ay—D», Sho ~ 2 and in cases
Byo-D3, We,,,s increases from 0.02 to 0.5. In cases A4—Dy4, Shy =~ 4 and in cases B4—Dy,
We, s increases from 0.02 to 0.5. These Weber numbers were selected, from a larger set of
Weber numbers investigated, because they produced different effects on the evolution of
TKE with respect to single-phase HST. The values of shear number were selected based
on the simulations of Ahmed & Elghobashi (2000). The density and viscosity ratios for all
droplet-laden cases are set to be ¢ = 10 and y = 10, respectively. These properties were
selected for their engineering relevance to spray combustion devices. For all cases, the
initial number of droplets is N; = 1258 and the initial droplet diameter is Dy = 0.0533,
for which the resulting droplet volume fraction and droplet mass fraction are, respectively,
¢y = 0.05 and ¢, = 0.5.

The flow field evolves free of droplets until S = 2, which corresponds to one flow
through of the mean shear. To compare Shog & 2 and Shg ~ 4 cases, we introduce a new
time quantity, defined as

*f=rt—1t, (3.4

where 7 = 0.5 and t, = 0.3 are the droplet release time for Sk ~ 2 and Sh ~ 4 cases,
respectively. After droplets are released, all cases advance in time for three flow throughs
of the mean shear, i.e. 0 < r*S < 6. Equal values of t*S between Sh ~ 2 and Sh ~ 4 cases
correspond to equal shifts in the boundary conditions due to the mean shear, allowing
for better comparison between different values of Sh. At r*S = 0, droplets are randomly
seeded in the domain under the constraint that the distance between droplet centres must
be at least 2.1D¢ and by setting the fluctuating velocity in the interior of the droplets to
zero. Figure 3 shows that at 1S = 6 the spectra of cases Ay and A4 are nearly identical to
the spectra of cases A% and A}, respectively, which indicates that setting the fluctuating
velocity to zero in the droplet interior has a negligible effect on the spectra of HST.
Wavelet-spectral analysis would be needed in order to accurately interpret the spectra
of droplet-laden cases (Freund & Ferrante 2019). We also tested different initial droplet
positions and found that for all droplet-laden cases, the values of dk/df match within 3 %
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Figure 3. Spectra of the TKE at £*S = 6 in (a) Shy ~ 2 cases and (b) Shy ~ 4 cases. The wavenumber, «, is
normalized by kg = 21/L.

for 5.25 < *S < 6, and the values of k match within 1.5 % at r*S = 6. Thus, we conclude
that the results are nearly independent of the initial positions of the droplets.

3.2. Turbulence kinetic energy equations

In order to explain the fundamental physical mechanisms of the interactions of droplets
with HST, we start by analysing the evolution equation of TKE, k(f), for the two-fluid
flow, k. (1) for the carrier-fluid flow and k() for the droplet-fluid flow.

The evolution equation of k() is derived in Appendix B as

dk )
=P+ (3.5)
where

k(t) = S{pujuy), (3.6)
P() = —S{puw), (3.6b)

1
e(t) = o (T;iSy). (3.60)

, 1
Vo () = 3 (ufo.j). (3.6d)

where (---) denotes instantaneous volume averaging over the entire computational
domain. Here, T}, = 21.S" is the viscous stress tensor and S;j is the strain-rate tensor of
the fluctuating velocity defined in § 2.1. In (3.5) and (3.6), P(¢) is the production of k(7),
e(t) is the dissipation rate of k(¢) and ¥, (¢) is the power of the surface tension due to the
fluctuating velocity.

The evolution equation for the TKE of the carrier-fluid flow, k.(?), is

% =Pe—éc+Tvec+Tpe, (3.7

and the evolution equation for the TKE of droplet-fluid flow, k;(?), is
W Py s+ T+ Tya (338)
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The terms in (3.7) and (3.8) are defined as

1 1
ke(t) = 5(pujuj>c, Pe(t) = =S(puw)e, (1) = E(T;siﬂu
3.9
o=t oTyude (0 = 2t G2
PN Re 9wy 0 PO T dxj
and
_1 _ _ .,
ka(t) = §<Pujuj>d, Pa(t) = =S{puw)g, &4(t) = R_e<TijSij>da
1
T.a(t) = LTy Tpa(t) = pla -
vdi) = Re dx; pdi) = 0x; ’

where (...). and (...)4 denote instantaneous volume averaging over the carrier fluid and
droplet fluid, respectively. In (3.7)—(3.10), P, and P, are the productions of k. and kg, &,
and ¢ are the dissipation rates of k. and kg4, T, - and T, 4 are the viscous powers and 7}, .
and T}, 4 are the pressure powers. The power terms are related through the identity

l]/(;_ = (1 - ¢v)[Tv,c + Tp,c] + ¢U[Tv,d + Tp,d]s (311)

which is also derived in Appendix B. We also analyse the modulation of the interfacial
surface energy by the mean flow via the power of the surface tension due to the mean
velocity, defined as

_ 1 -
YUy () = m(Ujfg’j), (3.12)

which is discussed in more detail in § 3.3.4 and Appendix C.

The derived equations, (3.5), (3.7), (3.8) and (3.12), are summarized schematically in
figure 4, which depicts the pathways for TKE exchange in DLHST, and, more generally, in
two-fluid (liquid-liquid or gas—liquid) incompressible HST. All terms responsible for the
evolution of k (3.5), k. (3.7) and kg (3.8) are represented. The rectangles from left to right
encompass the mean flow kinetic energy, the interfacial surface energy, the TKE of the
two-fluid flow k and the internal energy. In the current work the mean shear is prescribed
and kept constant in time, which means that the mean flow kinetic energy is constant in
time and that the modulation of the mean flow by the droplets is not allowed. This is
indicated by the solid line boundary of the leftmost rectangle, as opposed to the dashed
line boundaries of the other rectangles that represent energies that change in time. The
light purple arrows represent the production, P, of TKE in the carrier and droplet fluids
due to the mean shear. The red arrows represent TKE of the carrier fluid and droplet fluid
being transformed into internal energy by viscous dissipation, ¢. The dark purple arrow
represents mean flow kinetic energy being converted to interfacial surface energy by the
power of the surface tension due to the mean velocity, ¥, . The blue arrow represents TKE
being exchanged for interfacial surface energy and vice versa by the power of the surface
tension due to the fluctuating velocity, ¥_. The power (or transport) terms 7', ¢, Tp. ¢, Ty, ds
T} q (green arrows) act to redistribute TKE between the carrier fluid and droplet fluid or
into interfacial surface energy via three bidirectional pathways: (i) carrier fluid <> droplet
fluid, (ii) carrier fluid <> interface and (iii) droplet fluid <> interface. This relationship is
expressed mathematically by (3.11).
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Figure 4. Schematic showing the pathways for TKE exchange in DLHST, or, in general, for two-fluid
incompressible HST, summarizing the results of (3.5)—(3.12).
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Figure 5. Temporal evolution of the TKE, k, normalized by its initial value (a) kog,., for Sh ~ 2 cases, and
(b) kogy~y for Sh ~ 4 cases.

3.3. Comparison of TKE budget for single-phase and droplet-laden turbulence

In this section we present the effects of droplets on HST relative to the single-phase
cases by analysing the terms of the TKE budget equation (3.5) and, then, we explain the
underlying physical mechanisms.

3.3.1. Two-fluid TKE budget

Figure 5 shows the temporal evolution of k(f) normalized by its initial value at droplet
release time, k/ko, for all cases. The average rates of change of TKE after *S > 5 are
calculated and shown. For cases B, and By, the rate of change of TKE is increased with
respect to the single-phase cases (A, and Ay). For cases C; and Cy, the rate of change of
TKE oscillates near the value for the single-phase cases. For cases D, and Dy, the rate of
change of TKE is decreased with respect to the single-phase cases. For all droplet-laden
cases, d(k/ko)/dt is smaller for cases with larger values of We,,;.
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Figure 6. Temporal evolution of the production of TKE, P, normalized by the initial value of the dissipation
rate (a) €qg,., for Sh ~ 2 cases, and (b) &gy, for Sh ~ 4 cases.
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Figure 7. Temporal evolution of the dissipation rate of TKE, ¢, normalized by the initial value of the
dissipation rate (a) &,., for Sh ~ 2 cases, and (b) &, for Sh ~ 4 cases.

To explain why droplets modify the rate of change of k, we analyse the temporal
evolution of the terms on the right-hand side of (3.5), which are P, ¢ and llfé. Figure 6
shows the temporal evolution of the production of TKE normalized by the initial
dissipation rate of TKE, P/gg. For cases B, and By, the production is increased with
respect to the single-phase cases. For cases C; and C4, the production closely matches that
of the single-phase cases. For cases D> and Dy, the production is reduced with respect
to the single-phase cases. For all droplet-laden cases, P is smaller for cases with larger
values of We,,;.

Figure 7 shows the temporal evolution of the normalized dissipation rate of TKE,
g/¢eo. For all droplet-laden cases, the dissipation rate is enhanced compared with the
single-phase cases, with a larger increase in dissipation for cases with smaller values of
We,ns.

Figure 8 shows the temporal evolution of the power of the surface tension due to the
fluctuating velocity normalized by the initial dissipation rate of TKE, ¥/ /g¢. For cases
B and By, ¥ oscillates around roughly 200 % of the initial dissipation rate, g9, which
corresponds to 30 % of the instantaneous values of the dissipation rate, ¢, at *S = 6.
Therefore, in cases By and B4, ¥ represents a significant source of TKE for *S > 3. For
cases Cp and Cy4, ¥, initially exhibits oscillations around zero up to 80 % of &y (case Cz)
and 200 % (case Cy4), which decay to less than 30 % of &g for r*S > 3. For cases C; and Cy,
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Figure 8. Temporal evolution of the power of the surface tension due to the fluctuating velocity, ¥,
normalized by the initial value of the dissipation rate (a) €og,., for Sh ~ 2 cases, and (b) &, for Sh~ 4
cases.
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Figure 9. Temporal evolution of the carrier-fluid contribution to the production of TKE, (1 — ¢,)P.,

normalized by the initial value of the dissipation rate (a) o, for Sh ~ 2 cases, and (b) &, for Sh~ 4
cases.

W/ represents a moderate source or sink of TKE for 0 < *S < 3, and has a less significant
role in the time evolution of the TKE for r*S > 3. For cases Dy and Dy, ¥/ is limited to
420 % of &g, thus playing a less significant role in the time evolution of the TKE.

3.3.2. Production of TKE

To explain why for cases B, and By, P is increased with respect to the single-phase cases,
but for cases D and Dy, P is reduced with respect to the single-phase cases, we analyse the
contributions to P from the carrier-fluid production, P,, and the droplet-fluid production,
Py, represented as

P=1=¢)Pc+ ¢puPa (3.13)

Figure 9 shows that, for droplet-laden cases, production is decreased in the carrier fluid
compared with the single-phase cases, and figure 10 shows that, for droplet-laden cases,
production is increased in the droplet fluid compared with the single-phase cases. The
relative importance of these effects for the different cases is explained next.

Figure 9 shows that P, is smaller for all droplet-laden cases when compared with A3
and Aj, and is smaller for the cases with larger We,,;. For single-phase HST, Kida &

972 A9-15


https://doi.org/10.1017/jfm.2023.647

https://doi.org/10.1017/jfm.2023.647 Published online by Cambridge University Press

P. Trefftz-Posada and A. Ferrante

(a) 3.0 ®) 3.0
. A; . AZ
25 ——B, (We,,,=0.02) 25} ——B,(We,, =0.02)
) --- C, (We,, ;= 0.1) ---C, (We,, = 0.1) /
g 20 e D, (We,,, = 0.5) 7 20p D, (We,, .= 0.5) e
& S
L1 £
& [\
< 10 =
. <
0.5

S t*S

Figure 10. Temporal evolution of the droplet-fluid contribution to the production of TKE, ¢, P,, normalized
by the initial value of the dissipation rate (a) €og,., for Sh ~ 2 cases, and (b) €qg,., for Sh ~ 4 cases.
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Figure 11. Temporal evolution of the total surface area of the droplets, A, normalized by its initial value, Ag.

Tanaka (1992) explain how, on average, vortical structures are first elongated and then
inclined by about 20° to the streamwise direction by the mean shear. Pairs of inclined
counter-rotating vortical structures cause a negative correlation of uw in the region
between them, and therefore, positive local production, P’ = —Spuw. The presence of the
droplets interrupts this mechanism due to the droplets’ higher inertia with respect to the
surrounding fluid, thereby reducing the regions of positive P’ in the carrier fluid compared
with cases A} and Aj}. Figure 11 shows that the total droplet surface area, A(f), decreases
with decreasing We,,,,s, and that A(¢) is largest for cases D, and D4. The droplets in cases
D, and Dy interrupt the carrier-fluid flow in the regions between pairs of counter-rotating
vortical structures more than the droplets in cases B, and B4 due to their larger total surface
area. This explains why P, is lowest for cases D> and D4 among the cases studied.

Figure 10 shows that Py is larger for all droplet-laden cases when compared with A3
and A%, and is smaller for the cases with larger We,,s. Droplets with smaller We,;, such
as for cases By and By, tend to deform less than droplets with larger We,,s, such as
for cases Dy and Dy4. Due to the fact that the mean shear is positive, the mean velocity
of a droplet whose centre of mass is higher in the z direction tends on average to be
larger than the mean velocity of a droplet whose centre of mass is at lower z. Because
of this, droplets with lower We,,,; are more likely to keep their original spherical shape,
catch up with droplets at lower z on their path and collide such that their centres of
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Figure 12. Schematic showing the droplet ‘catching-up’ mechanism.

mass are aligned along the northwest-southeast direction as depicted in figure 12. As
pairs of droplets coalesce and return toward a spherical shape, the surface tension force
squeezes the droplet fluid in the northwest-southeast direction, corresponding to a negative
correlation of uw, and therefore, positive P’ = —Spuw in the droplet fluid as shown in
figures 12 and 13. Figure 12 depicts a schematic of this droplet ‘catching-up’ mechanism.
Figure 13 and supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.647
show the instantaneous results of two catching-up droplets obtained from a simulation
placing two droplets in a shear flow with zero fluctuations and all droplet properties,
numerical viscosity and mean shear matching those of case B4. This effect only occurs
when the Weber number is small enough to keep the shape of the droplets closer to their
initial spherical shape. Figure 14 and supplementary movie 2 show that, for larger We,s,
droplets equivalent to those of case D4 are deformed by the shear instead of returning
toward a spherical shape. This explains why for cases B, and B4 with smaller We, ¢, there
is a larger increase in P; when compared with those of cases D, and Dy, respectively.
Figure 15 and supplementary movie 3 show a contour plot of P’ in the x—z plane of case By.
These figures demonstrate several instances of two droplets colliding in a similar fashion
to the laminar two-droplet simulations. Figure 16 shows that more droplet collisions occur
in cases By, and B4 when compared with other cases, further showing that the droplet
‘catching-up’ mechanism increases Py (t).

For cases B, and By, the increase in P; due to the droplet ‘catching-up’ mechanism is
greater than the decrease in P, when compared with the single-phase cases, which explains
the overall increase in P. For cases C, and Cy4, both effects are relatively balanced, which
explains why P closely matches the single-phase results. For cases D, and D4, the decrease
in P, is the most significant of all droplet-laden cases and, additionally, the ‘catching-up’
mechanism does not cause a larger PP;, which explains the overall decrease in P. It should
be noted that the VoF method used in the present work will always produce coalescence
when the interfaces of two droplets come to occupy the same computational cell. Thus, the
droplet ‘bouncing’ regime which may occur in droplet—droplet collisions is not captured
by our VoF method, resulting in more coalescence events and no ‘bouncing’ regime.

3.3.3. Dissipation rate of TKE
To explain why &(¢) is greater in all droplet-laden cases compared with single-phase cases,

figure 17 shows the instantaneous two-dimensional contours of ¢ = Re_l(T;jSEJ.) of the

computational domain at *S = 3. Figure 17 shows that &’ is enhanced near the droplet
interface for droplet-laden cases, and in the droplet interior in case B4. This is explained
by two separate mechanisms.
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Figure 13. Two droplets demonstrating the droplet ‘catching-up’ mechanism in laminar shear flow. All droplet
properties, the numerical viscosity and the mean shear are equal to those in case B4. Droplet interfaces are
black lines, velocity vectors deviation from the mean velocity field are black arrows, colour contours of P’ =
—Spuw and temporal evolution of P; = (P’), in insert. Results are shown for (a) *S = 0.5; (b) r*S = 0.9;
©r'S=14,d)r'S=109.
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Figure 14. Two droplets demonstrating the droplet ‘catching-up’ mechanism in laminar shear flow. All droplet
properties, the numerical viscosity and the mean shear are equal to those in case D4. Droplet interfaces are black
lines, velocity vectors deviation from the mean velocity field are black arrows, colour contours of P’ = —Spuw
and temporal evolution of Py = (P’)4 in insert. (a) £*S = 0.0; (b) S = 2.5; (¢) t*S = 5.0; (d) t*S = 7.5.
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Figure 15. Two instantaneous colour contours in the x—z plane of P’ =

—Spuw and black lines for droplet

interfaces highlighted within green circles where the droplet ‘catching-up’ mechanism is occurring for case

By. (a) Case By, S = 1.5. (b) Case By, *S = 1.8.
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Figure 16. Temporal evolution of the total number of droplets.

Firstly, the increased ¢’ in the carrier phase near the droplet interface is due to the local
increase of S;j that is due to the local increase of the velocity gradient (du;/dx;). Such
increase in du;/dx; is caused by the droplet trajectories deviating from the motion of the
carrier fluid because of the larger density of the droplets that, due to their higher inertia
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Figure 17. Instantaneous contours in the x—z plane of &’ = Re™! (T;jS;.j) at r*S = 3 for cases A4, B4 and Dy.
(a) Case Ay, 'S = 3.0. (b) Case By, *S = 3.0. (c) Case Dy, *S = 3.0.

with respect to the carrier fluid, force the surrounding flow to move around them. Note that
the droplet trajectories deviate from the trajectories of the turbulent eddies (both large and
small scales of motion) because the droplet Stokes numbers, based on either the integral
time scale or the Kolmogorov time scale, are both much larger than unity. This had been
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Figure 18. Temporal evolution of the carrier-fluid contribution to the dissipation rate of TKE, (1 — ¢,)e.,
normalized by the initial value of the dissipation rate (a) &¢g,., for Sh ~ 2 cases, and (b) &, for Sh~ 4
cases.
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Figure 19. Temporal evolution of the droplet-fluid contribution to the dissipation rate of TKE, ¢,¢&4,
normalized by the initial value of the dissipation rate (a) &qg,., for Sh ~ 2 cases, and (b) &, for Sh~ 4
cases.

observed also in droplet-laden decaying isotropic turbulence by Dodd & Ferrante (2016).
Figure 18 shows the contribution from the carrier fluid to €(¢). For all droplet-laden cases,
&. 1s larger for cases with smaller We,,s, and significantly larger for case B,. Figure 17
shows regions of large ¢’ in the carrier fluid surrounding droplets that have coalesced via
the ‘catching-up’ mechanism. The significant increase in &, for case B; is explained by the
greater amount of coalescence events, since case B; has the least amount of droplets at the
end of the simulation (figure 16).

Secondly, the increased ¢’ in the droplet interior in cases B, and By is due to the droplet
‘catching-up’ mechanism. Figure 7 shows that, in cases B, and By, () is greatly enhanced
compared with all other cases. To explain this increase in magnitude, figure 19 shows
the contribution from the droplet fluid to e(¢). For all droplet-laden cases, ¢4 is larger
for cases with smaller We,,s, and significantly larger in cases B> and B4. As explained
in §3.3.2, in cases B, and By, the droplet ‘catching-up’ mechanism causes droplet