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ABSTRACT

In this paper we compare ruin functions for two risk processes with respect to sto-
chastic ordering, stop-loss ordering and ordering of adjustment coefficients. The
risk processes are as follows: in the Markov-modulated environment and the asso-
ciated averaged compound Poisson model. In the latter case the arrival rate is obtai-
ned by averaging over time the arrival rate in the Markov modulated model and
the distribution of the claim size is obtained by averaging the ones over consecu-
tive claim sizes.
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1. INTRODUCTION

This paper is concerned with ordering of risks, more precisely with comparing the
ruin functions

(1.1) y/(u) = p(inf

of two related risk processes {R(t)}, {/?*(?)}• This topic is of obvious actuarial inte-
rest and has been studied, for example, in Goovaerts et al. (1990), van Heerwar-
den (1991), Kluppelberg (1993) and Asmussen (1994).

Much of the literature concentrates on assessing whether a given claim size dis-
tribution B is more dangerous than another one B* in the sense that

(1.2) y/*(u)<y/(u), for every w>0

when B, B* are the claim size distributions of two standard compound Poisson risk
processes {R{t)\, [R*(t)} with the same arrival intensity ji = /J* and the same pre-
mium rate p = p*\ the ordering (1.2) is referred to as stochastic ordering and we
write iff* <so yf (more generally, the ordering relations studied in this paper are defi-
ned for functions in 2ft, the class of monotone functions defined on [0, °°), decreas-
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ing to zero at infinity and assuming values between zero and one). In the com-
pound Poisson setting, it is easy to show that if B is stochastically larger than B*
(that is, if B*<soB where B(x) = 1 - B(x) is the tail), then (1.2) holds. This fol-
lows immediately from the fact that in this case one can assume that the trajecto-
ries of the risk processes {R(t)}, {R*(t)} satisfy the inequality R*(t) > R(t) for every
t > 0. A somewhat more substantial result which can be found in Daley and Rolski
(1984), see also Makowski (1994), states that (1.2) remains true if B*<wB is
weakened to B* <AB where, for any two functions Xjf^K y/<2> e 2ft, the stop-loss
ordering y / w <s[ \f/

<2> is defined by

(1.3) j"y/m(u)du<l"\i/(2)(u)du, for every x>0.

This paper concentrates on the study of the role of deviations from the Poisson
arrival pattern. Rather than looking at renewal processes which are mathematical-
ly nice but hard to motivate practically, our framework is that of Markov-modu-
lated Poisson arrivals, see Janssen (1980), Reinhard (1984), Janssen and Reinhard
(1985), Asmussen (1989), Asmussen and Rolski (1991, 1994), Grigelionis (1993)
and Asmussen et al. (1994) for some relevant references. Roughly, the model sta-
tes that there is an underlying Markov process {J(t)} with p < <» states, such that
arrivals occur as in a Poisson process with rate pV when J(t) - i, and that the cor-
responding claims have distributions Bt with means //. (the premium rate may also
depend on i but by an operational time argument we may and shall assume that it
is 1 in all environmental states). The corresponding risk process is denoted by
[R{t)} in the following. The motivation for this type of modeling is in part descrip-
tive because of the flexibility, allowing in particular to model arrival streams which
are more bursty than any renewal process, but in part also that at least in some
cases, one can interpret the model in a natural way. E.g. Asmussen (1989, 1994)
discusses car insurance where the states of {•/(?)} describe weather conditions. The
model of Janssen and Reinhard (1985) is mathematically slightly different but has
a similar flavour from the modeling point of view.

If the j3(. and B( do not fluctuate too much around some average values p*\ B*,
one can see the model as a perturbation of a classical compound Poisson risk pro-
cess {R*(t)} with arrival rate /?* and claim size distribution B*. The rigorous defini-
tion of /T, B* (which also makes sense and is interesting if the Markov-modula-
tion is more clear-cut) is as follows: We assume that {•/(?)} is irreducible and
time-homogeneous with intensity matrix A - (A.k) and stationary initial distribu-
tion n- {nv ..., n ), i.e. nA = 0. Then,

B\x) = lim I £ l ( I / t < x) = -LinipiBi(x), x>0

where \(D) denotes the indicator of the set D, N(t) is the number of arrivals befo-
re t for [R(t)} and Uj, U2, ... the corresponding claim sizes so that

N(t) N(t)
(1.4) R(t) = u + t-J^Uk, S(t)=XUk-t,

k=l k=\
where S(t) = R(0) - R(t) = u - R{t) is the claim surplus at time t. Similarly,
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N (')

k=]
5(r) =

N (t)
-t,(1.5) R(t) =

where {N*(t)} is Poisson with rate j3* and U^, t/2*,... are i.i.d. with distribution B*.
The fact that the averages /?* and B*(s) are well-defined and a.s. constant follows
from the ergodicity of the environmental process {/(/)} which is reflected in
corresponding ergodicity properties of the Cox process {N(t)} and the sequence
[Uk] of claim sizes, see e.g. Chapter 8 of Konig and Schmidt (1992). More-
over, the risk processes {R(t)} and {R*(t)} have the same safety loading
r] = rf = (jfi=] nfyn^-l, which is assumed to be positive.

The initial purpose of the present research was to show that it is always the case
that y/* <so y/ where the ruin functions yr, y/* correspond to the Markov-modula-
ted risk process {/?(/)} and its averaged compound Poisson counterpart {R*(t)\,
respectively. The conjecture that such a result could be true came in part from
numerical studies, in part from the folklore principle that any added stochastic
variation increases the risk, and finally in part from queueing theory, where it has
been observed repeatedly that Markov modulation increases several queueing char-
acteristics, see e.g. Ross (1978), Rolski (1981, 1989), Chang et al. (1991), Chang
and Nelson (1993). In fact, in the present paper we give a partial solution to our
original conjecture showing that y/* < s o y/ holds under an additional monotonicity
condition on the Markov-modulated environment, but also counterexamples
showing that at least some conditions are needed.

Without loss of generality we can enumerate the p states of the environment
such that
(1.6) px<p2<...<Pp.

The monotonicity conditions which play an important role in our paper are the fol-
lowing: Assume that, for the numbering of environmental states given by (1.6),
we have

d-7) Bl<S0B2<S0...<S0Bp,

and stochastic monotonicity of the underlying Markov process (cf. Stoyan (1983))
which with finitely many states can be stated as

(1.8) Z A / « ^ X A t a for all j,k,l with j<k, andl<jorl>k.
n>l n>l

To avoid trivialities, we also assume that there exist i *j such that either j8; < fi
or Bt * B.. Occasionally we strengthen (1.7) to
(1.9) B = Bh

i.e. Bt does not depend on i. Note that the monotonicity condition (1.8) is auto-
matically fulfilled in some simple examples like birth-death processes or p - 2.

The main result of the paper is the following:

Theorem 1.1 Assume that conditions (1.6), (1.7) and (1.8) hold. Then y/*<soy/.

The proof of Theorem 1.1 is given in Section 2; the key tools are a recent result
of Asmussen and Schmidt (1995) on ladder height distributions and a well-known
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association inequality. In that section we also give a counterexample showing that
yf*<soy/ may fail if (1.7) is violated. In Section 3 we discuss the role of (1.8).
Computational results indicate that (1.8) might be not necessary for yf* <soy/.
From a result of Rolski (1981) it follows that the weaker ordering y/* <s ] y/ always
holds when claim sizes are i.i.d.; we give a self-contained proof in Section 4.

The rest of the paper then deals with the adjustment coefficients. We say that a
function yf € 2ft admits an exponential tail with adjustment coefficient y if, for
fl —> oo, we have y/(u) ~ C exp(-ju) for some C > 0. In the subset of functions
y/(]>, y/<2> e 2ft admitting an exponential tail we define y/(1> <e t yi{2) iff y*1' > / 2 ) ;
this ordering criterion is used in a more or less explicit way in much of the actu-
arial literature (see e.g. Kluppelberg (1993)). Section 5 studies the problem of
yf* <e t iff. We show that this ordering holds at least in the cases when p = 2 or
when (1.6), (1.7) and (1.8) are fulfilled. Section 6 then gives some perturbation
analysis for the adjustment coefficient. For example, we compute the first error
term in the approximation y = y* which is valid when the degree of Markov-modu-
lation is small.

2. STOCHASTIC ORDERING

Consider the irreducible Markov process {J(t)} described in the preceding section.
Let {7.(0} be the Markov process with the same intensity matrix A as {J(t)}, but
starting in state i, i.e. 7((0) = i, and {A/(0} be the counting process with intensity

process {/3j ( t ) } . As before, define {S,(O}(>o = jX^'/'t/,,* -t> as the associated

surplus process with arrival process {Nt(t)} and claim sizes Ujk, respectively, and
with the ruin function I/A(M) = IP (supr>0 S;(0 > u).

Lemma 2.1 Assume that conditions (1.6), (1.7) and (1.8) are fulfilled. Then, for
i <j, it holds that yfi <so y/j.

Proof. Let i <j. Because of (1.8), using Theorem 4.2.8 and Proposition 1.10.4 of
Stoyan (1983), we can assume that J.(t) < 7.(0 for all t > 0, which implies that the
intensities of N. and N. are pathwise ordered. Therefore, we can assume that any
jump epoch, say the &th occurring at time tk, for A/, is also a jump epoch for AT,
say the /th, where we use the notation / = /k. Since J((tk) < J(tk), it follows from
(1.7) that the claim sizes can be chosen in such a way that Uik < U., with proba-
bility one and hence

Sj(.t)> I ujJk-t> 5 X t - * = $.(o.
k:tk<t k:tk<t

From this the ordering y/t < s o y/. easily follows. D
Let T+ be the first ladder epoch of the surplus process {S(t)}, i.e. x+ = inf{? > 0:

5(0 > 0}. Furthermore, we consider the ladder height Z+=lim4-c+ St provided that
T+ < °°. Specializing Corollary 1 of Asmussen and Schmidt (1995), we have the
following result.
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Lemma 2.2 For the Markov-modulated surplus process [S(t)},
(a) P (T+< oo) = p = •£niptfi.;
(b) the conditional distribution of J{%+) given r+<°° is obtained by the probabili-
ties

(L) < >n
(P)

[}with7l\p) = 'where {n[}with7l\p) = '— is the (Palm) initial distribution of {J{t)} (at a

typical jump epoch of {N(t)})\
(c) the conditional distribution of the ladder height Z+ given T+< °°, J(t+) = i has
the density 6.(x)//x.;
(d) the conditional distribution G of the ladder height Z+ given T+< °o, has the den-
sity B*(x)ln.
Note in particular that the ruin probability P ( T + < ° ° ) and the ladder height distri-
bution are the same for the Markov-modulated model and the averaged compound
Poisson one.

In the proof of Theorem 1.1 we will use, besides Lemma 2.1 and Lemma 2.2,
the following standard result going back to Chebyshev and appearing, for instan-
ce, in Mitrinovic et al. (1993), see also Esary et al. (1967):

Lemma 2.3 Ifa] < ... < a , by < ... < b and ni > 0 (i = 1,..., p), £;=17C. = 1 then

2ijj

where the equality holds if and only if ax = ... = a or bx = ... = b .

Proof of Theorem 1.1 Conditioning upon the first ladder epoch, from Lemma 2.2
we obtain

(2.1) ¥\u) =pG(u) + p'Ujyr\u-x)T(x)dx
o

= pG(u) + pf]vi(u - x)nf%(x)l ii.dx
I=10

— r p —

K ' oi=i

> PG(u) + J 5>,-A-2i(* S
0(=l (=1

= pG(u) + P*"jy/(u - x)B*(x)dx,
o

where the inequality in (2.2) follows by considering the increasing functions
Pfif^x) and \j/t(u~x) of i and using Lemma 2.3. Comparing (2.2) and (2.1), it fol-
lows by a standard argument from renewal theory that y/ dominates the solution
\j/* of the renewal equation (2.1). •
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The following result shows that iff* < s o yfmay fail if (1.7) is violated.

Proposition 2.1 Assume that p.fj.. < 1 for all i, that

(2.3) ixiPfHi<ixA-i*iPiHi,
i=l 1=1 i=l

and that A has the form eA^for some fixed intensity matrix AQ. Then iff* <s o I/A
fails for all sufficiently small £> 0.

Proof. From the defining equations (1.1) it follows that the ruin functions^ y/(u)
and y/*(u) are right continuous at u - 0. Since the tail functions B* and Bi also
possess this property, from (2.1) and (2.2) we get that the right derivatives
d+w* dw

(0)and —— (0) exist and are given by
d

(0)and
du du

(2.4)
du

^ ( 0 ) t"iPiVi«»P-
du ,=i

Since y/(0) = y/*(0), it is sufficient to show that —— (0)<——(0) for e small
du du

enough. From a well-known continuity property of stationary single-server queu-
es (see e.g. Theorem 3.2.1 of Franken et al. (1982)) it follows that W.(M) conver-
ges to the corresponding ruin probability for the compound Poisson model with
parameters Pp Bi as e i 0. For u = 0, this limiting ruin probability is PtfJ.r Conse-
quently, by (2.3) and (2.4) we get that

This finishes the proof. •

To see that the condition of Proposition 2.1 is not vacuous, we briefly mention
an example for which (2.3) is fulfilled. Let

p = 2,K= (1/2, 1/2), ^ = l O 3 , P2 = 1, ^ = 102, H2 = 10"4.

Then the left side of (2.3) is of order 104, whereas the right side of (2.3) is of
order 101.

We finally remark that, besides Theorem 1.1, a further related result holds. Con-
sider the sequence of consecutive ladder epochs T$}\ T|2),.-. of the surplus process
{S(t)}. Note that T^ = T+.
Proposition 2.2 Assume that conditions (1.6), (1.7) and (1.8) hold. Then, for every
k= 1,2, ...,

(2.5) p*<
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Proof. Proceeding analogously as in the proof of Lemma 2.1 we get that, for each

) ( 1 ) < - . . . , T f ) < o o | y(0) >

and, equivalently,

(2.6) P( / (0) > i) <p(j(0) > i\ T™ < <*>,...,T?} <

On the other hand, from Lemma 2.2 we obtain

Observe that /?, jU, < /?2Ju2 < ... < fipjip. Thus, from (2.6) and from Theorem 1.2.2
of Stoyan (1983), we have

P = X PM P ( A 0 ) = i) < I A-I/.-P(/(0) = i T11} < - , . . . , T f - '> <
i=i 1=1 v

Consequently,

and (2.5) follows by induction. •

Note that, by using a corresponding result of queueing theory, still another type
of conditions can be given for the validity of (1.2). These conditions are formula-
ted in terms of aging properties of the interarrival time distribution. Such aging
properties were introduced in reliability theory, see e.g. Barlow and Proschan
(1975). If interarrival times are i.i.d., if their distribution function F with mean
(/f)"1 has the property NWUE (that is \°°F(x)dx>(P*)~lF(t) f o r a11 f ^ °) a n d

if claim sizes are also i.i.d. and independent of arrivals, then if/* <so y/ holds with
y/* defined by the Poisson compound model with arrival rate ft* and the same claim
sizes, see e.g. Remark 4.6.13 in Franken et al. (1982). In this way, the validity of
the ordering \j/* <so y/ can be verified for a further model with special doubly sto-
chastic Poisson arrival process and i.i.d. claim sizes. This is when the stochastic
arrival-intensity process is assuming only two values: zero and one positive. It is
well-known that, in this model, interarrival times are i.i.d. provided that the con-
secutive sojourn times of the environment process in its two states form an alter-
nating renewal process and that the sojourn times in the state with positive arrival
intensity are exponentially distributed. Furthermore, it is easy to see that then the
distribution of interarrival times has the property NWUE. Thus, from the remark
above, y/* < s o y/ follows. In Rolski (1981) this was noticed under the additional
assumption that the distribution of sojourn times in the zero state has the stronger
aging property DFR.

https://doi.org/10.2143/AST.25.1.563253 Published online by Cambridge University Press

https://doi.org/10.2143/AST.25.1.563253


56 BY S0REN ASMUSSEN, ANDREAS FREY, TOMASZ ROLSKI AND VOLKER SCHMIDT

3. EXPONENTIAL CLAIM SIZES

Now we discuss the role of the monotonicity condition (1.8) considering the spe-
cial case (1.9), i.e. the distribution function B of claim sizes does not depend on
the actual state of the environmental process {J(t)}. Moreover, we assume that the
claim sizes are exponentially distributed with expectation one, i.e.

(3.1) B(x)=l-e~x for every x > 0.

Note that, in this case, a different proof of Theorem 1.1 can be given by using Pro-
position 2.2. This follows from the fact that, for claim sizes with the standard expo-
nential distribution, the ruin function y/(u) can be represented in the form

(3.2) =«-"£ — Pfrt1* <«,...,T<*><OO)
k=\ k\ v '

where fu(k) = P\ X ^ i > M for a fixed u > 0, and M,, M2, ... are i.i.d. random

variables whose distribution function is given by (3.1). Clearly, fu(k) -fu(k - 1) > 0.
Thus, assuming that (1.6), (1.8), (1.9) and (3.1) hold, from Proposition 2.2 we
obtain

(3.3) y/(u)> t(fu(k)-fu(k-D)pk =yr*(u).
k=\

Moreover, because the ruin probability y/(u) is equal to P(V > u), where V is the
stationary virtual waiting time in a single-server queue with the same, but time-
reversed input (see e.g. Asmussen (1989)), from Theorem 6.2.1 of Neuts (1981)
we get that, under (1.9) and (3.1),

(3.4) - V(«) = ! ( / „ ( * ) - / „ ( * - ! ) ) * « * « ,
k=l

where R is the minimal nonnegative solution of the matrix equation

(3.5) R2 + R(C-I-A) + 4 = 0,

A is the p x p diagonal matrix with diagonal elements /J,, ..., /? , / = (5.) the p x p
identity matrix, e the p-dimensional column vector of ones, and C the intensity
matrix of the stationary Markov process {J(t)} obtained, after reversion of time,
from the stationary Markov process {J(t)} governed by A, i.e. / ( / ) = J(-t). From
(3.2) and (3.4) we have

In the following we want to discuss the question whether the monotonicity con-
dition (1.8) is necessary ior.y/* <so y/. One of the possible approaches to verify
this is to parameterize A in the following way. Let A(x) be the p x p diagonal
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matrix with the i th diagonal element, p. (x) = P* + c.x where the constants c; are
such that ^fi=] TijCj = 0 . Furthermore, let R(x) be the corresponding minimal solu-
tion of (3.5). Clearly x = 0 yields the compound Poisson case. The goal is to prove
the inequality

(3.6) nRke>pk for all k >0

without using assumption (1.8), i.e. to show that

(3.7) min . nRk(x)e = nRk(0)e = (/?*)* for all A: >0.

Computations as in the following example even leads to the conjecture that 7tRk(x)e
is a convex function of x taking its minimum at x = 0.

Example 3.1 Let B" = 0.5,

' -20 0 20 A

C= 20 -40 20

30 30 -60

and A(x) =
'p

.

* +x

0 i
0

0

8*-0
0

.5x

B*

0

0

-1.875*

(9 3 4 ̂
Then, n=\ — , — , — and the intensity matrix A of the corresponding time-

U6 16 \6)
reversed Markov process is given by (see e.g. Theorem 1.12 of Kelly (1979))

A=

which does not satisfy (1.8). However, from numerical computations one gets the
following picture for k = 2 (see Figure 3.1).

-20

0

45

20
3

-40

15

40
3

40

-60

nR2(x)e

0.253 - -

0.252 -

0.251 --

0.250 - -

-0.4 -0.2 0.0

FIGURE 3.1.

0.2
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One possibility to prove (3.7) is to investigate the first two derivatives g'k(x) and
gk(x) of gk(x) — 1tR\x)e with respect to x. A first step into this direction is the fol-
lowing result. However, it seems to be impossible to evaluate the second deriva-
tive of gk{x) explicitly.

Proposit ion 3.1 For every k - 1,2, ..., we have

(3.8)

(3.9) gk(0) = ^P*)k~]kt4y) (0)A'(0)e.

Proof. The assertion follows by induction with respect to k using the facts that

(3.10) nR(0) = P*n, A(0)e = P*e, A"(0)e = 0
and
(3.11) R(x)e = A(x)e

hold (see Section 6.2 of Neuts (1981)). In particular, from (3.11) and (3.10) we get

g'k(0) =(KRk-l(x)A(x)e)'\x=()

k l * + (P*)k-{ nA'(0)e

because nA'(0) = ]T ;
p
=1

 nfi = 0- Thus, by induction,

g'k(0) = (P*)k-'gi(0) = (P*)k~l
 KA'(0) = 0.

In order to prove (3.9) we can proceed similarly. Namely,

#(0) =(nRk-\x)A(x)e)"

-1 )"{Q)P*e + 2n(Rk-] )'(0)A'(0)e + nRkX (0)A"(0)e

•
Another possible way to verify whether the monotonicity condition (1.8) is neces-
sary could be to use a result from queueing theory, i.e. to utilize Theorem 4.1 from
Chang and Nelson (1993), in particular their formula (32), where they considered
a single-server queue with a doubly stochastic Poisson arrival process {Af(/)1 with
intensity process [p . } and showed that for large e the second-order approxi-
mation for the expected stationary queue length is given by

(3.12) £ 1± 2

l - p l - p
where S is a certain p x p matrix which is determined by C and A (or, equivalently,
by A and A). The question is whether it is possible to find an example such that

B*
itSAe < 0. In that case, EL(0)< t for sufficiently large e and hence (3.6)
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would not be true. Moreover, from Little's and Takacs' formulas (see (4.4)), it
would follow that then j°°y/(u)du< j°°y/*(u)du. Thus, also y/* < s o y/ would not

be true in general. Chang and Nelson (1993) proved that nSAe > 0 provided that
{J (?)} is dynamically reversible, where a stationary Markov process with intensi-
ty matrix A is dynamically reversible if there exists a permutation of {l,2,...,m},
denoted by j —»j+, j = l,2,...,m, such that (i) n. - n.+, (ii) A.. = A.+.+ and (iii)
nAl = n+A.+.+. Therefore, we tried to find an example such that nSAe < 0 for
neither {J(t)} stochastically monotone nor {J(t)} dynamically reversible but we
could not get it in none of the 20 million different configurations which we cal-
culated numerically. Moreover, our computations (see also Example 3.2) yield the
conjecture that the expected queue length E L(0) is always strictly decreasing in e,
at least for sufficiently large e where no additional assumptions are needed (like
dynamical reversibility of {/(?)} or stochastic monotonicity of {•/(?)})•

Example 3.2 Let

C =

- 2 0 2

2 - 4 2 A =

'0.3 0

0 0.6

v 3 3 -6) I, 0 0 0.875y

0

0

Note that the Markov process {J(t)} with this intensity matrix C is not dynamically
reversible, because there is no permutation which fulfills conditions (i)-(iii) above.
Also, the corresponding time-reversed process {J(t)} is not stochastically mono-
tone (see Example 3.1). But, numerical computations show (see Figure 3.2 ) that
7tR2(e)e is monotonously decreasing in £, where R(e) is the minimal solution of
R2(e) + R(e)(eC -I-A) + A = 0.

7rR2(€)e

0.254 --

0.253 --

0.252 --

0.251 --

0.250 --

10 30 50 70

FIGURE 3.2.
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4. STOP-LOSS ORDERING

In this section we consider the case that claims arrive according to a doubly sto-
chastic Poisson process {N(t)} with an arbitrary stationary ergodic intensity pro-
cess {/J(0} such that j3* = E/3(0) < °°. In particular, we do not assume that {/?(01
is generated by a Markov process as it was assumed in the preceding sections. By
some authors, such a more general counting process {N(t)} is called a Cox pro-
cess. Let the sequence {Uk} of consecutive claim sizes consist of i.i.d. random
variables with distribution function B and assume that they are also independent
of arrivals and that p*EUk < 1. Under these assumptions an interesting compara-
bility property was derived in Rolski (1981) concerning convex ordering of virtu-
al waiting times in single-server queues. We restate this result here, but now in the
risk theoretical setting, and we give a self-contained proof. Like in Sections 1 to
3, by y/(u) we denote the ruin probability defined in (1.1) and (1.4) and by y/*(u)
the corresponding ruin probability for the associated averaged compound Poisson
model, that is with Poisson arrivals with rate ft* and with the same claim sizes Uk.

Theorem 4.1 Let the claim arrival process {N(t)} be an arbitrary Cox process
with stationary ergodic intensity process {(5(t)}, let the claim sizes Uk be i.i.d. and
independent of [N(t)}, and E/3(f) EUk<l. Then,

(4.1)

In the proof of Theorem 4.1 we use the following lemma, which seems to be
also of independent interest and where the ruin function y/(u) appearing in (4.1)
is replaced by a Palm-type analogue. By y/°(u) we denote the ruin function given
by

( \ N°(t)
y/°(u) = P\ supS°(t)>u [ S°(t)= 2,1/t-t,

U>0 ) k=\

where [N°(t)} is the (reduced) Palm version of the stationary Cox process {N{t)}.
It is well-known that [N°{t)} again is a Cox process. Its intensity process we deno-
te by {/3°(/)}- Moreover, it holds

(4.2) Er(f) = - ^ for every t > 0,

where F(t) = inf{« > 0: j^P°(s)ds > t], see Chapter 5 of Konig and Schmidt (1992).

Lemma 4.1 Under the assumptions of Theorem 4.1, the ruin functions \ff°{u) and
yf*(u) are related by

(4.3) V*<siV°-

Proof. It is easy to see that the jump epochs of {N0(f)} can be represented by the
sequence T{MX), F(M, + M2),... where My M2,... are i.i.d. random variables which
are independent of {/?°(f)} and whose distribution function is given by (3.1). Thus,
from Jensen's inequality for conditional expectations and from (4.2) we get
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« =JTP(supf20 S°(f) >u)du

(max 0, Ux - T(M,), t/, + f/2 - T(M, + M2 ),...)>« )du

= E[max(0,£/, - T(Ml),Ul+U2-T(Ml + M2),...)- x]+

where [x]+ = max(0,x). D

Proof of Theorem 4.1. Observe that the ruin functions t/̂ C") and \jf°{u) satisfy
the relationship

(4.4) y/(u) = p* J~ y°{u - v)(l - B(v))dv

which is known as Takacs' formula (see Corollary 4.5.4 of Franken et al. (1982)).
Thus,

£>(«)<*« = P* JJlo ^O(M ~v)(1 ~ B(v))dv du

>P*jo™l™V*(u-v)du(l-B(v))dv

= \~P*\~V*{u - v)(l - B{v))dv du

where Lemma 4.1 and the well-known fact has been used that \j/*(u) satisfies the
integral equation \//*(u) = P* j°°y/*(u-v)(l-B(v))dv. •

5. ORDERING OF ADJUSTMENT COEFFICIENTS

We now consider the subset of ruin functions admitting an exponential tail, i.e.
ruin functions y/(u) such that there exists a ye (0,°°) with 0 < lim^,*, \f/(u)e7" < °°.
The constant y is called the adjustment coefficient of y/(u). It turns out that, for
such functions, stop-loss ordering implies ordering of their adjustment coefficients.

Proposition 5.1 Assume that the functions y/m, y/2) e 2ft admit exponential tails
with adjustment coefficients y^l\ y*2' > 0, respectively. Then, y/^ < s | \jf

(T) implies

Proof. Clearly, y/-<<>(w) = C(0 exp(-y<'V) + r(0(u) where r^(u) = o{e~^>)u) for/ = 1,2.
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Furthermore, because of y/(1) <sI y/(2\ we have for all x > 0

0 <j

and hence
m ,00 r ( 1 ) r<2>

Observe that from r^(x) = o(e-^')x) it follows that \" r<-i\u)du = o(e~^i)x).

Assume for the moment that y*1) < y<2). Then, for x -> °°, the left side of (5.1)
would converge to zero, but the right side to C '̂VyW > 0. By this contradiction
yd) < yd) follows. •

Note that, in general, we do not know whether the ruin function induced by a
Coxian claim arrival process has an exponential tail. However, in some special
cases like periodic environment or Markov modulated environment, this is known
(see Asmussen (1989), Asmussen and Rolski (1994)).

Hence we return to the ruin functions y/(u) and y/*(u) defined in (1.1) and indu-
ced by a Markov-modulated environment and by the associated averaged comp-
ound Poisson input, respectively. From Theorem 1.1 and Proposition 5.1 we know
that Y - 7* f° r the adjustment coefficients y and y* of y/(u) and y/*(u), and we
prove that even the strict inequality is true under the assumption that (1.6), (1.7)
and (1.8) (or, forp = 2, under some other technical assumption) hold. Define

Ki(s) = p,(Bi(s)-})-S, K*(s) = P*(B*(S)-l)-S = Jl7ClKi(s),
1=1

where B(s) denotes the moment generating function of a distribution function B.
Let K{s) be the p x p diagonal matrix with the diagonal elements K^S), ..., K (s)
and let, as in Asmussen (1989), K(S) be the dominant eigenvalue of the matrix
A + K(s) given by the Perron-Frobenius theorem, h(s) the corresponding right
eigenvector. The solutions of K{(S) - 0, K*(s) - 0, K(S) = 0 are denoted by y;, y*
and y, respectively, where y* and y coincide with adjustment coefficients intro-
duced above. In particular, the adjustment coefficient y* for the associated com-
pound Poisson model fulfills

(5-2) 7*=|>«A(A(7*)-l).

For s = y we write simply h = (hy ..., h ). Note that h is a positive vector. Clear-
ly
(5.3) (A + K(Y))h = 0
and so

y= inf [s > 0: det(A + K(s)) = 0}.
It is also clear that

(5.4) min yt<y<y*< max y...
i=l p i=i,...,p
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Proposition 5.2 Assume p = 2. If y, ^ y2 then

63

i> 72> < 7 < 7* < max{yp y2}.

Proof. Let A. = -A..; then nx = A/(A, + A2), rc2 = A/(Aj + A2). Thus

s)) =det|
h

(5.5) = K-, (S)JC2 (s) - A,K:2 (5) - A2K-, (S)

= K-, (s)jf2 (5) - (Aj + A2 )KT* (S).

Without loss of generality assume that yl < yr Now distinguish two cases:

Case 0 < 7j < y2. Then Kt(s) < 0,0 < s < y., K{(S) > 0, s > y., and hence we get
the following table of the sign variation

K\K2

-(A,+A2)r*

(0,70
+

+

(YuY*)
-

+

(7*»72)
-

-

which shows that the first zero y of (5.5) is in (y p y*).

Case y, < 0 < y2. Then K2(s) < 0, 0 < s < y2, K^CS) > 0, ̂  > y,, and the sign varia-
tion becomes

If,If2

-(A,+A2K*

(0,y*)

-

+

(r*.72)
-

-

so that the first zero is in (0, y*).
The cases where one of the inequalities is an equality are easily treated in a simi-
lar way. •

We now turn to the ordering of the adjustment coefficients if p > 2.

Theorem 5.1 Assume that (1.6), (1.7), (1.8) hold. Then

(5.6) y*>y.

We proceed the proof by a lemma of independent interest.

Lemma 5.1 Under the assumptions of Theorem 5.1, not all h{ (i - 1, ..., p) are
equal.
Proof. It follows from Theorem 6.1 of Asmussen (1989) that there exists a con-
stant C e [0, 00) such that

lime^y/i(u) = Chi.
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Thus it is clear by Lemma 2.1 that /i, < ... < h . Assume on the contrary that all
/j.'s are equal. Then Ah = 0 and from (5.3) we would have p.(£.(Y) - 1) = /for
each i = 1, ..., p. This is impossible in view of the assumption that there exist;' *_/
such that either )3(. < /}. or Bi * B.. •

Proof of Theorem 5.1. Multiplying both the sides (5.3) from the left by n we get

l
1=1

from which we have that the adjustment coefficient for the Markov modulated
model is the solution of

By Lemmas 2.3 and 5.1,

(5.8) 7 = — X

from which we get (5.6). D

6. PERTURBATION ANALYSIS FOR THE ADJUSTMENT COEFFICIENT

In this section we assume, similar as in Example 3.2, that the intensity matrix for
the Markov environment is parameterized as follows: A(e) - A^/e, whereas the /J;

and Bi are fixed. The corresponding adjustment coefficient is denoted by y{£). Thus
y(e) -> y* as e I 0, and our aim is to compute the sensitivity of y(e) at e = 0 + 0,
i.e. the right derivative

de
A dual result deals with the limit e —» °°. Here we put a = 1/e, note that

y(a) —»min. = / 7. and compute

The basic equation is again (5.3) where A, y, h depend on the parameter (e or a).
The following result quantifies the effect on the adjustment coefficient of adding

a small but rapid Markov-modulation to the compound Poisson model. Similarly,
Proposition 6.2 below deals with a small but slow Markov-modulation.

Proposition 6.1 In the case e i 0 we have

(6.1) ^r-(°)= J, ., g*(y*)(A)-**r'*(7>.
de nK(y )e

Proof. The existence of the right derivative follows by the implicit function theo-
rem and det(vl + eK(y{e))) = 0. Multiplying (5.3) by e, we obtain

0 = (Ao + eK(y))h.
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Differentiation with respect to e gives

(6.2) 0 = (K(y) + ey' K\y))h + (\ + eK(y))h'.
Normalizing h by nh = 1, we have nh' = 0, h(0) - e. Hence letting e 1 0 in (6.2)
yields

0 = K(y*)e + AQh\Q + 0) = K(y*)e + (AQ- en)h\Q + 0),

i.e.

(6.3) h'(0 + 0) = -(Ao - en)~] K(y*)e.

Differentiating (6.2) once more and letting e I 0 we get

(6.4) 0 = 2y'(0 + 0 ) /T (y> + 2K(y*)h'(0 + 0) + A0h"(0 + 0).

Multiplying (6.4) by n to the left we get

(6.5) 0 = 2y'(0 + 0)ff/T(y> + 2nK(y*)h'(0 + 0).

Inserting (6.3) yields (6.1). •

Now turn to the case of a. We assume that 0 < y, < y; for i = 2, ..., p. Then
Y—> Yx as a 1 0 and we may take h(0) = e^ (the first unit vector). We get

0 - (aAQ + K[y])h.

Differentiation with respect to a gives

(6.6) 0 = (Ao + y'K\y))h + (aAQ + K(y))h'.

Letting a i 0 in (6.6) and multiplying by e{ to the left we get 0 = A,, + y'(O)K"J(y|)
+ 0 (using JC1(y(O)) = 0 to infer that the first component of K(y(0))h'(0 + 0) is 0),
and we have proved:

Proposition 6.2 / / 0 < y. < y. for i = 2, ..., /?, f/ien — L ( 0 ) =
Ja K T 'KT,'(y,)
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