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Linear global stability of a flow past a sphere
under a streamwise magnetic field
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The global linear stability analysis for the magnetohydrodynamic liquid metal flow past an
insulated sphere subjected to a constant streamwise magnetic field is investigated in the
range of the Reynolds number Re ≤ 400 and the interaction number N ≤ 40 coupled with
direct numerical simulations, where N stands for strength of the electromagnetic force.
The stability of the steady axisymmetric base flow to independent time-azimuthal modes
is discussed. Five critical curves associated with various wake transitions are obtained in
the {Re, N} phase diagram. These critical curves reveal the stabilising effect of a weak
magnetic field, the destabilising effect of a strong magnetic field and re-stabilising effect
of a much stronger magnetic field. To explore the impact of the magnetic field on flow
instability, a sensitivity analysis utilizing an adjoint method is performed for the first
regular bifurcation. Sensitivity functions of growth rate to base-flow modifications and
Lorentz force are defined to identify the region that has the most significant influence on
flow instability, such as the recirculation region responsible for the stabilising effect at
a weak magnetic field and the shear layer region responsible for the destabilising effect
at a strong magnetic field. Furthermore, a competition between the stabilising and shear
destabilising effects of the magnetic field is discussed. This analysis provides valuable
insights into the non-monotonic effect of the magnetic field on flow instability.

Key words: absolute/convective instability

1. Introduction

With a constant external magnetic field, the Lorentz force as a non-contact method to
control the movement of a solid particle has received special attention in metallurgy, such
as producing immiscible alloys with a uniform distribution of solid particles in the matrix
(Zheng et al. 2015). It is noted that the path instability of a freely moving particle is closely
related to its wake transition (Ern et al. 2012). Therefore, comprehending the influence
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of a magnetic field on the wake transition around an obstacle can provide valuable
insights for practical applications. Global linear stability analysis (LSA) has proven to
be a valuable tool for determining the threshold of flow bifurcation past an obstacle at
low Reynolds numbers. It aids in understanding the evolution of wake transition under
different parameter settings. Hence, the present study focuses on the global LSA of flow
past an insulated sphere under the influence of an external constant streamwise magnetic
field.

Hydrodynamic flows past a fixed sphere without a magnetic field have been extensively
investigated, which report two bifurcations at low Reynolds numbers. The first one is the
regular bifurcation, at which the wake structure transitions from a steady axisymmetric
wake to a steady plane symmetric wake. The second one is the Hopf bifurcation, at which
the wake structure transitions from a steady plane symmetric wake to a periodic vortex
shedding wake. These two transitions were illustrated to be supercritical by Thompson,
Leweke & Provansal (2001). Natarajan & Acrivos (1993) examined the stability of a
steady axisymmetric base flow to three-dimensional perturbations with a global LSA,
which found that the regular and Hopf bifurcations occurred at ReI

c ≈ 210 and ReII
c ≈ 277,

respectively. These two bifurcations resulted from the unstable stationary and oscillating
modes with an azimuthal wavenumber m = 1. Based on the same assumption of a steady
axisymmetric base flow, Ghidersa & Dušek (2000) and Thompson et al. (2001) considered
the weakly nonlinear interaction between the stationary mode and the oscillating mode,
a more accurate second critical Reynolds number was obtained, ReII

c ≈ 272 and 272.3,
respectively. Furthermore, Citro et al. (2017) performed a fully three-dimensional global
stability analysis to accurately determine the second bifurcation at ReII

c = 271.8. In
addition to the global stability analysis, the local stability analysis was also applied to
the research of a flow past a sphere. To figure out the relation between global dynamics
and their local instability characteristics, Pier (2008) examined the local absolute and
convective properties of axisymmetric and planar symmetric basic flows under a parallel
flow assumption, which established the existence of an absolutely unstable pocket.

When an external magnetic field is taken into consideration, the movement of a
conducting fluid that deviates from parallel to the magnetic field generates electric
currents, which in turn interact with the magnetic field, giving rise to the Lorentz force.
This body force causes alterations in the flow configuration. In the case of flow around
an obstacle, Yonas (1967) did drag measurement experiments on a conducting flow past
a sphere in the presence of a streamwise magnetic field. It was found that the magnetic
field was able to completely damp dominant frequencies that existed in its corresponding
hydrodynamic situation. Mutschke, Shatrov & Gerbeth (1998) studied the flow past a
cylinder and found that the critical Reynolds number, which was related to the flow
transitioning from a steady state to an unsteady state, increased with an increase in
the strength of the streamwise magnetic field. This indicates that the magnetic field is
beneficial to stabilise the flow, which is possibly attributed to the Joule dissipation effect.
The dampening effect of a constant magnetic field is generally acknowledged in various
metallurgical applications (Chandrasekhar 2013).

Recent research has uncovered, however, some evidence indicating that the streamwise
magnetic field not only exhibits its conventional damping effect but also plays a role in
promoting flow instability. Mutschke et al. (2001) reported a non-monotonic behaviour
of the temporal growth rate in a LSA of flow past a cylinder. They found that, under a
strong magnetic field, the three-dimensional instability of the flow was amplified, resulting
in a lower critical Reynolds number for the onset of a three-dimensional instability.
Our previous direct numerical simulation (DNS) study on flow past a sphere confirmed
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a similar phenomenon (Pan, Zhang & Ni 2018). The wake transition from a steady
axisymmetric flow to a steady plane symmetric flow was affected by the streamwise
magnetic field, i.e. increasing the magnetic field resulted first in an increase then a decrease
in the critical Reynolds number. Hence, it seems that a weak magnetic field will damp the
growth of perturbation, while a strong magnetic field will promote its growth. Since the
underlying mechanism behind this dual effect of the streamwise magnetic field remains
unclear, a global LSA is employed to explore how the magnetic field damps or promotes
the instability of flow past a sphere.

In the past few decades sensitivity analysis based on the adjoint method, as the extension
of a LSA, has been developed and popularized to explore flow control dynamics (Chomaz
2005; Camarri 2015). Experiments by Strykowski & Sreenivasan (1990) demonstrated
that placing a small control cylinder in an appropriate position in the wake behind the
main cylinder could suppress vortex shedding. To determine these locations in a more
convenient theoretical approach, Giannetti & Luchini (2007) regarded the action of the
small cylinder as a local force acting in the perturbation momentum equation and defined
a structural stability function. This function was introduced by investigating the greatest
drift of the eigenvalue in a space under the influence of a modification in the structure, such
as a small control cylinder force perturbation. It revealed the core region for the instability
mechanism. Qualitative agreement was obtained between the theoretical prediction and the
experimental data of Strykowski & Sreenivasan (1990). Marquet, Sipp & Jacquin (2008)
argued that the small cylinder as a momentum force not only affected the perturbation
equation but also the basic flow equation. They improved to model the small cylinder
as a steady force acting on the basic flow and proposed the sensitivity function of the
eigenvalue to this force. Their sensitivity analysis was applied to the global unstable mode
that was responsible for the onset of vortex shedding. It determined the regions of the
flow where a steady force acting on the base flow could stabilise the global unstable mode
and suppress the vortex shedding. The regions of the control cylinder predicted by the
sensitivity analysis in Marquet et al. (2008) compared well with the experimental results of
Strykowski & Sreenivasan (1990). Furthermore, the sensitivity analysis was also applied
to investigate the passive control of the secondary instability in the wake of a cylinder
(Giannetti, Camarri & Citro 2019).

In recent years the sensitivity analysis method has been applied to explore the
wake of a sphere by Meliga, Chomaz & Sipp (2009) and Citro et al. (2017). The
adjoint modes allowed them to determine the receptivity of each mode to particular
initial conditions, external forcing or basic flow modifications. The core region of the
instability mechanism was also localized in the same way by Giannetti & Luchini
(2007), where the eigenvalue was most sensitive to local modifications of the linearized
Navier–Stokes operator. These sensitivity analyses provide valuable insights for defining
control strategies in flow dynamics. Inspired by literature on sensitivity analyses, the
magnetic field can be considered as a control factor, which will alter the stability properties
of magnetohydrodynamic (MHD) flow. In fact, the Lorentz force acting on momentum
equations alters the eigenvalue of the most unstable mode by modifying the base-flow
configuration. Such sensitivity analyses to base-flow modifications and the Lorentz force
are helpful to identify the core region where an increment of the magnetic field strength
will produce the greatest drift of the global eigenvalue. Within this theoretical framework,
the corresponding physical mechanism of the magnetic field’s impact on flow instability
can be explained. In this way, studying the influence of a magnetic field on the flow
past a sphere turns into the problem that the sensitivity of the eigenvalue to base-flow
modifications and the Lorentz force under different magnetic field intensities.
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2. Problem formulation and validation

We consider an incompressible Newtonian fluid with electrical conductivity σ , kinematic
viscosity ν and density ρ past an insulated sphere under a constant streamwise magnetic
field B0 = B0ex. The MHD governing equations are written based on a quasi-static
approximation, in which the induced magnetic field can be negligible compared with
the imposed magnetic field when the magnetic Reynolds number is much smaller than
unity (Davidson 2001; Moreau 2013). Dimensionless flow variables, such as length,
time, velocity, pressure, magnetic field, electrical potential and current are scaled with
d, d/U∞, U∞, ρU2∞, B0, dU∞B0 and σU∞B0, respectively. Here, d and U∞ are the
sphere diameter and uniform inflow velocity, respectively. Then non-dimensional MHD
governing equations are governed by

∂U
∂t

+ ∇U · U = −∇P + 1
Re

∇2U + N(J × ex), (2.1)

∇ · U = 0, (2.2)

∇ · J = 0, (2.3)

where N(J × ex) represents the Lorentz force acting on the conducting fluid by a
magnetic field. Substituting Ohm’s law J = −∇Φ + U × ex into the equation of charge
conservation (2.3), a Poisson equation for the electric potential can be derived as

∇2Φ − ∇ · (U × ex) = 0. (2.4)

There are two important dimensionless parameters, the Reynolds number Re = U∞d/ν

and the interaction parameter N = σdB2
0/ρU∞. They are measured by ratios of inertial

to viscous forces and electromagnetic to inertial forces, respectively. The interaction
parameter N can be used to describe the strength of the electromagnetic field. Another
dimensionless parameter is the Hartmann number Ha = √

NRe = dB0
√

σ/ρν, which
represents the ratio of electromagnetic to viscous forces.

A standard cylindrical coordinate system (r, θ, x) with the origin at the centre of
the sphere is used in this paper, where r, θ and x denote the radial, azimuthal and
streamwise directions, respectively. Since the LSA in this paper is developed for steady
and axisymmetric base flows whose physical quantities are uniformly distributed along
the azimuth, the solutions of the base flow, stability and sensitivity equations require
discretization on the two-dimensional (x, r) plane. Figure 1 shows the flow configuration.
The inlet boundary Γin with a uniform incoming flow is located at x = −l1, while the outlet
boundary with a stress-free condition is located at x = l2. The boundary Γax representing
the symmetric axis is located at r = 0. The external boundary Γext with an inviscid
condition, where the normal velocity and tangential vorticity components are taken to
be zero, is located at r = h. The sphere surface Γsp is set with a non-slip condition.

2.1. Base-flow equations
For a certain value of the interaction number, when the Reynolds number is less than the
threshold of the first instability, the flow is in a steady, axisymmetric state (Pan et al. 2018).
The present paper investigates the response of the steady axisymmetric base flow to a small
perturbation. The solution [U0, P0, Φ0] of a steady axisymmetric basic flow satisfies the
following governing equations:

∇U0 · U0 = −∇P0 + 1
Re

∇2U0 + N(−∇Φ0 + U0 × ex) × ex, (2.5)
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Figure 1. Schematic of flow configuration.

∇ · U0 = 0, (2.6)

∇2Φ0 − ∇ · (U0 × ex) = 0. (2.7)

The boundary conditions are set as follows: U0 = (0, 0, 1)T on the inlet; U0 = 0 on
the sphere surface; −P0n + Re−1∇U0 · n = 0 on the outlet; U0r = ∂U0x/∂r = 0 on the
symmetric axis and external boundary. The potential meets ∂Φ0/∂n = (U0 × ex) · n at
all boundaries (Mück et al. 2000). Since the basic flow is axisymmetric, the electrical
potential Φ0 in the governing equation is decoupled from other physical quantities.
According to its Poisson equation and boundary conditions, its spatial gradient can be
inferred to be zero. That is, the electric potential Φ0 is a uniformly distributed constant in
space, and there is no need to solve Φ0. Now, the current lines enclose along the azimuthal
direction, and only the electromotive force (the second term of Ohm’s law) contributes
to the magnitude of the current. In this way, the Lorentz force can be represented as
N(U0 × ex × ex).

2.2. Linear global stability equations
In LSA the total flow field [U, P, Φ] is represented as a superposition of a basic
flow [U0, P0, Φ0] and an infinitesimal unsteady perturbation [u′, p′, φ′]. The governing
equations for the small perturbations are derived by subtracting the governing equations
of the base flow from those of the total flow and neglecting quadratic high-order terms.
Thus, the governing equations for the perturbations can be written as

∂u′

∂t
+ ∇u′ · U0 + ∇U0 · u′ = −∇p′ + 1

Re
∇2u′ + N(−∇φ′ + u′ × ex) × ex, (2.8)

∇ · u′ = 0, (2.9)

∇2φ′ − ∇ · (u′ × ex) = 0. (2.10)

Since the basic flow is steady and axisymmetric, the perturbation can be expressed in the
form of independent time-azimuthal modes,

[u′, p′, φ′](r, θ, x, t) = [u, p, φ](x, r) exp(imθ + λt), (2.11)

where [u, p, φ](x, r) is referred to as the direct global mode. Here m is the azimuthal
wavenumber, which means that the velocity of global mode has m pairs of counter-rotating
vortical streamwise structures (Ghidersa & Dušek 2000); λ = λr + iλi is the complex
eigenvalue, where λr and λi denote the growth rate and angular frequency, respectively.
The flow is unstable if λr > 0 and a bifurcation will occur. The global mode with
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the maximal growth rate will be identified as the leading mode, in which λi = 0 or
λi /= 0 is denoted as a stationary mode or an oscillating mode, respectively. Each
time-azimuthal mode is demonstrated to behave like a propagating wave, which has
a specific spatial signature (Ghidersa & Dušek 2000). By substituting (2.11) into
(2.8)–(2.10), the generalized eigenvalue equations for a time-azimuthal mode can be
formulated as

λur + U0r
∂ur

∂r
+ U0x

∂ur

∂x
+ ur

∂U0r

∂r
+ ux

∂U0r

∂x

= −∂p
∂r

+ 1
Re

(
∂2ur

∂r2 + ∂2ur

∂x2 + 1
r

∂ur

∂r
− ur

r2 − m2 ur

r2 − i2m
uθ

r2

)
− N

(
im

φ

r
+ ur

)
,

(2.12)

λuθ + U0r
∂uθ

∂r
+ U0x

∂uθ

∂x
+ U0ruθ

r

= −im
p
r

+ 1
Re

(
∂2uθ

∂r2 + ∂2uθ

∂x2 + 1
r

∂uθ

∂r
− uθ

r2 − m2 uθ

r2 + i2m
ur

r2

)
+ N

(
∂φ

∂r
− uθ

)
,

(2.13)

λux + U0r
∂ux

∂r
+ U0x

∂ux

∂x
+ ur

∂U0x

∂r
+ ux

∂U0x

∂x

= −∂p
∂x

+ 1
Re

(
∂2ux

∂r2 + ∂2ux

∂x2 + 1
r

∂ux

∂r
− m2 ux

r2

)
, (2.14)

∂ur

∂r
+ ∂ux

∂x
+ ur

r
+ im

uθ

r
= 0, (2.15)

1
r

∂φ

∂r
+ ∂2φ

∂r2 − m2 φ

r2 + ∂2φ

∂x2 + im
ur

r
− ∂uθ

∂r
− uθ

r
= 0. (2.16)

It is important to note that the ∇ operator consists of the algebraic operations (i ∗ m
multiplications) and differential operations (x and r derivatives). The boundary conditions
are set as follows: u = 0 on the inlet and sphere surface; −pn + Re−1∇u · n = 0 on the
outlet; ur = ∂uθ /∂r = ∂ux/∂r = 0 on the external boundary; ur = ∂ux/∂r = ∂p/∂r = 0
if m = 0, ∂ur/∂r = ∂uθ /∂r = ux = p = 0 if |m| = 1, ur = uθ = ux = p = 0 if |m| ≥ 2 on
the symmetric axis (Tchoufag, Magnaudet & Fabre 2013); ∂φ/∂n = (u × ex) · n on all the
boundaries. For each azimuthal wavenumber m, if λ and [u, p, φ] are the solutions of the
eigenvalue equations, their conjugated counterparts λ∗ and [u∗, p∗, φ∗] are the solutions
of the eigenvalue equations for −m. It is noted that the following governing equations are
given in a vector form for concision.

2.3. Sensitivity equations
The sensitivity analysis is considered here to investigate the variation of a given eigenvalue
λ resulted from the base-flow modifications and the Lorentz force variations. These two
sensitivity analyses discuss the flow instability from different perspectives. There is a close
relationship between them, since the base-flow modifications are induced by the Lorentz
force. These two sensitivity functions are defined as the gradient of the eigenvalue with
respect to the base flow [∇U0λ, ∇P0λ, ∇Φ0λ] and the Lorentz force ∇Fλ, respectively.
Their expressions are derived by a general theoretical formation introduced by Marquet
et al. (2008) and Giannetti, Camarri & Luchini (2010). When considering small variations
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of the Lorentz force δF , base-flow modifications [δU0, δP0, δΦ0] will be induced through
(2.5)–(2.7). As a consequence, the variations of eigenvalue δλ and eigenmode [δu, δp, δφ]
are also induced as they are solutions of the eigenvalue problem given by (2.8)–(2.10),
which is associated with the base flow. Firstly, the variations of base flow [δU0, δP0, δΦ0]
are governed by the following equations:

A(δU0, U0) = −∇δP0 + 1
Re

∇2δU0 + N(−∇δΦ0 + δU0 × ex) × ex + δF , (2.17)

∇ · δU0 = 0, (2.18)

∇2δΦ0 − ∇ · (δU0 × ex) = 0. (2.19)

Here, the advection term ∇U0 · δU0 + ∇δU0 · U0 is denoted as A(δU0, U0) for
convenience. The variation of Lorentz force δF is assumed to be small enough to produce
small variations of the base flow and the global mode. So a linearized analysis can be
carried out. The variations of the global mode are governed by

δλu + λδu + A(δU0, u) + A(U0, δu) = −∇δp + 1
Re

∇2δu + N(−∇δφ + δu × ex) × ex,

(2.20)

∇ · δu = 0, (2.21)

∇2δφ − ∇ · (δu × ex) = 0. (2.22)

Then, the complex Lagrange multipliers [U†
0, P†

0, Φ
†
0 ] and [u†, p†, φ†], referred to as the

complex adjoint base flow and the complex adjoint global mode, are introduced to obtain
a generalized Lagrange identity. The Lagrange identity is constructed as

〈U†
0, (2.17)〉 + 〈P†

0, (2.18)〉 + 〈Φ†
0 , (2.19)〉 + 〈u†, (2.20)〉 + 〈p†, (2.21)〉

+ 〈φ†, (2.22)〉 = 0, (2.23)

where the operation symbol 〈, 〉 is the inner product on the whole domain Ω defined by
〈a, b〉 = ∫

Ω
a∗ · b dΩ . Placing the terms related to [δU0, δP0, δΦ0] and [δu, δp, δφ] on

the right-hand side of the equation, the Lagrange identity turns into (2.24) as∫
Ω

δF · U†∗
0 − δλu · u†∗ dΩ

=
∫

Ω

[(
A(δU0, U0) + ∇δP0 − 1

Re
∇2δU0 + N(∇δΦ0 − δU0 × ex) × ex

)
· U†∗

0

+(∇ · δU0)P
†∗
0 + (∇2δΦ0 − ∇ · (δU0 × ex))Φ

†∗
0

]
dΩ

+
∫

Ω

[(
λδu + A(δU0, u) + A(U0, δu) + ∇δp

− 1
Re

∇2δu + N(∇δφ − δu × ex) × ex

)
· u†∗

+(∇ · δu)p†∗ + (∇2δφ − ∇ · (δu × ex))φ
†∗

]
dΩ, (2.24)
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Ω

δF · U†∗
0 − δλu · u†∗ dΩ

=
∫

Ω

[(
A†(U†

0, U0) + A†(u†, u∗) + ∇P†
0

− 1
Re

∇2U†
0 + N(∇Φ

†
0 − U†

0 × ex) × ex

)∗
· δU0

+ (∇ · U†
0)

∗δP0 + (∇2Φ
†
0 − ∇ · (U†

0 × ex))
∗δΦ0

]
dΩ

+
∫

Ω

[(
λ∗u† + A†(u†, U0) + ∇p† − 1

Re
∇2u† + N(∇φ† − u† × ex) × ex

)∗
· δu

+ (∇ · u†)∗δp + (∇2φ† − ∇ · (u† × ex))
∗δφ

]
dΩ

+
∮

∂Ω

(
(u∗ · n)u† + (U0 · n)U†

0 − NΦ
†
0 n × ex − nP†

0 + 1
Re

(∇U†
0) · n

)∗
· δU0 ds

−
∮

∂Ω

n · (∇Φ
†
0 − U†

0 × ex)
∗δΦ0 ds

+
∮

∂Ω

(
(U0 · n)u† − Nφ†n × ex − np† + 1

Re
(∇u†) · n

)∗
· δu ds

−
∮

∂Ω

n · (∇φ† − u† × ex)
∗δφ ds. (2.25)

In order to shift the action of the differential operators ∇ in (2.24) from the direct fields to
the adjoint fields, integration by parts and the divergence theorem are used. As a result, a
new form of the identity containing boundary integral terms, which is equivalent to (2.24),
is obtained in (2.25).

Here, the advection term of adjoint field ∇bT · a − ∇a·b is denoted as A†(a, b) to
simplify the expression. Eliminating the first two rows on the right-hand side of (2.25)
leads to the definition of the adjoint base-flow equations

A†(U†
0, U0) + ∇P†

0 − 1
Re

∇2U†
0 + N(∇Φ

†
0 − U†

0 × ex) × ex = −A†(u†, u∗), (2.26)

∇ · U†
0 = 0, (2.27)

∇2Φ
†
0 − ∇ · (U†

0 × ex) = 0. (2.28)

For the same reason stated in § 2.1, the electric potential of the adjoint base flow also
does not need to be solved. By eliminating the boundary terms on the sixth and seventh
right-hand rows of (2.25), the following boundary conditions for the adjoint base flow
are obtained: U†

0 = 0 at the inlet and on the sphere surface; ∂U†
0x/∂r = U0r = 0 at the

external boundary and symmetric axis; −P†
0n + Re−1(∇U†

0) · n = −(u∗ · n)u† − (U0 ·
n)U†

0 + NΦ
†
0 n × ex at the outlet.
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Analogously, by eliminating the third and fourth rows on the right-hand side of (2.25),
equations associated to the adjoint global mode [u†, p†, φ†] can be obtained as

λ∗u† + A†(u†, U0) + ∇p† − 1
Re

∇2u† + N(∇φ† − u† × ex) × ex = 0, (2.29)

∇ · u† = 0, (2.30)

∇2φ† − ∇ · (u† × ex) = 0. (2.31)

By eliminating the last two rows on the right-hand side of (2.25), the following boundary
conditions for the adjoint global mode can be obtained: u† = 0 at the inlet and on
the sphere surface; ∂u†

x/∂r = u†
r = 0 at the external boundary; −p†n + Re−1(∇u†) · n =

−(U0 · n)u† + Nφ†n × ex at the outlet; u†
r = ∂u†

x/∂r = ∂p†/∂r = 0 if m = 0, ∂u†
r /∂r =

∂u†
θ /∂r = u†

x = p† = 0 if |m| = 1, u†
r = u†

θ = u†
x = p† = 0 if |m| ≥ 2 at the symmetric

axis, ∂φ†/∂n = (u† × ex) · n on all the boundaries.
Comparing the governing equations of the direct global mode (2.8)–(2.10) and the

adjoint global mode (2.29)–(2.31), it is noted that the difference comes from the advection
operator. Here ∇u · U0 indicates the downstream transport of the direct global mode by
the base flow, while −∇u† · U0 indicates the upstream transport of the adjoint global
mode by the base flow. Such a difference results in the spatial separation of the direct
mode and adjoint mode in the streamwise direction. The items of ∇U0 · u and ∇UT

0 · u†

correspond to the production of the direct mode and adjoint mode, respectively. Marquet
et al. (2009) pointed out that the direct mode and the adjoint mode tended to be mutually
orthogonal owing to the transpose of the base-flow velocity gradient. Meliga et al. (2009)
explained the orthogonality of direct and adjoint modes from the energy point of view.
They reported that the perturbation energy of the direct mode was mainly composed of
streamwise velocity, while the adjoint mode was mainly composed of the cross-stream
velocity.

After obtaining the adjoint base-flow equations and the adjoint global mode equations,
coupling with their corresponding boundary conditions, the Lagrange identity (2.25)
finally becomes 〈U†

0, δF 〉 = δλ〈u†, u〉. Hence, the eigenvalue variation δλ due to the
change of Lorentz force δF can be obtained from

δλ = 〈U†
0, δF 〉

〈u†, u〉 . (2.32)

Here, 〈u†, u〉 is a normalization condition for the adjoint global mode and it can be
simply seen as equaling to unity. Hence, there is δλ = 〈U†

0, δF 〉. According to the physical
definition of the sensitivity function of the eigenvalue to Lorentz force, it establishes the
connection between the small variation of the Lorentz force and the small drift of the
eigenvalue, which can be expressed as δλ = 〈∇Fλ, δF 〉. A so-called sensitivity function
of a selected eigenvalue to Lorentz force ∇Fλ is obtained by knowledge of the adjoint
base-flow field U†

0 as

∇Fλ = U†
0. (2.33)

The sensitivity function to Lorentz force determines the core region of the flow, where
the eigenvalue λ is most sensitive to the variations of Lorentz force. The effect of the
Lorentz force in this region is therefore crucial in determining the global eigenvalue.
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Such a concept is an extension to the MHD field, which was originally developed by
Marquet et al. (2008) in hydrodynamics cases. Furthermore, the sensitivity function to
base-flow modifications is defined as

∇U0λ = ∇u† · u∗−(∇u)H · u†, (2.34)

where the superscript H represents the transconjugate. This sensitivity function is derived
by a variational approach as introduced by Marquet et al. (2008). It provides a view of how
the stability of the base flow is modified by a magnetic field.

2.4. Numerical method
Since DNS is needed in the present work to classify the type of wake structure at the
rear of a sphere, a second-order-accurate consistent and conservative numerical scheme
is employed. Detailed information regarding the numerical method can be found in Ni
et al. (2007). The boundary conditions and grid resolution tests for a streamwise magnetic
field case from Pan et al. (2018) can be reused here. To solve the equations related to
LSA and sensitivity analysis, a partial differential equation solver FreeFem++ (http://
www.freefem.org) based on a finite element method is used. The finite element method
combines the classical variational method with piecewise polynomial interpolation, and
the weak solution of the differential equations is obtained by the variational principle.
Spatial discretization of the unknown velocity and pressure fields is achieved using
Taylor–Hood (P2, P1) elements to satisfy the Ladyzhenskaya–Babuška–Brezzi condition.
The electric potential field is discretized using the P2 element. The governing equations
are reformulated into a variational formulation in the cylindrical coordinate system, and
a Delaunay–Voronoi algorithm is utilized to generate an unstructured triangular mesh
for spatial discretization. Subsequently, sparse matrices resulting from the projection
of variational formulations onto the finite element basis are constructed using the
FreeFem++ software. Finally, the matrix of base flow is computed through a Newton
iteration method, and its associated Jacobian matrix is inverted using the UMFPACK
library. The matrix of the generalized eigenvalue problem is solved using either Arnoldi
or simple shift-invert methods in the SLEPc library.

2.5. Validation
The triangular grid generated by FreeFem++ through the Delanunay–Voronoi algorithm
is displayed in figure 1. The mesh quality is controlled by several parameters, such as
the inlet length l1, the outlet length l2, the height of the computational domain h, the
minimum grid hmin and the maximum grid hmax. The size of the triangular mesh on the
sphere is set to hmin, which grows outwards according to the multiplier of 1.02, and stops
growing when the mesh size reaches hmax. In the present study the sphere serves as the
sole source of vorticity generation. To ensure the accuracy of the numerical simulation, a
sufficiently fine grid resolution is required in the boundary layer on the sphere’s surface.
Generally, it is necessary to have 4–5 layers of grid in the boundary layer when determining
the grid size. For MHD channel flows (Moreau 2013), the thickness of the Hartmann
layer perpendicular to the magnetic field is scaled with O(Ha−1), and the thickness of
the Shercliff layer parallel to the magnetic field is scaled with O(Ha−1/2). However, these
two scaling thicknesses are related to a flat wall and may not be suitable for the flow around
a sphere. Nevertheless, grid resolution tests for MHD flow past a cylinder by Kanaris et al.
(2013) and a sphere by Pan et al. (2018) can provide valuable references. These studies
achieved accurate results with Hartmann numbers up to 280 and 54.8, corresponding to
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Figure 2. Plots to determine the smallest grid size hmin. (a) Variation of the critical Reynolds number Rec for
N = 0 and N = 40 with different grid resolutions. (b) Variation of the relative error Er = (Rec − Rec

c)/Rec
c for

N = 0 and N = 40 on a logarithmic scale. Here Rec
c represents the convergence of critical Reynolds number.

The red circle denotes the results of present selecting grid resolution.

the smallest grid element sizes of 0.005 and 0.01, respectively. Inspired by their works,
since the largest Hartmann number in the present study is 126.5, the smallest grid element
size is set as hmin = 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1 to examine the
convergence of the critical Reynolds number at N = 0 and N = 40. Other mesh parameters
are selected as l1 = 300, l2 = 200, h = 30 and hmax = 0.5. The results in figure 2(a)
demonstrate that the critical Reynolds numbers Rec at N = 0 and N = 40 converge to
Rec

c = 212.67 and Rec
c = 179.15 at the finest grid of hmin = 0.0005, respectively. The

relative error is defined as Er = (Rec − Rec
c)/Rec

c. Figure 2(b) illustrates the variation
of relative error with different grid resolutions on a logarithmic scale. It is observed
that the relative error decreases to a value close to zero as the grid resolution increases,
which confirms the convergence of the error. The choice of hmin = 0.002 has the relative
error Er ∼ O(10−4) in this study, which ensures sufficient accuracy for the subsequent
simulations.

To determine the suitable inlet length l1, l1 ∈ (30, 500) is set in figure 3(a) to examine
the convergence of the critical Reynolds number at N = 0 and N = 40. The other
mesh parameters are set as l2 = 200, h = 30, hmin = 0.002 and hmax = 0.5. The results
demonstrate that the critical Reynolds number Rec of N = 0 is basically a constant with
the variation of inlet length, and Rec of N = 40 converges to Rec

c = 179.4 as the inlet
length increases to 500. Figure 3(b) illustrates the variation of relative error with different
inlet lengths on a logarithmic scale, which confirms the convergence of the error. The
relative error at l1 = 300 is Er ∼ O(10−3), which choice ensures sufficient accuracy for
the subsequent simulations. The test for the outlet length l2 with other mesh parameters,
such as l1 = 300, h = 30, hmin = 0.002 and hmax = 0.5, is also done in figure 3. Here,
l2 = 200 is long enough to ensure the accuracy of the calculation. The variations of Rec
with different values of hmax and h are also examined, the results of which indicate that
Rec is insensitive to these two mesh parameters. Three meshes formed by changing hmax
and h in turn are used to test the value of Rec for N = 0 and N = 40. Results in table 1
demonstrate the rationality of hmax = 0.5 and h = 30. According to the above results,
the grid with hmin = 0.002, hmax = 0.5, h = 30, l1 = 300, l2 = 200 is adopted for the
following study. It is noted that the inlet length is longer than the outlet one, because a
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Figure 3. Plots to determine the inlet length l1 and outlet length l2. (a) Variations of the critical Reynolds
number Rec for N = 0 and N = 40 with different inlet or outlet lengths. (b) Variation of the relative error
Er = (Rec − Rec

c)/Rec
c for N = 40 on a logarithmic scale. Here Rec

c represents the convergence of the critical
Reynolds number.

Mesh l1 l2 h hmax hmin Rec(N = 0) Rec(N = 40)

M1 300 200 30 0.5 0.002 212.68 179.18
M2 300 200 30 0.3 0.002 212.68 179.01
M3 300 200 50 0.5 0.002 212.69 179.15

Table 1. The independence test of the maximum grid hmax and the height of the computational domain h at
N = 0 and 40.

sufficiently long inlet length is necessary to obtain an accurate base flow and to study the
response of the base flow to a small perturbation.

The validations of programs are considered. First, the comparison of the drag coefficient
for base-flow properties with the important work of Sekhar, Sivakumar & Kumar (2005)
and our previous results from Pan et al. (2018) are given in figure 4(a), which shows a
good agreement except for strong magnetic fields. The difference in inlet length may lead
to this deviation. A linear relationship between the drag coefficient and N1/2 at strong
magnetic fields, which has been reported by DNS of Sekhar et al. (2005), Pan et al. (2018)
and experiments by Yonas (1967), is also observed in the present study. Next, the critical
values of interaction number Nc for different Re of the first regular bifurcation and the
second Hopf bifurcation calculated by the present program of the eigenvalue problem are
compared with Pan et al. (2018). As shown in figure 4(b), there is a good agreement for
N ≤ 4 but a deviation for N > 4. Since the inlet length adopted here is 300, while it is 12
in Pan et al. (2018), the difference of inlet length may be responsible for the deviation of
the strong magnetic fields. In addition, comparison of the critical Reynolds number at the
first regular bifurcation and the second Hopf bifurcation at N = 0 with previous literature
is presented in table 2. A good agreement can be observed. As for adjoint eigenvalue
problems, the adjoint pressure p† shows a good agreement with Meliga et al. (2009), which
can be seen in figure 4(c). Finally, the structure stability function in figure 4(d) agrees well
with the result shown in figure 5(b) of Meliga et al. (2009). The above validations prove
the reliability of the present numerical programs.
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Figure 4. Numerical program validations. (a) Comparison of the drag coefficient for MHD flows past a sphere.
(b) Comparison of the critical values of the interaction number Nc for different Re with DNS results in Pan
et al. (2018). Both regular and Hopf bifurcations are considered. Here LRB represents the lower branch of
the regular bifurcation and URB represents the upper branch of the regular bifurcation. (c) Comparison of
the adjoint pressure p† with Meliga et al. (2009) at Re = 212.7, N = 0. (d) The structure stability function at
Re = 212.7, N = 0 in the present study.

Item ReI
c ReI

c

Natarajan & Acrivos (1993) 210 277
Ghidersa & Dušek (2000) 212 272.3
Thompson et al. (2001) 212 272
Meliga et al. (2009) 212.6 280.7
Present 212.68 280.8

Table 2. Comparisons of ReI
c and ReII

c at N = 0 with previous literature.

3. Results and discussions

3.1. Steady axisymmetric base flow
In order to study the global linear stability of the MHD flow past a fixed sphere, it is
necessary to compute the steady, axisymmetric solution of the base flow. Streamlines and
the Lorentz force of axisymmetric base flows for Re = 200 with N = 0, 1, 5, 20 are shown
in figure 5. The Lorentz force damps flow not parallel to the orientation of the magnetic
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Figure 5. Streamlines and the Lorentz force of axisymmetric base flows for different N at Re = 200:
(a) N = 0, (b) N = 1, (c) N = 5, (d) N = 20.

field, which straightens the streamlines in the mainstream direction. Consequently, the
profile of the separation bubble flattens when increasing the magnetic field. Accompanying
the straightening, streamlines near the top of the sphere tend to distribute symmetrically
upstream and downstream. Such a symmetrical distribution is a typical characteristic of
Stokes flow that does not consider the convection. It indicates that a strong magnetic field
can weaken the effect of the inertial term.

The separation bubble is characterized primarily by the recirculation length and
separation angle θ , as depicted in figure 5(a). Figures 6(a) and 6(b) illustrate the overall
variations of the recirculation length and separation angle with respect to N. It is observed
that the recirculation length decreases for N < 2 and increases for N > 2, while the
separation angle increases for N < 5 and decreases for N > 5. These non-monotonic
behaviours have also been reported in studies on flow past a circular cylinder at Re = 200
(Mutschke et al. 2001), a sphere at Re = 100, 200 (Sekhar et al. 2005) and a sphere at
Re = 150 (Pan et al. 2018). According to Pan et al. (2018), this non-monotonic behaviour
is attributed to the Lorentz force acting at different locations under varying magnetic field
strengths. Specifically, for a weak magnetic field, the Lorentz force predominantly acts
above the vortex centre of the separation bubble, whereas for a strong magnetic field, it
primarily acts above the head of the separation bubble, as illustrated in figure 5. Moreover,
figure 7 presents the values of N corresponding to the turning points of the recirculation
length and separation angle for different Re. A straight line obtained by linear fitting of the
scattered points provides estimates of N corresponding to the turning points for various
Re, offering insights into how the separation bubble varies under different magnetic field
strengths.

Since the flow will be straightened in the mainstream direction by the Lorentz force,
the azimuthal vorticity of the base flow will be stretched, as depicted in figure 8 for
Re = 200. The position with the largest vorticity value shifts from the front surface of
the sphere toward its vertex. Figure 6(c) presents the overall variation of the maximum
vorticity value with respect to N. It demonstrates a rapid decrease when N < 3 and a
subsequent increase when N > 3. Comparing this vorticity trend with the evolution of
the separation bubble behind the sphere reveals a correspondence between the increase or
decrease of the separation bubble and the maximum vorticity value. Leal (1989) believed
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Figure 6. The overall variations of (a) the recirculation length, (b) the separation bubble and (c) the maximal
vorticity with N at Re = 200.
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Figure 7. Values of N corresponding to (a) the minimum recirculation length and (b) the maximum
separation angle for different Re.

that the formation of the separation bubble resulted from the accumulation and evacuation
of vorticity in the flow past the bubble. The research of Blanco & Magnaudet (1995) and
Magnaudet & Mougin (2007) also supported this viewpoint. It may be used to explain
the similar variation tendency observed in the maximum vorticity and separation bubble
in the present study. Additionally, the Lorentz force inhibits the flow not parallel to
the magnetic field, resulting in a deceleration of the upstream and downstream flows at
the rear of the sphere. Consequently, with an increase in N, a negative pressure region
extends downstream, while a positive pressure region extends upstream, as demonstrated in
figure 9. It is noted that a large enough inlet length is necessary to obtain an accurate base
flow. The accurate base flow is important to investigate its stability to small perturbations,
as the transport and production of perturbations are related to the base flow. Therefore, a
large inlet length is required for strong magnetic fields, as discussed in § 2.5.

This section investigates the influence of a magnetic field on the base flow.
The separation bubble at the rear of the sphere decreases at weak magnetic fields,
while it increases at strong magnetic fields. This tendency in the separation bubble
suggests that applying a weak magnetic field is analogous to reduce the value of Re.
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Figure 8. Contours of the azimuthal vorticity of axisymmetric base flows for Re = 200 and different N. The
vorticity contours are drawn in increments of 0.5. The solid white line represents the separation bubble. Results
are shown for (a) N = 0, (b) N = 1, (c) N = 5, (d) N = 20.
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Figure 9. Contours of the pressure for axisymmetric base flows at Re = 200 with different N. Contours are
drawn in increments of 0.04. Dashed lines are used for negative values. Results are shown for (a) N = 0,
(b) N = 1, (c) N = 5, (d) N = 20.

For example, reducing Re will lessen the separation bubble in hydrodynamics cases and
this phenomenon is similar to the effect of a weak magnetic field for a fixed Re. Hence, it
seems that a weak magnetic field will stabilise the flow. However, a strong magnetic field
will enlarge the separation bubble. If a similar analogy is made in hydrodynamics cases,
strong magnetic fields may have a destabilising effect on the flow, which will be examined
in the subsequent section.

3.2. Linear stability analysis

3.2.1. Unstable modes and their critical curves
The stability property of the steady, axisymmetric base flow to three-dimensional
small perturbations is explored by solving the eigenvalue equations (2.8)–(2.10). Flow
stability analysis relies on an eigenvalue calculation. According to previous research on
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Figure 10. The global eigenvalue λ spectra at m = 1 with different interaction numbers, N = 0, 1, 5 and 20,
for different Reynolds numbers: (a) Re = 150, (b) Re = 200, (c) Re = 300, (d) Re = 400.

hydrodynamics flows past a sphere (Natarajan & Acrivos 1993; Pier 2008; Meliga et al.
2009), bubble (Tchoufag et al. 2013) and disk (Tchoufag, Fabre & Magnaudet 2014),
it has been proved that the non-axisymmetric mode with an azimuthal wavenumber of
m = 1 is the most unstable. Therefore, the eigenvalues of Re = 150, 200, 300 and 400
at different interaction numbers N are first examined with m restricted to 1. The results
of the global eigenvalue spectra are presented in figure 10. For hydrodynamics (N = 0),
Natarajan & Acrivos (1993) reported the occurrence of regular and Hopf bifurcations at
critical Reynolds numbers ReI

c ≈ 210 and ReII
c ≈ 277, respectively. When considering a

streamwise magnetic field, an unstable stationary mode appears at Re = 200, N = 20.
This suggests that a strong magnetic field can promote flow instability, as the flow is stable
in the absence of a magnetic field when Re < ReI

c. At the same time, for Re > ReII
c , the

unstable oscillating mode is suppressed by the magnetic field at Re = 300 and 400. It
means that no Hopf bifurcation or vortex shedding occurs. Therefore, the magnetic field
enhances flow stability. These findings demonstrate that a streamwise magnetic field has a
dual effect on the stability of flow past a sphere.

Yang & Prosperetti (2007) investigated a LSA of the flow past a spheroidal bubble.
They observed an unstable oscillating mode with m = 2 when the aspect ratio χ = 2.5
and Re = 660. A large aspect ratio can enlarge the recirculation region behind the bubble
in the base flow. It is worth noting that a strong magnetic field has a similar effect on
the recirculation behind the sphere in § 3.1. Hence, the effect of azimuthal wavenumber
m on the stability of a flow past a sphere under the influence of a streamwise magnetic
field should also be examined. Since unstable modes are more easily identified at higher
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Figure 11. The global eigenvalue λ spectra at Re = 400 with different interaction numbers, N = 0, 1, 5 and
20, for different azimuthal wavenumbers: (a) m = 0, (b) m = 2, (c) m = 3, (d) m = 4.

Reynolds numbers, eigenvalue λ spectra at Re = 400 with different m and different N are
checked, as shown in figure 11. No unstable mode is observed in the cases of m = 0, 3, 4,
while an unstable oscillating mode at N = 0 and an unstable stationary mode at N = 20
are observed in the case of m = 2. The angular frequency λi of the unstable mode in
figure 11(b) is different from that with m = 1 in figure 10(d), which infers that vortex
shedding at Re = 400, N = 0 exhibits multiple frequencies. Citro et al. (2017) reported
that the angular frequency of the unstable oscillating mode provided an estimation of the
vortex shedding frequency. In fact, Mittal (1999) confirmed that the wake became irregular
and lost planar symmetry with the occurrence of multi-frequency vortex shedding when
Re > 355.

Unstable stationary modes and oscillating modes with different m are observed in
figures 10 and 11. In order to understand the structures of these unstable modes, spatial
distributions of the streamwise perturbation velocity ux at Re = 400 are shown in figure 12.
For the stationary mode with m = 1, the distribution of ux is predominantly located within
the separation bubble when N = 0, while it extends downstream as N increases to 1.
Furthermore, the intensity of ux is reduced within the separation bubble when N = 5 and
20. The distribution of ux is significantly affected by the strength of the magnetic field,
as it shifts from the recirculation to the layer between the recirculation and the outflow
(hereafter called the shear layer) with increasing N. For the stationary mode with m = 2
under a strong magnetic field, the distribution of ux exhibits a shorter extent downstream
compared with the case with m = 1. For the oscillating mode in the absence of a magnetic
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Figure 12. Spatial distribution of the streamwise perturbation velocity ux of unstable modes observed in
figures 10(d) and 11(b). The black line is the outline of the separation bubble. (a) Stationary mode at Re = 400,
N = 0, m = 1. (b) Oscillating mode at Re = 400, N = 0, m = 1. (c) Stationary mode at Re = 400, N = 1,
m = 1. (d) Stationary mode at Re = 400, N = 5, m = 1. (e) Stationary mode at Re = 400, N = 20, m = 1.
( f ) Oscillating mode at Re = 400, N = 0, m = 2. (g) Stationary mode at Re = 400, N = 20, m = 2.

field, the distribution shows a spatially periodic downstream structure for both m = 1 and
2. It is noted that the distributions of ux for the stationary and oscillating modes with weak
magnetic fields resemble those presented by Natarajan & Acrivos (1993) and Meliga et al.
(2009) at the thresholds of regular and Hopf bifurcations, respectively.

In addition to the unstable modes, a series of eigenvalues with growth rates less than
zero are also observed in figures 10 and 11. By focusing on eigenvalues where λr is close
to but less than zero, it is possible to determine whether the eigenvalues continuously shift
to an unstable state (λr > 0) by changing parameters Re and N. The distributions of ux of
the global modes for the second largest growth rate, which is next to the most unstable
mode (the largest growth rate), are examined. The cases (Re = 400, m = 1, N = 1),
(Re = 400, m = 1, N = 5), (Re = 400, m = 1, N = 20) and (Re = 400, m = 2, N = 20)

are analysed, and the results reveal that the distribution at the rear of the sphere is similar
with its most unstable mode. But its amplitude is continuously amplified downstream, as
it is far away from the sphere. Such an unphysical spatial structure for the second largest
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Figure 13. Variation of the growth rate of the unstable global mode with the interaction number N. The hollow
circle represents the position of the local maximum growth rate. (a) Stationary modes at different Reynolds
numbers and m = 1. (b) Oscillating modes at Re = 300, Re = 400 and m = 1. (c) Stationary modes with
different azimuthal wavenumbers at Re = 400.

growth rate makes us believe that this eigenvalue is spurious. Natarajan & Acrivos (1993)
also reported these interior eigenvalues, which were considered spurious and did not have a
physical implication. Hence, the eigenvalues associated with unstable modes are separated
from these spurious eigenvalues. Furthermore, Garnaud et al. (2013) reported that the
presence of a spurious mode was affected by the domain size, outflow boundary condition
and finite precision of the computer arithmetic.

To investigate the detailed effect of the magnetic field, figure 13 shows the overall
variations of the growth rate for different unstable global modes as a function of the
interaction number N. The position of the local maximum growth rate is represented by
a hollow circle. The behaviour of the growth rate reflects the influence of the magnetic
field on the evolution of perturbations, where the magnetic field can either damp or
promote perturbation growth depending on whether the growth rate decreases or increases
with increasing N. Figure 13(a) provides the results of stationary modes with m = 1
at Re = 150, 200, 300 and 400. When the magnetic field strength is weak, it promotes
perturbation growth if Re < ReI

c, while it dampens perturbation growth if Re > ReI
c. As

the magnetic field strength varies from moderate to strong (e.g. in the moderate range N ∈
(4, 25) and strong range N ∈ (25, 40) for Re = 300), the influence of the magnetic field
on perturbation growth transitions from promotion to damping. It is clearly shown that the
variation of growth rate is more sensitive to a weak magnetic field compared with a strong
one. The overall instability/stability of the flow is determined by the positive/negative sign
of the growth rate of the global mode. Thus, inspecting the growth rate can predict the
instability threshold. In the range N ∈ (0, 40) the flow is always stable for Re = 150, while
it is always unstable for Re = 400. The states of flow instability/stability for Re = 200
and Re = 300 exhibit one (N ≈ 14) and two thresholds (N ≈ 0.6, N ≈ 4), respectively.
It is interesting to note that with increasing N at Re = 300, the growth rate initially
decreases from positive to negative and then returns to positive. The magnetic field shows
a stabilising effect at weak strengths and a destabilising effect at strong strengths. Such a
stabilising–destabilising effect of the magnetic field is a research topic of interest.

Figure 13(b) compares the growth rates of the oscillating mode with those of the
stationary mode at the same azimuthal wavenumber m = 1. The growth rate of the
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oscillating mode decreases more rapidly with N and reaches a negative value at a smaller
N, which means that the weak magnetic field has a stronger suppressing effect on the
oscillating mode than the stationary mode. The result also infers that vortex shedding
will be suppressed at a relatively weak magnetic field. This finding is consistent with
the experimental results in Yonas (1967), whose work reported that a relatively weak
magnetic field was able to completely suppress the dominant frequencies. Figure 13(c)
plots the variation of the growth rate of the stationary mode with N at different azimuthal
wavenumbers m = 0, 1, 2, 3, 4 and Re = 400. The growth rates of m = 0 and 4 are always
less than zero, while the growth rates of m = 2 and 3 increase from negative values to
positive values at threshold values of N ≈ 7 and 22, respectively. It indicates that the
strong magnetic field can induce instability of the higher mth mode with larger critical
values of N at Re = 400.

So far, five unstable modes are observed, which consist of stationary modes with
m = 1, 2, 3 and oscillating modes with m = 1, 2. Their critical curves are obtained by
computing the critical Reynolds number Rec corresponding to different N in figure 14(a).
Since the Hartmann number Ha is also an important dimensionless parameter, the critical
curves in the {Re, Ha} plane are also given in figure 14(b). The critical curve for the first
regular bifurcation caused by the stationary unstable mode of m = 1 is marked by the
wine red dotted line. Other critical curves associated with stationary unstable modes of
m = 2 and m = 3, oscillating unstable modes of m = 1 and m = 2 are denoted by green,
purple, orange and blue dotted lines, respectively. For the first regular bifurcation, the
critical Reynolds number experiences a rapid increase from 212.7 to 386.3, then decreases
to 179.1 and slightly increases again to 179.2 as N increases from 0 to 40. There are two
inflection points, one is Re = 386.3, N = 1.8 marked by the P2 green solid circle and the
other is Re = 179.1, N = 38 marked by the red solid circle in figure 14(a). These two
points are referred to as balance points in the subsequent section. According to the change
of the critical Reynolds number, the critical curve clearly demonstrates multiple effects of
the magnetic field on the unstable stationary mode with m = 1, including the stabilising
effect of a weak magnetic field (N < 1.8), the destabilising effect of a strong magnetic field
(1.8 < N < 38) and the re-stabilising effect of a much stronger magnetic field (N > 38).

For the regular bifurcations resulting from stationary unstable modes with m = 2 and
m = 3, Rec of the former one decreases from 400 to 256.6 as N increases from 6.63 to
40, while Rec of the latter one decreases from 400 to 367.1 as N increases from 22.74 to
40. These results indicate that the strong magnetic field has a destabilising effect on both
of these stationary modes. In contrast, for the Hopf bifurcations resulting from oscillating
unstable modes with m = 1 and m = 2, Rec of the former one increases from 280.8 to 396
as N increases from 0 to 0.28, while Rec of the latter one increases from 396.2 to 400 as N
increases from 0 to 0.008. These findings suggest that the weak magnetic field exhibits a
stabilising effect on these oscillating modes. The variation in the critical Reynolds number
as N increases indicates that the critical Reynolds number is particularly sensitive to weak
magnetic fields. This implies that the flow instability can be more easily altered in an
environment with a weak magnetic field.

These five critical curves divide the {Re, N} plane or the {Re, Ha} plane into six regimes
in figure 14, which describes the transition scenario in the wake of the sphere intuitively by
LSA. The wake structures in regimes I, II1, II2 and III have been described in detail in our
previous DNS study by Pan et al. (2018). Pan et al. (2018) studied wake structures affected
by the magnetic field and provided the map of regimes for wake patterns in the {Re, N}
plane in the range of Re ≤ 300 and N ≤ 10, which also revealed the first regular bifurcation
and the second Hopf bifurcation. But their critical curve of the first regular bifurcation is
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Figure 14. Five critical curves in the parameter plane with 1© the regular bifurcation of m = 1, 2© the Hopf
bifurcation of m = 1, 3© the regular bifurcation of m = 2, 4© the regular bifurcation of m = 3 and 5© the
Hopf bifurcation of m = 2. There are two inflection points on the critical curve of the regular bifurcation
with m = 1, which are Re = 386.3, N = 1.8/Ha = 26.4 and Re = 179.1, N = 38/Ha = 82.5, respectively.
(a) The {Re, N} plane with four critical points P1 (Re = 271.1, N = 0.4), P2 (Re = 386.3, N = 1.8),
P3 (Re = 216.2, N = 10) and P4 (Re = 180.1, N = 30); (b) the {Re, Ha} plane.

discontinuous between the weak and strong magnetic fields, and the re-stabilising effect
of a much stronger magnetic field is not reported. The present study concerns the flow
instability and expends the parameter range of the Reynolds number up to 400 and the
interaction number up to 40. Complete critical curves of the first regular and second Hopf
bifurcations are obtained and other regular bifurcations resulting from unstable stationary
modes with m = 2 and m = 3 are also reported.

Ghidersa & Dušek (2000) and Pier (2008) have previously discussed the spatial structure
of the mth mode, which consists of m pairs of counter-rotating vortices resulting from
an azimuthal perturbation velocity. It is well established that the steady axisymmetric
wake undergoes a transition to a steady plane symmetric wake characterized by a pair of
counter-rotating vortices at the first regular bifurcation, which is driven by the stationary
unstable mode with m = 1. Subsequently, the wake transitions to a plane symmetric
wake with periodic vortex shedding at the second Hopf bifurcation, caused by the
oscillating unstable mode with m = 1. This indicates that the wake after bifurcation has
the same structural characteristics as the unstable mode with m = 1. Since the structural
characteristic of the mth mode can provide insight into the wake structure, unstable
stationary modes with m = 2 and m = 3 may predict a new wake structure with two
and three pairs of counter-rotating vortices in regimes IV and V , respectively. However,
it should be noted that the present LSA is based on an assumption of axisymmetric base
flow and does not consider the interaction between different unstable modes. Therefore,
the predicted wake structures in regimes IV and V obtained through LSA may differ
from those observed in DNS. To confirm the wake structures in regimes IV and V and
to examine the wake structures in other regimes, the DNS method in Pan et al. (2018) is
adopted here.

Figure 15 illustrates five representative wake patterns at the rear of the sphere at
Re = 300 and 400 with different interaction parameters. Dye lines in experiment (Johnson
& Patel 1999) revealed shedding of large-amplitude hairpin vortices at Re = 300 without
a magnetic field, for which the wake kept a plane symmetric state. Under the influence
of the magnetic field at N = 0.01 in figure 15(a), the plane symmetric shedding vortex is
preserved, its amplitude of hairpin vortices is damped by the magnetic field as reported
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by Pan et al. (2018). With increasing magnetic field, vortex shedding is completely
suppressed and the wake structure transitions to a steady plane symmetric state. As
shown in figure 15(b) at N = 0.4, a tilted recirculation exists behind the sphere with a
double-threaded wake consisting of two steady streamwise vortices, which are opposite in
sign with unequal strength and shape. By further increasing the magnetic field at N = 1
(figure 15c), the wake structure transitions to a steady axisymmetric state with an attached
separation bubble. The wake patterns shown in figures 15(a), 15(b) and 15(c) correspond
to the wake structures in regimes III, II1 and I, respectively.

For strong magnetic fields at Re = 400 with N = 5 and 20, the wake structure within
the recirculation is dismissed and the flow pattern shows a steady plane symmetric state
or a steady double-plane symmetric state. Lighthill (1963) noted that convergence of skin
friction lines was a criterion of three-dimensional flow separation, which helps us analyse
the wake structure by showing flow traces. Skin friction lines in figures 15(d) and 15(e)
clearly exhibit the single or double-plane symmetric characteristic, which corresponds
to the structures of regimes II2 and IV , respectively. This indicates that the m = 1 and
m = 2 unstable modes in LSA can predict m pairs of counter-rotating vortical structures,
as confirmed by DNS. However, the results in figures 15(b) and 15(d) indicate that
a pair of counter-rotating vortical structures associated with the m = 1 mode actually
has two different wake patterns, such as the steady plane symmetric wake with a tilt
recirculation in pattern II1 at weak magnetic fields and the steady plane symmetric wake
without a recirculation in II2 at strong magnetic fields. Furthermore, DNS are conducted
for other cases with different values of N at Re = 400 to examine the appearance of a
double-plane symmetric wake and the existence of a three-plane symmetric wake. The
results demonstrate that the plane symmetric wake exists for the cases with N = 5, 10 and
15, while the double-plane symmetric wake exists for the cases with N = 20, 30 and 40.
It is found that the threshold for the appearance of the double-plane symmetric wake is
between N = 15 and N = 20 predicted by DNS, which differs from the appearance of the
m = 2 unstable mode at N = 6.63 predicted by LSA. Moreover, the three-plane symmetric
wake with three pairs of counter-rotating vortical structures, as predicted by the m = 3
unstable mode, is not observed by DNS in the current parameter range.

In LSA, when the base flow is axisymmetric and stationary, a generic perturbation
can be decomposed into Fourier modes with azimuthal wavenumber m, where linear
stability equations are decoupled for each value of mode m. For a given m mode, its
asymptotic behaviour of the base flow to three-dimensional small perturbations is entirely
dictated by the leading mode or the mode with the fastest global growth rate. Furthermore,
DNS directly solves the nonlinear Navier–Stokes equations. The DNS result consists
of various asymptotic states of m modes in the linear Navier–Stokes equations, as well
as the interactions among them. Hence, the DNS result may correspond to a specific
asymptotic state from the LSA, which is determined by the competition of leading modes
among different m modes. Szaltys et al. (2012) performed the modal decomposition
of the streamwise vorticity at Re = 300 obtained by experiments for the flow past a
sphere. Axial vorticity of modes m = 1, m = 2 and m = 3 were observed and the m =
1 mode was dominant, which indicates a pair of counter-rotating streamwise vortical
structure. As shown in figure 13(c), with a strong magnetic field, λr,m=1 > λr,m=2 > 0,
the leading mode at the m = 1 mode is dominant and its asymptotic state predicts a pair
of counter-rotating vortical structures behind the sphere, which is consistent with the DNS
result in figure 15(d). With a much stronger magnetic field, λr,m=2 > λr,m=1 > λr,m=3,
the largest leading mode λr,m=2 predicts two pairs of counter-rotating vortical structures
behind the sphere, which now controls the flow pattern in DNS, as shown in figure 15(e).
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Figure 15. Five wake patterns behind the sphere at Re = 300 and 400 with different interaction parameters.
(a) Unsteady plane symmetric wake with vortex sheddings at Re = 300, N = 0.01. Isosurfaces of the
streamwise vorticity with ωz ± 0.3. (b) Steady plane symmetric wake with a tilt recirculation at Re = 300,
N = 0.4. Pressure contours and streamlines in the symmetry plane. (c) Steady axisymmetric wake with an
attached separation bubble at Re = 300, N = 1. (d) Steady plane symmetric wake without a recirculation at
Re = 400, N = 5. Upper part: pressure contours and streamlines in the symmetry plane. Lower part: skin
friction lines on the sphere surface viewed from the rear of the sphere. (e) Steady double-plane symmetric
wake without a recirculation at Re = 400, N = 20.
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Re Nc Hac Unstable mode Ep Ev Ej

300 0.053 3.99 Oscillating mode of m = 1 1.1071 −1 −0.1019
0.61 13.53 Stationary mode of m = 1 1.0096 −1 −0.0208
4.29 35.87 Stationary mode of m = 1 1.0743 −1 −0.0744
14.4 65.73 Stationary mode of m = 2 1.1324 −1 −0.1333

Table 3. Kinetic energy budgets by production of perturbation, viscous force and Lorentz force at the critical
points of four unstable modes at Re = 300.

3.2.2. Energy budget analysis
To provide further understanding of the instability mechanism, a balance analysis of
the perturbation kinetic energy budget at the critical thresholds is carried out, which is
a classical approach in LSA (Pralits, Brandt & Giannetti 2010). This analysis involved
multiplying the complex conjugate of the perturbation velocity u∗ with the linear
stability equations and integrating in the whole computational domain Ω . Since the
domain is sufficiently large to neglect disturbances at the boundaries, divergence terms
in this equation give little contribution and so have been dropped. After performing
simplifications, the equation of perturbation kinetic energy can be expressed as

d
dt

∫
Ω

1
2

u∗ · u dΩ = −
∫

Ω

u∗ · (∇U0 · u) dΩ︸ ︷︷ ︸
Ep

− 1
Re

∫
Ω

ω∗ · ω dΩ︸ ︷︷ ︸
Ev

− N
∫

Ω

j∗ · j dΩ︸ ︷︷ ︸
Ej

,

(3.1)

where ω = ∇ × u and j = −∇φ + u × ex represent the perturbation vorticity and electric
current, respectively. The first term on the right-hand side is the production of the
perturbation kinetic energy, denoted as Ep, which accounts for the energy transferring
from the base flow to the disturbance. This term includes both base-flow shear and strain
conversion, the shear of ∂U0x/∂r, namely the gradient of the axial velocity along the radial
direction, has the most significant contribution among them in Ep. The remaining two
terms are the viscous dissipation Ev and Joule dissipation Ej of the perturbation kinetic
energy, respectively. These terms have negative values and serve to dampen the growth of
disturbances, thereby exerting stabilising effects on the perturbation kinetic energy.

To gain a visual understanding of the impact of different terms on the perturbation
kinetic energy equation, the energy production and Joule dissipation terms are normalized
by the viscous dissipation term. Figure 14(a) reveals four critical points in the Re–N
plane for Re = 300. Table 3 presents the kinetic energy budgets at these critical points,
considering the production of perturbation, viscous force and Lorentz force. It is evident
that in all cases the production of the perturbation kinetic energy term is balanced with
the viscous dissipation term and the Joule dissipation term. The viscous dissipation term
is the dominant stabilising term. A similar conclusion is also found in a MHD duct flow
by Hu (2021). It is noted that the proportion of Ej at N = 0.053 is much larger than that
at N = 0.61, which implies that the magnetic field has a greater stabilising effect on the
oscillating mode of m = 1 than the stationary one of m = 1.

According to (3.1), the perturbation Joule dissipation effect is related to the perturbation
electric current j. Figure 16 illustrates the spatial distribution of the axial perturbation
electric current at critical points of Re = 300, which reveals a periodic distribution in the
wake for the oscillation mode, whereas the stationary mode exhibits a primarily localized
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Figure 16. Spatial distribution of the axial perturbation electric current at critical points for Re = 300 with
(a) N = 0.053, (b) N = 0.61, (c) N = 4.29, (d) = 14.4.

distribution around the sphere. The periodic distribution in the oscillatory mode results in
a higher proportion of Ej compared with the stationary mode. Consequently, the decrease
of growth rate of the oscillatory mode affected by the magnetic field reaches a negative
value more rapidly, as demonstrated in figure 13(b). Hence, as the magnetic field increases
for Re > ReII

c , a transition occurs from an unsteady vortex shedding wake to a steady
plane symmetric wake at the Hopf bifurcation of m = 1. It is noted that the hairpin
structures being shed at Re = 300 without a magnetic field are coherent both in time
and space, which leads to a single dominant vortex shedding frequency. However, when
Re > 350, the imbalance in supply, storage and emission of energy of hairpin structures
will cause vortex dislocations, which breaks the plane symmetric state and shows other
vortex shedding frequencies besides the dominant one (Sakamoto & Haniu 1990). These
other frequencies are suppressed by the smaller magnetic field and transitions to a single
vortex shedding frequency, which correspond to the Hopf bifurcation of m = 2, as depicted
in the forth and fifth critical curves of figure 14(a). With further increases in N, the
perturbation Joule dissipation term has an increasingly significant role in the kinetic energy
budget by exerting magnetic damping effects. However, the effect of the magnetic field
on flow instability changes from stable to unstable. Further investigations concerning the
destabilising effect of the magnetic field are given in the next sensitivity analysis section.

3.3. Sensitivity analysis
As discussed in § 3.2.1, the influence of a constant magnetic field on flow stability exhibits
a stabilising effect at weak magnetic fields, a destabilising effect at strong magnetic
fields and a re-stabilising effect at much stronger magnetic fields during the first regular
bifurcation. This trend extends to subsequent regular and Hopf bifurcations, where a weak
magnetic field stabilises the flow, while a strong magnetic field destabilises it. To assess
how the magnetic field alters flow instability, the sensitivity analysis proposed in § 2.3 is
considered here.

3.3.1. Sensitivity to base-flow modifications
The stability problem resulting from base-flow modifications is considered first. The
sensitivity to base-flow modifications ∇U0λ defined in (2.34) is computed for critical
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Figure 17. Growth rate sensitivity to base-flow modifications ∇U0λr of the leading eigenvalue for
critical points on the first critical curve: (a) P1 : Re = 271.1, N = 0.4; (b) P2 : Re = 386.3, N = 1.8;
(c) P3 : Re = 216.2, N = 10; (d) P4 : Re = 180.1, N = 30. The dashed line denotes the separation bubble. The
solid streamlines with arrows represent the orientation of the sensitivity field.

points P1, P2, P3, P4 on the first critical curve in figure 14. This sensitivity includes two
parts, the real part ∇U0λr and the imaginary part ∇U0λi, which correspond to the growth
rate sensitivity and the frequency sensitivity, respectively. Since the present stability
problem for these critical points is steady and two-dimensional axisymmetric, only the
growth rate sensitivity is considered. The growth rate sensitivity to radial and streamwise
base-flow modifications is two-dimensional real vector fields and it is represented by
streamlines to convey the local orientation of the sensitivity field, while contours indicate
its magnitude in figure 17. Far from the sphere, the sensitivity decays to zero due to
the spatial separation of the direct and adjoint global modes (Marquet et al. 2008).
The maximum magnitude of the sensitivity is located within the recirculation region
and near the axis of symmetry for P1, while it exists in both the recirculation region
and the shear layer for P2, and solely at the shear layer for P3, P4. This sensitivity
analysis identifies specific flow regions where the growth rate of the global mode is most
sensitive to base-flow modifications. Figure 17 reveals that such a region transfers from
the recirculation to the shear layer with increasing magnetic field. It is worth mentioning
that according to the first critical curve in figure 14, the effect of the magnetic field on flow
instability undergoes a transition from stabilisation to destabilisation.

Marquet et al. (2008) considered uncertain base-flow modifications δU0. However,
in the present research a small-amplitude modification of the Lorentz force in the flow
induces specific base-flow modifications. Such base-flow modifications are determined by
increasing the magnetic field strength through a variation of δN = 0.01 for critical points,
which are calculated with (2.17)–(2.19), as illustrated in figure 18. In these four situations,
the upstream flow of the sphere is slowed down by the magnetic field, which leads to the
formation of a high-pressure stagnation zone in front of the sphere, as shown in figure 9.
Focusing on the head part (separation line) and the tail part (reattachment point) of the
separation bubble at the rear of the sphere, it can be observed that as the magnetic field
increases, base-flow modifications δU0 make the flow accelerate in the entire recirculation
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Figure 18. Base-flow modifications δU0 induced by increasing the magnetic field strength through a variation
δN = 0.01 for critical points: (a) P1, (b) P2, (c) P3, (d) P4. Their orientations are represented by the solid
streamlines with arrows. The red dashed line is the separation bubble.

region for point P1. Since the flow within the separation bubble follows a clockwise vortex
pattern, the separation line will move downstream, while the reattachment point will move
upstream. As a result, the separation angle of the separation bubble increases, and the
recirculation length of the separation bubble decreases. For point P2, the separation angle
continues to increase, but the base-flow modifications δU0 start to change direction at
the tail part of the separation bubble, which results in flow deceleration. Consequently,
the reattachment point moves downstream, which increases the recirculation length. In
the case of points P3 and P4, the base-flow modifications δU0 create a counterclockwise
vortex within the separation bubble, which reduce the shear strength in the recirculation
region due to its counter-rotating nature with δU0. Additionally, these modifications
decelerate the flow near the outline of the separation bubble. Hence, the separation line
moves upstream with decreasing the separation angle, while the reattachment point moves
downstream with increasing the recirculation length. In summary, an increase in magnetic
field strength causes the recirculation length to decrease under weak magnetic fields, while
it increases under strong magnetic fields. Conversely, the separation angle behaves in the
opposite manner. The base-flow modifications induced by increasing the magnetic field
strength through a variation δN = 0.01 agree with results shown in figures 6(a) and 6(b).

The contribution of the specific base-flow modifications δU0 induced by increasing
magnetic field strength to the global growth rate variation δλr is analysed. Recall that
δλr is obtained by integrating the integrand (∇U0λr)

∗ · δU0 over the entire space. This
integrand helps identify regions responsible for the stabilisation or destabilisation of the
global mode. For example, when the base-flow modifications δU0 in figure 18 are oriented
in the same direction as the growth rate sensitivity ∇U0λr in figure 17, the integrand is
positive, which indicates flow destabilisation. Figure 19 depicts the spatial distribution
of this integrand, where positive/negative values at local positions indicate contributions
of local base-flow modifications δU0 to the destabilisation/stabilisation of the global
mode. Three regions with dominant contributions can be distinguished in figure 19: the
region inside the separation bubble mainly contributing to the stabilisation of the global
mode in figures 19(a) and 19(b), the region near the tail of the separation bubble mainly
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Figure 19. Spatial distribution of the growth rate variation (∇U0λr)
∗ · δU0 induced by increasing the

magnetic field strength through a variation δN = 0.01 for critical points: (a) P1, (b) P2, (c) P3, (d) P4. The
dashed line is the separation bubble.

Rec 212.7 271.1 386.3 216.2 180.1

Nc 0 0.4 1.8 10 30
δλr −4.82 × 10−3 −2.92 × 10−3 −3.04 × 10−4 1.69 × 10−5 2.74 × 10−6

Table 4. Variation of the global growth rate computed by δλr = 〈∇U0λr, δU0〉 induced by increasing the
magnetic field strength through a variation δN = 0.01 for different critical points.

contributing to the destabilisation in figure 19(c), and the region at the shear layer mainly
contributing to the destabilisation in figure 19(d). These regions demonstrate the complex
effect of increasing the magnetic field strength on the variation of the growth rate δλr,
and also suggest that the stabilising/destabilising effect of the magnetic field can not be
captured solely through local stability/destability analysis. Their dominant contributions to
the global growth rate variation are reflected in the integrated values over the entire space,
which are given in table 4. Accordingly, the region inside the separation bubble is identified
as responsible for the stabilising effect under weak magnetic fields, while the base-flow
modifications in this region reduce the size of the separation bubble. The regions near the
tail and at the shear layer of the separation bubble are responsible for the destabilising
effect under strong magnetic fields, while the base-flow modifications in these regions
increase the length of the recirculation region. As noted in Marquet et al. (2008), the
sensitivity to the Lorentz force is closely related to the sensitivity to the base-flow
modification. The latter one can be seen as a specific base-flow modification induced by the
Lorentz force. These two sensitivity analyses examine the flow instability from different
perspectives. Hence, the effect of the magnetic field will be continuously discussed in the
Lorentz force sensitivity analysis. The sensitivity to base-flow modifications is coupled
with the sensitivity to the Lorentz force method to help explain how the magnetic field
affects flow instability.
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Figure 20. Spatial distribution of the growth rate variation (∇Fλr)
∗ · δF induced by increasing the magnetic

field strength through a variation δN = 0.01 for critical points P1, P2, P3, P4 in the first critical curve. The
solid black lines with arrows represent the streamlines of ∇Fλr. The red dashed line represents the outline of
the separation bubble. Results are shown for (a) P1, (b) P2, (c) P3, (d) P4.

3.3.2. Sensitivity to Lorentz force
To determine the influence of the magnetic field on flow instability characteristics,
the sensitivity function of the eigenvalue to Lorentz force ∇Fλr defined in (2.33) is
considered. This sensitivity function helps identify the significant regions in the flow
where changes in the Lorentz force have the greatest impact on the global eigenvalue.
Similarly to the sensitivity to base-flow modifications, only growth rate sensitivity analysis
is performed here for the critical points P1, P2, P3, P4. As a vector function, its streamlines
represented by a black line with arrows are displayed in figure 20, which provides the local
orientation of the sensitivity function field. For weak magnetic fields, a closed streamline
structure is predominantly located in the recirculation region behind the sphere. As the
magnetic field strength increases, the streamline structure elongates in the direction of the
magnetic field and moves towards the shear layer region.

When considering a variation in the Lorentz force induced by changing the magnetic
field strength, it can be represented as δF = δN(−∇Φ0 + U0 × ex) × ex = −δNU0rer,
where δN is set to 0.01 in the present study and U0r is the radial velocity of the base
flow that is mainly distributed around the sphere. Similarly to the sensitivity to base-flow
modifications, the integrand (∇Fλr)

∗ · δF indicates a local variation in the growth rate
associated with the variation in the Lorentz force, the spatial distribution of which is
displayed in figure 20. The red region with positive values contributes to an increase in
the growth rate, which is referred to as the local destabilising region. Conversely, the blue
region with negative values contributes to a decrease in the growth rate, which is referred
to as the local stabilising region. For a variation in the magnetic field strength, the stability
of the global mode in these sensitivity regions will be affected most significantly.

The variation of the growth rate δλr = 〈∇Fλr, δF 〉 is determined by the competition
between local stabilising and destabilising effects in the entire space. The results are
presented in table 5. It is noted that δλr reflects the global stabilising or destabilising
effect of a small variation in the magnetic field strength for a selected point on the first
critical curve. When N < 1.8, δλr is negative. The contribution from the local stabilising
effect in the blue regions is dominant, which mainly locates inside the recirculation region
behind the sphere and the tail of the separation bubble in figure 20(a). Therefore, the
magnetic field exhibits a stabilising effect on the flow. On the other hand, when N > 1.8,
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Rec 212.7 271.1 386.3 216.2 180.1

Nc 0 0.4 1.8 10 30
δλr −4 × 10−3 −1.84 × 10−3 5.29 × 10−5 6.38 × 10−6 1.21 × 10−6

Table 5. Variation of the growth rate computed by δλr = 〈∇Fλr, δF 〉 induced by increasing the magnetic
field strength through a variation δN = 0.01 for different critical points.

δλr is positive. The contribution from the local destabilising effect in the red regions
is dominant, which locates at the shear layer region in figures 20(c) and 20(d). The
magnetic field now demonstrates a destabilising effect. These conclusions are consistent
with analyses of sensitivity to base-flow modifications. Furthermore, since δF only has
a radial component, the streamwise component of the sensitivity to Lorentz force ∇Fλr
does not contribute to the fluid instability. For a strong magnetic field, the closed streamline
structure of ∇Fλr is stretched nearly along the streamwise direction. This indicates that the
change in the Lorentz force has little impact on the flow instability under strong magnetic
fields. In other words, the critical Reynolds number is not sensitive to strong magnetic
fields as N increases, as illustrated by the first critical curve in figure 14 with N > 30.
Additionally, when comparing the magnitude of legends between figures 20(c) and 20(d),
it is noteworthy that the dominance of the destabilising effect reduces at a strong magnetic
field.

3.4. Physical interpretation for the effect of magnetic field on the flow instability
This section aims to investigate the detailed physical interpretation of the effect of a
magnetic field on flow instability. Valuable insights can be obtained by analysing the
sensitivity to base-flow modifications coupled with the sensitivity to the Lorentz force.
These insights shed light on the stabilising effect of a weak magnetic field and the
destabilising effect of a strong magnetic field. The magnetic field or the Lorentz force
can be seen as a control configuration, which decreases/increases the separation bubble at
weak/strong magnetic fields as N increases. By considering the effect of a magnetic field
on flow instability under various magnetic field strengths, it can be concluded that, to some
extent, the effect of a magnetic field on flow instability corresponds to its control on the
separation bubble behind the sphere.

3.4.1. Weak magnetic field situations
The dominant stabilising regions identified by present sensitivity analyses are located
inside or at the tail of the separation bubble for weak magnetic fields. It supports the
view that the stabilising effect of a weak magnetic field corresponds to a reduction in
the separation bubble. A similar conclusion was reported by Boujo & Gallaire (2014) in a
study of a two-dimensional steady flow past a circular cylinder case using linear sensitivity
analysis. They found that zones where the control configuration, such as a small cylinder,
reduced the recirculation length corresponded to the regions where they had a stabilising
effect on the most unstable global mode associated with vortex shedding at moderate
Reynolds numbers. Since the application of a weak magnetic field changes the flow field
towards its hydrodynamics state with a lower value of Re, a macroscopical analogy is
given to understand the influence of a weak magnetic field effect on the flow instability.
The viscous dissipation and Joule dissipation terms in the perturbation kinetic energy
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equation (3.1) show same stabilising influence on the flow. Furthermore, the Lorentz force
in the momentum equation can be reformulated as a stress form J × B = ∇ · τ , where
Maxwell stress is τij = (BiBj/μ) − B2/2μδij. Here, μ is the fluid magnetic permeability.
The role of the Maxwell stress is equivalent to viscous stress, which shows a magnetic
damping effect. Hence, the action of the Lorentz force on the flow can be seen as
an effective viscosity. Increasing the magnetic field is equivalent to introducing an
effective viscosity into its corresponding hydrodynamics situation, which is equivalent
to decreasing the effective Reynolds number. For example, increasing N at Re = 300 is
equivalent to a decreasing effective Reynolds number less than 300 with N = 0, for which
the flow will experience the Hopf bifurcation and the regular bifurcation corresponding to
a wake transition from an unsteady vortex shedding state to a steady plane symmetric state
then to a steady axisymmetric state.

3.4.2. Strong magnetic field situations
As discussed in § 3.4.1, a constant magnetic field exhibits a damping effect on flow
instability, which has been used in many metallurgical applications (Chandrasekhar 2013).
However, the Lorentz force has an anisotropic effect along the magnetic field, especially
at a strong magnetic field. When the magnetic field is strong, increasing its strength
leads to an elongation of the separation bubble. Now, the influence of the magnetic field
on the flow instability shows a destabilising effect. Although the contribution of Joule
dissipation to the balance of the kinetic energy budget increases as N increases, the
magnetic field alters the structure of the base flow, which also affects the flow instability.
The Lorentz force aligns the flow streamlines parallel to the magnetic field. Consequently,
the azimuthal vorticity is confined within the shear layer region, as depicted in figure 8.
Furthermore, the dominant destabilising regions identified by sensitivity analyses are also
located in this region. Hence, the value of ∂U0x/∂r in the shear layer region has the most
significant contribution in the production of perturbation kinetic energy Ep, which results
in a destabilising effect of magnetic field on the global mode. Since such an effect exists
in the shear layer region, it is called a ‘shear destabilising effect’.

In order to explain the mechanism of wake transition I → II2 under strong magnetic
fields, a schematic is presented in figure 21. Based on the sensitivity analysis in
figure 20(c), the dominant destabilising region is located over the separation line of the
attached separation bubble, where perturbation production results in a wake transition.
Figure 21(a) shows the position for a maximal current perturbation in a front view. Its
corresponding Lorentz force pulls the flow away from the axisymmetric plane. Under
the influence of convection by upstream outflow, such a perturbation effect propagates
along the outline of the recirculation, as depicted in figure 21(b). The distribution of
perturbation along the outline of the separation bubble is consistent with the sensitivity
to base-flow modifications in figure 19(c). It is noted that the recirculation is stretched
by strong magnetic fields. The enclosed flow in the recirculation is weakened by the
Lorentz force as demonstrated in figure 18(c), which is hard to maintain the stretched
recirculation. Hence, beyond the critical values of Re and N at the first critical curve,
recirculation 1 in figure 21(b) will be broken by the perturbation effect. Recirculation 1 is
dismissed then the upstream fluid convects from the outer region of recirculation 2 because
of inertia and meets with the outer upstream fluid at position A, as shown in figure 21(c).
Both recirculations 1 and 2 initially exist in an axisymmetric state. Since recirculation
1 is dismissed, the enclosed flow in recirculation 2 can not be maintained. The outflow
in figure 21(c) will reduce the size of recirculation 2 until it is also dismissed. Such a
procedure can be traced by skin friction lines in figure 22, where the skin friction lines are
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Figure 21. Schematic for wake transitions at strong magnetic fields. (a) The generation of perturbation.
(b) Propagation of the perturbation effect. (c) Wake transition from an axisymmetric state to a plane symmetric
state. (d) Wake transition from an axisymmetric state to a double-plane symmetric state.
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Figure 22. Time evolution of the skin friction lines on the sphere surface during the wake transition with
strong magnetic fields. Results are shown for (a–d) Re = 400, N = 5; (e–h) Re = 400, N = 20.

adopted to analyse flow traces at the rear of the sphere. The movement of the stagnation
point from the middle of the sphere surface to the B position in the upper part of figure 22
means that during the time evolution, recirculation 2 is reduced and then dismissed. At last,
recirculations 1 and 2 are successively dismissed. As shown in the upper part of figure 22,
the upstream fluid flows over the sphere near the B position, which is squeezed in the A–B
symmetry plane and meets with the other side outer upstream fluid near the A position.
Then the fluid will flow along the azimuthal direction to downstream.
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Furthermore, for a much stronger magnetic field, it is harder to maintain the
recirculation. As a consequence of the elimination of recirculation 1, recirculation 2 will
be disrupted. The upstream outer flow on the C and D sides will feed the flow on the A
and B sides, as illustrated in figure 21(d). Similarly, the skin friction lines in the lower part
of figure 22 exhibit the transition process from a steady axisymmetric wake to a steady
double-plane symmetric wake, which is predicted by the LSA from I → IV in figure 14.

3.4.3. Global view
A global view of wake transitions in the Re–N plane of figure 14 can be given here. In
the case of weak magnetic fields, the wake transition III → II1 → I experiences a Hopf
bifurcation of m = 1 and regular bifurcation of m = 1. For strong magnetic fields, the wake
transition I → II2 experiences a regular bifurcation of m = 1. In the case of much stronger
magnetic fields, the wake transition I → IV experiences a regular bifurcation of m = 2. It
is noted that with a much stronger magnetic field, there is a competition of leading mode
among various unstable azimuthal modes, as shown in figure 13(c). The largest leading
mode, m = 2 mode in this case, will determine the DNS flow pattern. In the present DNS
cases the magnetic field is imposed at the beginning and the flow field is axisymmetric
at the initial stage, which is similar to the present axisymmetric base-flow assumption in
LSA. Different intensities of the magnetic field correspond to distinct simulation cases.
However, for a fixed simulation case, e.g. Re = 300 in the critical curves of figure 14, an
increasing magnetic field is considered in this case, it is found that the wake transition
III → II1 → I → II2 is continuous but it is not the case for wake transition II2 � IV .
The former wake transition relates to the m = 1 mode, while the later one relates to the
m = 2 mode. These two modes will interact with each other and affect the final DNS wake
structure. When increasing N, a wake transition I → II2 occurs. By further increasing N,
the prior development of mode II2 can change the base flow, which will in turn change its
stability and prevent the growth of mode IV .

The stabilising effect and shear destabilising effect of the magnetic field always compete
with each other. The former one is dominant for weak magnetic fields, while the latter
one is dominant for strong magnetic fields. A balance point between these two effects
occurs at Re = 386.3, N = 1.8 at the first critical curve. However, in the case of a much
stronger magnetic field, the sensitivity analysis of the Lorentz force reveals that the
shear destabilizing effect is no longer sensitive to the increase in magnetic field strength.
Since the shear is confined to the shear layer region, changes in the magnetic field have
minimal impact on the flow shear behind the sphere, which means that the production
of perturbation kinetic energy Ep is not sensitive to the magnetic field variation. On the
other hand, the Joule dissipation of perturbation kinetic energy Ej is proportional to N.
Hence, the stabilising effect will again be dominant for much stronger magnetic fields.
A new balance point between stabilising effect and shear destabilizing effect locates at
Re = 179.1, N = 38 at the first critical curve. With further increases in the magnetic
field, as the shear destabilising effect is not sensitive to the magnetic field variation, the
stabilising effect is now dominant, which will lead to a damping behaviour on the growth
rate of perturbation in figure 13(a) and a slight turning right of the first critical curve when
N > 38.

4. Conclusions

A comprehensive LSA of a flow past a sphere under the influence of a constant streamwise
magnetic field is investigated in detail in parameter ranges Re ∈ (0, 400) and N ∈ (0, 40).
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Five critical curves are obtained in the {Re, N} plane, which divide the phase diagram
{Re, N} into six regimes. Coupling with DNS results, the complete wake transition
processes corresponding to these critical curves are thoroughly discussed. For the first
critical curve, a regular bifurcation caused by the unstable stationary mode with m = 1
occurs, which the steady axisymmetric wake with an attached separation bubble transitions
to a steady plane symmetric wake with a tilt recirculation at weak magnetic fields or
to a steady plane symmetric wake without a recirculation at strong magnetic fields. In
the subsequent critical curves, a Hopf bifurcation resulting from the unstable oscillating
mode with m = 1 appears at weak magnetic fields, for which the wake transitions to an
unsteady plane symmetric vortex shedding wake. A regular bifurcation resulting from the
unstable stationary mode with m = 2 appears at strong magnetic fields, for which the wake
transitions to a steady double-plane symmetric wake with two pairs of counter-rotating
vortical structures. The DNS flow pattern exhibits a specific asymptotic state of base
flow, which is determined by the competition of leading modes among different unstable
azimuthal modes. For example, for the Re = 400 case with a much stronger magnetic field
in figure 13(c), the leading mode of m = 2 is dominant among the unstable modes of
m = 1–3, which determines the DNS flow pattern to be a steady double-plane symmetric
wake.

In the {Re, N} plane of critical curves, for the first regular bifurcation, the critical
Reynolds number rapidly increases from 212.7 to 386.3 then decreases to 179.1 and finally
slightly increases to 179.2 as N varies from 0 to 40. This curve reveals the stabilising
effect of a weak magnetic field when N < 1.8, the destabilising effect of a strong magnetic
field when 1.8 < N < 38 and the re-stabilising effect of a much stronger magnetic field
when N > 38. The subsequent bifurcations, such as the regular bifurcations resulting from
stationary unstable modes with m = 2 and m = 3 and the Hopf bifurcations resulting from
oscillating unstable modes with m = 1 and m = 2, also show the stabilising effect of a
weak magnetic field and the destabilising effect of a strong magnetic field. To shed light
on how a magnetic field affects the flow instability, sensitivity analyses of growth rate to
base-flow modifications and Lorentz force are carried out at the critical thresholds of the
first bifurcation. These sensitivity analyses identify the regions in space where the growth
rate is most sensitive to the enhancement of magnetic field, such as the stabilising effect
of a weak magnetic field in the recirculation region and the destabilising effect of a strong
magnetic field at the shear layer region. Furthermore, the present investigations reveal a
competition between the stabilising effect and the shear destabilising effect of a magnetic
field. When N < 1.8 and N > 38, the stabilising effect is dominant. When 1.8 < N < 38,
the shear destabilising effect is dominant. Two balance points between these two effects
are located at Re = 386.3, N = 1.8 and Re = 179.1, N = 38 on the first critical curve.
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