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Abstract

We study the spaces of twisted conformal blocks attached to a Γ-curve Σ with marked
Γ-orbits and an action of Γ on a simple Lie algebra g, where Γ is a finite group. We
prove that if Γ stabilizes a Borel subalgebra of g, then the propagation theorem and fac-
torization theorem hold. We endow a flat projective connection on the sheaf of twisted
conformal blocks attached to a smooth family of pointed Γ-curves; in particular, it is
locally free. We also prove that the sheaf of twisted conformal blocks on the stable com-
pactification of Hurwitz stack is locally free. Let G be the parahoric Bruhat–Tits group
scheme on the quotient curve Σ/Γ obtained via the Γ-invariance of Weil restriction asso-
ciated to Σ and the simply connected simple algebraic group G with Lie algebra g. We
prove that the space of twisted conformal blocks can be identified with the space of gen-
eralized theta functions on the moduli stack of quasi-parabolic G -torsors on Σ/Γ when
the level c is divisible by |Γ| (establishing a conjecture due to Pappas and Rapoport).
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1. Introduction

The Wess–Zumino–Witten model is a type of two-dimensional conformal field theory, which
associates to an algebraic curve with marked points and integrable highest weight modules of
an affine Kac–Moody Lie algebra associated to the points, a finite-dimensional vector space
consisting of conformal blocks. The space of conformal blocks has many important properties
including propagation of vacua and factorization. Deforming the pointed algebraic curves in a
family, we get a sheaf of conformal blocks. This sheaf admits a flat projective connection when
the family of pointed curves is a smooth family. The mathematical theory of conformal blocks
was first established in a pioneering work by Tsuchiya, Ueno, and Yamada [TUY89] where all
these properties were obtained. All the above properties are important ingredients in the proof
of the celebrated Verlinde formula for the dimension of the space of conformal blocks (cf. [Bea96,
Fal94, Kum22, Sor96, Ver88]). This theory has a geometric counterpart in the theory of moduli
spaces of principal bundles over algebraic curves and also the moduli of curves and its stable
compactification.

In this paper, we study a twisted theory of conformal blocks on Galois covers of algebraic
curves. More precisely, we consider an algebraic curve Σ with an action of a finite group Γ.
Moreover, we take a group homomorphism φ : Γ→ Aut(g) of Γ acting on a simple Lie alge-
bra g. Given any smooth point q ∈ Σ, we attach an affine Lie algebra L̂(g,Γq) defined below
Lemma 3.2 (in general, a twisted affine Lie algebra), where Γq is the stabilizer group of Γ
at q. The integrable highest weight representations of L̂(g,Γq) of level c (where c is a posi-
tive integer) are parametrized by certain finite set Dc,q of dominant weights of the reductive
Lie algebra gΓq , i.e. for any λ ∈ Dc,q we attach an integrable highest weight representation
H (λ) of L̂(g,Γq) of level c and conversely (cf. § 2). Given a collection �q := (q1, . . . , qs) of smooth
points in Σ such that their Γ-orbits are disjoint and a collection of weights �λ = (λ1, . . . , λs) with
λi ∈ Dc,qi , we consider the representation H (�λ) := H (λ1)⊗ · · · ⊗H (λs) (cf. Definition 3.5).
Now, define the associated space of twisted covacua (or twisted dual conformal blocks) as
follows:

VΣ,Γ,φ(�q, �λ) :=
H (�λ)

g[Σ\Γ · �q]Γ ·H (�λ)
,

where g[Σ\Γ · �q]Γ is the Lie algebra of Γ-equivariant regular functions from Σ\Γ · �q to g acting on
the ith factor H (λi) of H (�λ) via its Laurent series expansion at qi. In this paper, we often work
with a more intrinsic but equivalent definition of the space of twisted covacua (see Definition 3.5),
where we work with marked Γ-orbits.

The following propagation of vacua is the first main result of the paper (cf. Corollary 4.5(a)).

Theorem A. Assume that Γ stabilizes a Borel subalgebra of g. Let q be a smooth
point of Σ such that q is not Γ-conjugate to any point �q. Assume further that 0 ∈
Dc,q (cf. Corollary 2.2). Then, we have the following isomorphism of spaces of twisted
covacua:

VΣ,Γ,φ(�q, �λ) � VΣ,Γ,φ

(
(�q, q), (�λ, 0)

)
.

In fact, a stronger version of Propagation Theorem is proved (cf. Theorem 4.3
and Corollary 4.5(b)). Even though we generally follow the argument given in [Bea96,
Proposition 2.3], in our equivariant setting we need to generalize some important ingredients.

2192

https://doi.org/10.1112/S0010437X23007418 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007418


Conformal blocks for Galois covers of algebraic curves

For example, the fact that

‘The endomorphism X−θ ⊗ f of H is locally nilpotent for all f ∈ O(U)’

in the proof of Proposition 2.3 of [Bea96], cannot easily be generalized to the twisted case.
To prove an analogous result, we need to assume that Γ stabilizes a Borel subalgebra of g,
and use Lemma 2.5 crucially. It will be interesting to see whether this assumption can be
removed.

Let q be a nodal point in Σ. Assume that the action of Γ at q is stable (see Definition 5.1)
and the stabilizer group Γq does not exchange the two formal branches around q. Let Σ′ be the
normalization of Σ at the points Γ · q, and let q′, q′′ be the two smooth points in Σ′ over q. The
following factorization theorem is our second main result (cf. Theorem 5.4).

Theorem B. Assume that Γ stabilizes a Borel subalgebra of g. Then, there exists a natural
isomorphism:

VΣ,Γ,φ(�q, �λ) �
⊕

μ∈Dc,q′′

VΣ′,Γ,φ

(
(�q, q′, q′′), (�λ, μ∗, μ)

)
,

where μ∗ is the dominant weight of gΓq′ such that V (μ∗) is the dual representation V (μ)∗ of
gΓq = gΓq′ = gΓq′′ .

The formulation of the factorization theorem in the twisted case is a bit more delicate,
since the parameter sets Dc,q′ and Dc,q′′ attached to the points q′, q′′ are different in general;
nevertheless they are related by the dual of representations under the assumption that the action
of Γ at the simple node q is stable and the stabilizer group Γq does not exchange the branches
(cf. Lemma 5.3). Its proof requires additional care (from that of the untwisted case) at several
places. The assumption that Γ stabilizes a Borel subalgebra of g also appears in this theorem as
we use the propagation theorem in its proof.

As proved in Lemma 3.7, the space of twisted covacua is finite dimensional. We sheafify
the notion of twisted covacua associated to a family of s-pointed Γ-curves as in Definition 7.7
and show that given a family (ΣT , �q) of s-pointed Γ-curves over an irreducible scheme T and
weights �λ = (λ1, . . . , λs) with λi ∈ Dc,qi as above, one can functorially attach a coherent sheaf
VΣT ,Γ,φ(�q, �λ) of twisted covacua over the base T (cf. Theorem 7.8). As explained below, we
generalize the construction to define a coherent sheaf of twisted covacua over the Hurwitz stack
H Mg,Γ,η.

We prove the following stronger theorem (cf. Theorems 7.10 and 7.12).

Theorem C. Assume that the family ΣT → T is a smooth family over a smooth base T . Then,
the sheaf VΣT ,Γ,φ(�q, �λ) is locally free of finite rank over T . In fact, there exists a flat projective

connection on VΣT ,Γ,φ(�q, �λ).

This theorem relies mainly on the Sugawara construction for the twisted affine Kac–Moody
algebras. In the untwisted case, this construction is quite well-known (cf. [Kac90, § 12.8]). In the
twisted case, the construction can be found in [KW88, Wak86], where the formulae are written in
terms of the abstract Kac–Moody presentation of L̂(g, σ), where σ is a finite-order automorphism
of g. For our application, we require the formulae in terms of the affine realization of L̂(g, σ) as
a central extension of the twisted loop algebra g((t))σ. We present such a formula in (79), (80)
in § 6, which might be new (to our knowledge).

Let H Mg,Γ,η be the Hurwitz stack of stable s-pointed Γ-curves of genus g with marking data
η at the marked points such that the set of Γ-orbits of the marked points contains the full ram-
ification divisor (cf. Definition 8.7). Then, H Mg,Γ,η is a smooth and proper Deligne–Mumford
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stack of finite type (cf. Theorem 8.8). We can attach a collection �λ of dominant weights to the
marking data η, and associate a coherent sheaf Vg,Γ,φ(η,�λ) of twisted covacua over the Hurwitz
stack H Mg,Γ,η. The presence of the Hurwitz stack is a new phenomenon in the twisted theory.
We prove the following theorem (cf. Theorem 8.9).

Theorem D. Assume that Γ stabilizes a Borel subalgebra of g. Then, the sheaf Vg,Γ,φ(η,�λ) is
locally free over the stack H Mg,Γ,η.

Our proof of this theorem follows closely the work of Looijenga [Loo13] in the non-equivariant
setting; in particular, we use the canonical smoothing deformation of nodal curves (Lemma 8.3)
and gluing tensor elements (Lemma 8.5 and the construction before that). The factorization
theorem also plays a crucial role in the proof. In the case Γ is cyclic, Theorem A together with
the factorization theorem allows us to reduce the computation of the dimension of the space
of twisted covacua to the case of cyclic covers of projective line with three marked points (see
Remark 8.11(1)).

When Γ is of prime order and the marked points are unramified, the space VΣ,Γ,φ(�q, �λ) was
studied earlier by Damiolini [Dam20], where she proved the results described above in this case
under some more constraints. Our work is a vast generalization of her work, since we do not
need to put any restrictions on the Γ-orbits, and the only restriction on Γ is that Γ stabi-
lizes a Borel subalgebra of g (when Γ is a cyclic group it automatically holds). In particular,
when Γ has non-trivial stabilizers at the marked points, general twisted affine Kac–Moody Lie
algebras and their representations occur naturally in this twisted theory of conformal blocks.
Damiolini’s work dealt with the untwisted affine Lie algebras since only the unramified points
are marked in her setting. In our work, Kac’s theory of twisted affine Lie algebras associated to
finite order automorphisms and related Sugawara operators in the twisted setting are extensively
employed. These new features bring considerably more Lie theoretic complexity for the results
stated above, which enriches the twisted theory in a most natural way. Notably, the proof of
Theorem A (or Theorem 4.3) is highly technical, where we have to introduce the technical condi-
tion that the finite group Γ stabilizes a Borel subalgebra in g. Furthermore, the Hurwitz stack of
Γ-curves with only unramified points marked is not, in general, proper, i.e. such a pointed smooth
Γ-curve may degenerate to a Γ-curve with non-free nodal Γ-orbits. Accordingly, it is desirable to
have the factorization theorem (Theorem B) for the Γ-curves with general nodal Γ-orbits, which
naturally involves the twisted conformal blocks with ramified points marked. Our more general
theory of twisted conformal blocks fits perfectly with the compactification of Hurwitz stacks, and
marking ramified points is very crucial towards a Verlinde-type formula for twisted conformal
blocks of any kind.

There were also some earlier works related to the twisted theory of conformal blocks. For
example Frenkel and Szczesny [FS04] studied the twisted modules over Vertex algebras on alge-
braic curves, and Kuroki and Takebe [KT97] studied a twisted Wess–Zumino–Witten model on
elliptic curves. We also learnt from Mukhopadhyay that he obtained certain results (unpublished)
in this direction in the setting of diagram automorphisms.

In the usual (untwisted) theory of conformal blocks, the space of conformal blocks has a
beautiful geometric interpretation in that it can be identified with the space of generalized
theta functions on the moduli space of parabolic G-bundles over the algebraic curve, where G
is the simply connected simple algebraic group associated to g (cf. Beauville and Laszlo [BL94],
Faltings [Fal94], Kumar, Narasimhan, and Ramanathan [KNR94], Laszlo and Sorger [LS97], and
Pauly [Pau96]).
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From a Γ-curve Σ and an action of Γ on G, the Γ-invariants of Weil restriction produces a
parahoric Bruhat–Tits group scheme G on Σ̄ = Σ/Γ. Recently, the geometry of the moduli stack
BunG of G -torsors over Σ̄ has extensively been studied by Pappas and Rapoport [PR08, PR10],
Heinloth [Hei10], Zhu [Zhu14], and Balaji and Seshadri [BS15]. A connection between generalized
theta functions on BunG and twisted conformal blocks associated to the Lie algebra of G was
conjectured by Pappas and Rapoport [PR10]. Along this direction, some results have recently
been obtained by Zelaci [Zel19] when Γ is of order 2 acting on g = sln by certain involutions and
very special weights.

We study this connection in full generality in the setting of Γ-curves Σ. Let G be the simply
connected simple algebraic group with the action of Γ corresponding to φ : Γ→ Aut(g). We
assume that Σ is a smooth irreducible projective curve with a collection �q = (q1, . . . , qs) of marked
points such that their Γ-orbits are disjoint. To this, we attach a collection �λ = (λ1, . . . , λs)
of weights with λi ∈ Dc,qi as before. Assume that c is divisible by |Γ|. Then, the irreducible
representation V (λi) of gΓqi of highest weight λi integrates to an algebraic representation of GΓqi

(cf. Proposition 10.9), where GΓqi is the fixed subgroup of Γqi in G. Let P qi
i be the stabilizer in

GΓqi of the highest weight line �λi ⊂ V (λi). Let G be the parahoric Bruhat–Tits group scheme
over Σ̄ := Σ/Γ obtained from the Γ-invariants of the Weil restriction via π : Σ→ Σ̄ from the
constant group scheme G× Σ→ Σ over Σ (cf. Definition 11.1). One can attach the moduli stack
ParbunG (�P ) of quasi-parabolic G -torsors with parabolic subgroups �P = (P qi

i ) attached to qi for
each i (cf. Definition 11.2). With the assumption that c is divisible by |Γ|, we can define a line
bundle L(c;�λ) on ParbunG (�P ) (cf. Definition 11.6). The following is our last main theorem (cf.
Theorem 12.1) confirming a conjecture of Pappas and Rapoport for G .

Theorem E. Assume that Γ stabilizes a Borel subalgebra of g and that c is divisible by |Γ|.
Then, there exists a canonical isomorphism:

H0(ParbunG (�P ),L(c, �λ)) � VΣ,Γ,φ(�q, �λ)†,

where H0(ParbunG (�P ),L(c, �λ)) denotes the space of global sections of the line bundle L(c, �λ)
and VΣ,Γ,φ(�q, �λ)† denotes the space of twisted conformal blocks, i.e. the dual space of VΣ,Γ,φ(�q, �λ).

One of the main ingredients in the proof of this theorem is the connectedness of the ind-group
MorΓ(Σ∗, G) consisting of Γ-equivariant morphisms from Σ∗ to G (cf. Theorem 9.5), where Σ∗ is
a Γ-stable affine open subset of Σ. Another important ingredient is the uniformization theorem
for the stack of G -torsors on the parahoric Bruhat–Tits group scheme G due to Heinloth [Hei10];
in fact, its parabolic analogue (cf. Theorem 11.3). Finally, yet another ingredient is the splitting
of the central extension of the twisted loop group G(D×

q )Γq over Ξ = MorΓ(Σ\Γ · q,G) and the
reducedness and the irreducibility of Ξ (cf. Theorem 10.7 and Corollary 11.5), where q is a point
in Σ and D×

q (respectively, Dq) is the punctured formal disc (respectively, formal disc) around q
in Σ.

In spite of the parallels with the classical case, there are some important essential differences
in the twisted case. First of all the constant group scheme is to be replaced by the parahoric
Bruhat–Tits group scheme G . Further, the group Ξ could have non-trivial characters resulting
in the splitting over Ξ non-unique. (It might be mentioned that in the special case considered
by Zelaci [Zel19, Proposition 5.1] mentioned above, Ξ has only trivial character.) To overcome
this difficulty, we need to introduce a canonical splitting over Ξ of the central extension of the
twisted loop group G(D×

q )Γq (cf. Theorem 10.7). We are able to do it when c is divisible by |Γ|
(cf. Remark 12.2(b)).
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It is interesting to remark that Zhu [Zhu14] proved that for any line bundle on the moduli
stack BunG for a ‘reasonably good’ parahoric Bruhat–Tits group scheme G over a curve Σ̄, the
pull-back of the line bundle to the twisted affine Grassmannian at every point of Σ̄ is of the
same central charge. It matches the way we define the space of covacua, i.e. we attach integrable
highest weight representations of twisted affine Lie algebras of the same central charge at every
point.

Our work was initially motivated by a conjectural connection predicted by Fuchs and
Schweigert [FS96] between the trace of diagram automorphism on the space of conformal blocks
and certain conformal field theory related to twisted affine Lie algebras. A Verlinde-type formula
for the trace of diagram automorphism on the space of conformal blocks has been proved recently
by the first author [Hon18, Hon19], where the formula involves the twisted affine Kac–Moody
algebras mysteriously.

Assuming a twisted analogue of Teleman’s vanishing theorem of Lie algebra homology, in
a recent paper [HK22], we derive an analogue of the Kac–Walton formula and the Verlinde
formula for general Γ-curves (with mild restrictions on ramification types, but not requiring that
Γ stabilizes a Borel subalgebra). In particular, if the Lie algebra g is not of type D4, there are
no restrictions on ramification types. Using the machinery of crossed modular categories, under
the assumption that Γ stabilizes a Borel subalgebra of g, Deshpande and Mukhopadhyay [DM23]
deduced a Verlinde-type formula for the dimension of twisted conformal blocks, which is expressed
in terms of S-matrices.

In the following we recall the structure of this paper.
In § 2, we introduce the twisted affine Lie algebra L̂(g, σ) attached to a finite-order automor-

phism σ of g following [Kac90, Chap. 8]. We prove some preparatory lemmas which is used later
in § 4.

In § 3, we define the space of twisted covacua attached to a Galois cover of an algebraic curve.
We prove that this space is finite dimensional under the assumption given in Definition 3.5.

Section 4 is devoted to proving the propagation theorem.
Section 5 is devoted to proving the factorization theorem.
In § 6, we prove the independence of parameters for integrable highest weight representations

of twisted affine Kac–Moody algebras over a base. We also prove that the Sugawara operators
acting on the integrable highest weight representations of twisted affine Kac–Moody algebras are
independent of the parameters up to scalars. This section is preparatory for § 7.

In § 7, we define the sheaf of twisted covacua for a family ΣT of s-pointed Γ-curves. We
further show that this sheaf is locally free of finite rank for a smooth family ΣT over a smooth
base T . In fact, it admits a flat projective connection.

In § 8, we consider stable families of s-pointed Γ-curves and we show that the sheaf of twisted
covacua over the stable compactification of Hurwitz stack is locally free.

In § 9, we prove the connectedness of the ind-group MorΓ(Σ∗, G), following an argument
by Drinfeld in the non-equivariant case. In particular, we show that the twisted Grassmannian
Xq = G(D∗

q)
Γq/G(Dq)Γq is irreducible.

In § 10, we construct the central extensions of the twisted loop group G(D∗
q)

Γq and prove the
existence of its canonical splitting over Ξ := MorΓ(Σ \ Γ · q,G).

In § 11, we introduce the moduli stack ParbunG of quasi-parabolic G -torsors over Σ̄, where
G is the parahoric Bruhat–Tits group scheme. We further recall its uniformization theorem
essentially due to Heinloth and construct the line bundles over ParbunG .

In § 12, we establish the identification of twisted conformal blocks and generalized theta
functions on the moduli stack ParbunG .
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2. Twisted affine Kac–Moody algebras

This section is devoted to recalling the definition of twisted affine Kac–Moody Lie algebras and
their basic properties (we need).

Let σ be an operator of finite order m acting on two vector spaces V and W over C. Consider
the diagonal action of σ on V ⊗W . We have the following decomposition of the σ-invariant
subspace in V ⊗W ,

(V ⊗W )σ =
⊕

ξ

Vξ ⊗Wξ−1 ,

where the summation is over mth roots of unity and Vξ (respectively, Wξ−1) is the ξ-eigenspace of
V (respectively, ξ−1-eigenspace of W ). We say v ⊗ w is pure or more precisely ξ-pure if v ⊗ w ∈
Vξ ⊗Wξ−1 . Throughout this paper, if we write v ⊗ w ∈ (V ⊗W )σ, we mean v ⊗ w is pure.

Let l be a Lie algebra over C and let A be a commutative algebra over C. Let σ act on l

(respectively, A) as Lie algebra (respectively, algebra) automorphism of finite orders. For any
x⊗ a ∈ l⊗A, we denote it by x[a] for brevity. There is a Lie algebra structure on l⊗A with
the Lie bracket given by

[x[a], y[b]] := [x, y][ab], for any elements x[a], y[b] ∈ l⊗A.
Then, (l⊗A)σ is a Lie subalgebra.

Let g be a simple Lie algebra over C with a Cartan subalgebra h and let σ be an automorphism
of g such that σm = 1 (σ is not necessarily of order m). Let 〈·, ·〉 be the invariant (symmetric,
non-degenerate) bilinear form on g normalized so that the induced form on the dual space h∗

satisfies 〈θ, θ〉 = 2 for the highest root θ of g. The bilinear form 〈·, ·〉 is σ-invariant since σ is a
Lie algebra automorphism of g.

Let K = C((t)) := C[[t]][t−1] be the field of Laurent power series, and let O be the ring of
formal power series C[[t]] with the maximal ideal m = tO. We fix a primitive mth root of unity
ε = εm = e2πi/m throughout the paper. We define an action of σ on K as field automorphism by
setting

σ(t) = ε−1t and σ acting trivially on C.

It gives rise to an action of σ on the loop algebra L(g) := g⊗C K . Under this action,

L(g)σ =
m−1⊕
j=0

(
gj ⊗Kj

)
,

where
gj := {x ∈ g : σ(x) = εjx} and Kj = {P ∈ K : σ(P ) = ε−jP}. (1)

We now define a central extension L̂(g, σ) := L(g)σ ⊕ CC of L(g)σ under the bracket

[x[P ] + zC, x′[P ′] + z′C] = [x, x′][PP ′] +m−1 Rest=0

(
(dP )P ′)〈x, x′〉C, (2)

for x[P ], x′[P ′] ∈ L(g)σ, z, z′ ∈ C; where Rest=0 denotes the coefficient of t−1 dt. Let L̂(g, σ)≥0

denote the subalgebra

L̂(g, σ)≥0 :=
m−1⊕
j=0

gj ⊗ Oj ⊕ CC,

where Oj = Kj ∩ O. We also denote

L̂(g, σ)+ :=
m−1⊕
j=0

gj ⊗mj and L̂(g, σ)− :=
⊕
j<0

gj ⊗ tj ,
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where mj = m ∩ Oj . Then, L̂(g, σ)+ is an ideal of L̂(g, σ)≥0 and the quotient L̂(g, σ)≥0/L̂(g, σ)+

is isomorphic to g0 ⊕ CC. Note that g0 is the Lie algebra gσ of σ-fixed points in g. As vector
spaces we have

L̂(g, σ) = L̂(g, σ)≥0 ⊕ L̂(g, σ)−.

By the classification theorem of finite order automorphisms of simple Lie algebras (cf. [Kac90,
Proposition 8.1, Theorems 8.5 and 8.6]), there exists a ‘compatible’ Cartan subalgebra h and a
‘compatible’ Borel subalgebra b ⊃ h of g both stable under the action of σ such that

σ = τεad h, (3)

where τ is a diagram automorphism of g of order r preserving h and b, and εad h is the inner auto-
morphism of g such that for any root α of g, εad h acts on the root space gα by the multiplication
εα(h), and εad h acts on h by the identity. We consider τ = Id also as a diagram automorphism.
Here h is an element in hτ . In particular, τ and εad h commute. Moreover, α(h) ∈ Z≥0 for any
simple root α of gτ , β(h) ∈ Z for any simple root β of g and θ0(h) ≤ m/r where θ0 ∈ (hτ )∗

denotes the following weight of gτ :

θ0 =

⎧⎪⎨
⎪⎩

highest root of g, if r = 1
highest short root of gτ , if r > 1 and (g, r) = (A2n, 2)
2 · highest short root of gτ , if (g, r) = (A2n, 2).

Observe that r divides m, and r can only be 1, 2, 3. Note that gσ and gτ share the common
Cartan subalgebra hσ = hτ .

Let I(gτ ) denote the set of vertices of the Dynkin diagram of gτ . Let αi denote the simple
root associated to i ∈ I(gτ ). Let Î(g, σ) denote the set I(gτ ) � {o}, where o is just a symbol.
(Observe that τ is determined from σ.) Set

si =

⎧⎨
⎩
αi(h) if i ∈ I(gτ )
m

r
− θ0(h) if i = o.

Then, s = {si | i ∈ Î(g, σ)} is a tuple of non-negative integers. Let L̂(g, τ) denote the Lie
algebra with the construction similar to L̂(g, σ) where σ is replaced by τ , m is replaced by r and
ε is replaced by εm/r. There exists an isomorphism of Lie algebras (cf. [Kac90, Theorem 8.5]):

φσ : L̂(g, τ) � L̂(g, σ) (4)

given by C �→ C and x[tj ] �→ x[t(m/r)j+k], for any x an ε(m/r)j-eigenvector of τ , and x also a
k-eigenvector of adh. We remark that in the case (g, r) = (A2n, 2), our labelling for i = o is the
same as i = n in [Kac90, Chapter 8]. It is well-known that L̂(g, τ) is an affine Lie algebra, more
precisely L̂(g, τ) is untwisted if r = 1 and twisted if r > 1.

By Theorem 8.7 in [Kac90], there exists a sl2-triple xi, yi, hi ∈ g for each i ∈ Î(g, σ) where:

• xi ∈ (gτ )αi , yi ∈ (gτ )−αi when i ∈ I(gτ );
• xo (respectively, yo) is a (−θ0)(respectively, θ0)-weight vector with respect to the adjoint action

of hτ on g, and is also an εm/r (respectively, ε−m/r)-eigenvector of τ ;
• xi ∈ n for i ∈ I(gτ ) and xo ∈ n−, where n (respectively, n−) is the nilradical of b (respectively,

the opposite Borel subalgebra b−); similarly, yi ∈ n− for i ∈ I(gτ ) and yo ∈ n

(see explicit construction of xi, yi, i ∈ Î(g, σ) in [Kac90, §§ 7.4, 8.3]), such that

xi[tsi ], yi[t−si ], [xi[tsi ], yi[t−si ]], i ∈ Î(g, σ),
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are Chevalley generators of L̂(g, σ) and {xi, yi, [xi, yi]}i∈Î(g,σ):si=0 are Chevalley generators of
[gσ, gσ]. We set

x̃i := xi[tsi ], ỹi := yi[t−si ] and h̃i := [x̃i, ỹi], for any i ∈ Î(g, σ).

Via the isomorphism φσ, we have

φσ(xi) = x̃i, φσ(yi) = ỹi, for any i ∈ I(gτ ),

and

φσ(xo[t]) = x̃o, φσ(yo[t−1]) = ỹo.

Thus, deg x̃i = si and deg ỹi = −si. The Lie algebra L̂(g, σ) is called an (s, r)-realization of the
associated affine Lie algebra L̂(g, τ).

From the above discussion, for any i ∈ Î(g, σ), we have

σ(xi) = εsixi and σ(yi) = ε−siyi. (5)

We fix a positive integer c called the level or central charge. Let Repc be the set of iso-
morphism classes of integrable highest weight (in particular, irreducible) L̂(g, σ)-modules with
central charge c, where in our realization C acts by c, the standard Borel subalgebra of L̂(g, σ)
is generated by {x̃i, h̃i}i∈Î(g,σ) and L̂(g, σ)− is generated by

{ỹi}{i∈Î(g,σ):si>0} (cf. [Kac90, Theorem 8.7]).

Thus, L̂(g, σ)≥0 is a standard parabolic subalgebra of L̂(g, σ). For any H ∈ Repc, let H 0 be
the subspace of H annihilated by L̂(g, σ)+. Then, H 0 is an irreducible finite-dimensional
gσ-submodule of H with highest weight (say) λ(H ) ∈ (hσ)∗ = (hτ )∗ for the choice of the
Borel subalgebra of gσ generated by hσ and {xi : si = 0}. The correspondence H �→ λ(H )
sets up an injective map Repc → (hτ )∗. Let Dc be its image. For λ ∈ Dc, let H (λ) be the
corresponding integrable highest weight L̂(g, σ)-module with central charge c.

For any λ ∈ Dc and i ∈ Î(g, σ) = I(gτ ) � {o}, we associate an integer nλ,i as follows. Set

nλ,i = λ([xi, yi]) + 〈xi, yi〉sic

m
. (6)

For σ = τ a diagram automorphism of g (including τ = Id), by definition si = 0 for i ∈ I(gτ )
and so = 1.

For any diagram automorphism τ of order r (including r = 1), we follow the concrete real-
ization of xi, yi, i ∈ I(gτ ) � {o} in [Kac90, § 8.3]. We emphasize that in the case (g, r) = (A2n,2),
our labelling ‘o’ corresponds to i = n in [Kac90, § 8.3]. When (g, r) = (A2n, 2), we have

〈xi, yi〉 =

{
1 if αi is a long root for i ∈ I(gτ ),
r if i = o, or αi is a short root for i ∈ I(gτ ),

(7)

and when (g, r) = (A2n, 2),

〈xi, yi〉 =

⎧⎪⎨
⎪⎩

1 if i = o,
2 if αi is a long root for i ∈ I(gτ ),
4 if αi is a short root for i ∈ I(gτ ).

(8)

Lemma 2.1. The set Dc can be described as follows:

Dc = {λ ∈ (hτ )∗ |nλ,i ∈ Z≥0 for any i ∈ Î(g, σ)}.
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Proof. The lemma follows from the fact that the irreducible highest weight L̂(g, σ)-module H (λ)
with highest weight λ is integrable if and only if the eigenvalues of h̃i, i ∈ Î(g, σ) on the highest
weight vector in H (λ) are non-negative integers. �

Define
s̄i = 〈xi, yi〉si, for any i ∈ Î(g, σ)

and let
s̄ := gcd{s̄i : i ∈ Î(g, σ)}.

As an immediate consequence of Lemma 2.1 and the identity (6), we get the following.

Corollary 2.2. For any integer c ≥ 1, 0 ∈ Dc if and only if m divides s̄c.
In particular, 0 ∈ Dc if m divides c.
In addition, for a diagram automorphism σ = τ , 0 ∈ Dc for all c if (g, r) = (A2n, 2). If (g, r) =

(A2n, 2), 0 ∈ Dc if and only if c is even.

We recall the following well-known result.

Lemma 2.3. For any automorphism σ and any c ≥ 1, Dc = ∅.
Proof. By the isomorphism φσ (as in (4)), it suffices to prove the lemma for the diagram auto-
morphisms τ (including τ = Id). By Corollary 2.2, 0 ∈ Dc if (g, r) = (A2n, 2). If (g, r) = (A2n, 2),
take λ = ωn: the nth fundamental weight of type Bn (following the Bourbaki convention of index-
ing as in [Bou05, Planche II]). Then, ωn ∈ Dc for odd values of c and 0 ∈ Dc for even values
of c. �

Let V (λ) be the irreducible gσ-module with highest weight λ and highest weight vector
v+. Let M̂(V (λ), c) be the generalized Verma module U(L̂(g, σ))⊗U(L̂(g,σ)≥0) V (λ) with high-

est weight vector v+ = 1⊗ v+, where the action of L̂(g, σ)≥0 on V (λ) factors through the
projection map L̂(g, σ)≥0 → gσ ⊕ CC and the center C acts by c. If λ ∈ Dc, then the unique
irreducible quotient of M̂(V (λ), c) is the integrable representation H (λ). Let Kλ be the kernel
of M̂(V (λ), c)→H (λ). Set

Î(g, σ)+ := {i ∈ Î(g, σ) | si > 0}.
Then, as U(L̂(g, σ))-module, Kλ is generated by

{ỹnλ,i+1
i · v+ | i ∈ Î(g, σ)+} (cf. [Kum02, § 2.1]). (9)

Moreover, these elements are highest weight vectors.

Lemma 2.4. Fix i ∈ Î(g, σ). Let f ∈ K be such that σ(f) = ε−sif and f ≡ tsi mod tsi+1. Put
X = xi[f ] and Y = ỹi = yi[t−si ]. For any p > nλ,i and q > 0, there exists α = 0 such that

Y p · v+ = αXqY p+q · v+
in the generalized Verma module M̂(V (λ), c).

Proof. Let H := [X,Y ] = hi[t−sif ] + (s̄i/m)C. Then, [H,Y ] = −2yi[t−2sif ] commutes with Y .
Note that H · v+ = nλ,iv+. Then, one can check that, for d ≥ 0,

HY d · v+ = (nλ,i − 2d)Y d · v+,
and, for p ≥ 0,

XY p+1 · v+ = (p+ 1)(nλ,i − p)Y p · v+.
By induction on q, the lemma follows. �

2200

https://doi.org/10.1112/S0010437X23007418 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007418


Conformal blocks for Galois covers of algebraic curves

Lemma 2.5. Let g and σ be as above and let b be a σ-stable Borel subalgebra with σ-stable
Cartan subalgebra h ⊂ b of g. Then, any element x of

(
n⊗K)σ acts locally nilpotently on any

integrable highest weight L̂(g, σ)-module H (λ), where n is the nilradical of b.
Replacing the Borel subalgebra b by the opposite Borel subalgebra b−, the lemma holds for

any x ∈ (n− ⊗K)σ as well, where n− is the nilradical of b−.

Proof. Take a basis {yβ}β of n consisting of common eigenvectors under the action of σ as well
as hσ (which is possible since the adjoint action of hσ on g commutes with the action of σ) and
write x =

∑
β yβ [Pβ ] for some Pβ ∈ K . Since x is σ-invariant and each yβ is an eigenvector, each

yβ [Pβ] is σ-invariant. Let L̂(g, σ)x be the Lie subalgebra of L̂(g, σ) generated by the elements
{yβ [Pβ]}β . Then, since n is nilpotent (in particular, N -bracket of elements from n is zero, for
some large enough N), L̂(g, σ)x is a finite-dimensional nilpotent Lie algebra. (Observe that n

being nilpotent, for any two elements s1, s2 ∈ n, 〈s1, s2〉 = 0.) Take any element v ∈H (λ) and
let H (x, v) be the L̂(g, σ)x-submodule of H (λ) generated by v. Since σ stabilizes the pair
(b, h), the centralizer Zg(hσ) of hσ in g equals h. To prove this, we can write σ = τ ◦Ad(t), for a
diagram automorphism (possibly identity) τ of g associated to the pair (b, h) and t ∈ T with Lie
algebra LieT = h. Thus, hσ = hτ and, hence, Zg(hσ) = Zg(hτ ) = h. Since yβ is an eigenvector
for the adjoint action of hσ with non-trivial action, any yβ [Pβ ] can be written as a finite sum
of commuting real root vectors for L̂(g, σ) and a σ-invariant element of the form yβ [P+

β ] with
P+

β ∈ tC[[t]] (cf. [Kac90, Exercises 8.1 and 8.2, § 8.8]). Thus, yβ [Pβ] acts locally nilpotently on
H (λ) (in particular, on H (x, v)). Now, using [Kum02, Lemma 1.3.3(c2)], we get that H (x, v)
is finite dimensional. Using Lie’s theorem, the lemma follows. �

3. Twisted analogue of conformal blocks

By a scheme we mean a quasi-compact and separated scheme over C. By an algebraic curve, we
mean a projective, reduced but not necessarily connected curve.

In this section we define the space of twisted covacua attached to a Galois cover of an
algebraic curve. We prove that this space is finite dimensional.

For a smooth point p in an algebraic curve Σ̄ over C, let Kp denote the quotient field of the
completed local ring Ôp of Σ̄ at p. We denote by Dp (respectively, D×

p ) the formal disc Spec Ôp

(respectively, the punctured formal disc SpecKp).

Definition 3.1. A morphism π : Σ→ Σ̄ of projective curves is said to be a Galois cover with
finite Galois group Γ (for short Γ-cover) if the group Γ acts on Σ as algebraic automorphisms
and Σ/Γ � Σ̄ and no non-trivial element of Γ fixes pointwise any irreducible component of Σ.

For any smooth point q ∈ Σ, the stabilizer group Γq of Γ at q is always cyclic. The order
eq := |Γq| is called the ramification index of q. Thus, q is unramified if and only if eq = 1. Denote
p = π(q). We can also write ep = eq, since eq = eq′ for any q, q′ ∈ π−1(p). We also say that ep is
the ramification index of p. Denote by dp the cardinality of the fiber π−1(p). Then |Γ| = ep · dp.

The action of Γq on the tangent space TqΣ induces a primitive character χq : Γq → C×,
i.e. χq(σq) is a primitive epth root of unity for any generator σq in Γq. From now on we shall fix
σq ∈ Γq so that

χq(σq) = e2πi/ep .

For any two smooth points q, q′ ∈ Σ, if π(q) = π(q′), then

Γq′ = γΓqγ
−1, for any element γ ∈ Γ such that q′ = γ · q.
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Moreover,

χq′(γσγ−1) = χq(σ), for any σ ∈ Γq.

Given a smooth point p ∈ Σ̄ such that π−1(p) consists of smooth points in Σ, let π−1(Dp)
(respectively, π−1(D×

p )) denote the fiber product of Σ and Dp (respectively, D×
p ) over Σ̄. Then,

π−1(Dp) � �q∈π−1(p)Dq and π−1(D×
p ) � �q∈π−1(p)D

×
q ,

where Dq (respectively, D×
q ) denotes the formal disc (respectively, formal punctured disc) in Σ

around q.
Let the finite group Γ also act on g as Lie algebra automorphisms.
Let g[π−1(D×

p )]Γ be the Lie algebra consisting of Γ-equivariant regular maps from π−1(D×
p )

to g. There is a natural isomorphism g[π−1(D×
p )]Γ � (g⊗ C[π−1(D×

p )])Γ. Let

ĝp := g[π−1(D×
p )]Γ ⊕ CC (10)

be the central extension of g[π−1(D×
p )]Γ defined as follows:

[X,Y ] = [X,Y ]0 +
1
|Γ|
∑

q∈π−1(p)

Resq〈dX, Y 〉C, (11)

for any X,Y ∈ g[π−1(D×
p )]Γ, where [, ]0 denotes the point-wise Lie bracket induced from the

bracket on g. We set the subalgebra

p̂p := g[π−1(Dp)]Γ ⊕ CC (12)

and

ĝ+
p := Ker(g[π−1(Dp)]Γ → g[π−1(p)]Γ) (13)

obtained by the restriction map C[π−1(Dp)]→ C[π−1(p)], where g[π−1(p)]Γ denotes the Lie alge-
bra consisting of Γ-equivariant maps x : π−1(p)→ g. Let gp denote g[π−1(p)]Γ. The following
lemma is obvious.

Lemma 3.2. The evaluation map evq : gp → gΓq given by

x �→ x(q)

for any x ∈ gp and q ∈ π−1(p) is an isomorphism of Lie algebras.

Let σq be the generator of Γq such that χq(σq) = e2πi/ep . Let L̂(g, σq) denote the affine Lie
algebra associated to g and σq as defined in § 2. We denote this algebra by L̂(g,Γq, χq) or L̂(g,Γq)
in short.

Lemma 3.3. The restriction map resq : ĝp → L̂(g,Γq) given by

X �→ Xq and C �→ C,

is an isomorphism of Lie algebras, where X ∈ g[π−1(D×
p )]Γ and Xq is the restriction of X to D×

q .
Moreover,

resq(p̂p) = L̂(g,Γq)≥0 and resq(ĝ+
p ) = L̂(g,Γq)+.

Proof. For any X,Y ∈ g[π−1(D×
p )]Γ, the restriction of [X,Y ]0 to D×

q is equal to [Xq, Yq]0. Note
that for any γ ∈ Γ and x, y ∈ g, we have 〈γ(x), γ(y)〉 = 〈x, y〉, which follows from the Killing
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form realization of 〈, 〉 on g. Since X,Y are Γ-equivariant, for any q, q′ ∈ π−1(p) we have

Resq〈dX, Y 〉 = Resq′〈dX, Y 〉.
It is now easy to see that resq : ĝp → L̂(g,Γq) is an isomorphism of Lie algebras, and

resq(p̂p) = L̂(g,Γq)≥0 and resq(ĝ+
p ) = L̂(g,Γq)+. �

By the above lemma, we have a faithful functor Repc(ĝp)→ Rep(gp) from the category of
integrable highest weight representations of ĝp of level c to the category of finite-dimensional
representations of gp. We denote by Dc,p the parameter set of (irreducible) integrable highest
weight representations of ĝp of level c obtained as the subset of the set of dominant integral
weights of gp under the above faithful functor. Let Dc,q denote the parameter set of (irreducible)
integrable highest weight representations of L̂(g,Γq) as in § 2. Then, we can identify Dc,p and
Dc,q via the restriction isomorphism resq : ĝp → L̂(g,Γq) as in Lemma 3.3.

Definition 3.4. For any s ≥ 1, by an s-pointed curve, we mean the pair (Σ̄, �p = (p1, . . . , ps))
consisting of distinct and smooth points {p1, . . . , ps} of Σ̄, such that the following condition is
satisfied.

(∗) Each irreducible component of Σ̄ contains at least one point pi.

Similarly, by an s-pointed Γ-curve, we mean the pair (Σ, �q = (q1, . . . , qs)) consisting of smooth
points {q1, . . . , qs} of Σ such that (Σ̄, π(�q) = (π(q1), . . . , π(qs))) is a s-pointed curve.

From now on we fix an s-pointed curve (Σ̄, �p) (for any s ≥ 1), where �p = (p1, . . . , ps), and
a Galois cover π : Σ→ Σ̄ with the finite Galois group Γ such that the fiber π−1(pi) con-
sists of smooth points for any i = 1, 2, . . . , s. We also fix a simple Lie algebra g and a group
homomorphism φ : Γ→ Aut(g), where Aut(g) is the group of automorphisms of g.

We now fix an s-tuple �λ = (λ1, . . . , λs) of weights with λi ∈ Dc,pi ‘attached’ to the point pi. To
this data, there is associated the space of (twisted) vacua VΣ,Γ,φ(�p,�λ)† (or the space of (twisted)
conformal blocks) and its dual space VΣ,Γ,φ(�p,�λ) called the space of (twisted) covacua (or the
space of (twisted) dual conformal blocks) defined as follows.

Definition 3.5. Let g[Σ\π−1(�p)]Γ denote the space of Γ-equivariant regular maps f :
Σ\π−1(�p)→ g. Then, g[Σ\π−1(�p)]Γ is a Lie algebra under the pointwise bracket.

Set

H (�λ) := H (λ1)⊗ · · · ⊗H (λs), (14)

where H (λi) is the integrable highest weight representation of ĝpi of level c with highest weight
λi ∈ Dc,pi .

Define an action of the Lie algebra g[Σ\π−1(�p)]Γ on H (�λ) as follows:

X · (v1 ⊗ · · · ⊗ vs) =
s∑

i=1

v1 ⊗ · · · ⊗Xpi · vi ⊗ · · · ⊗ vs, for X ∈ g[Σ\π−1(�p)]Γ, and vi ∈H (λi),

(15)
where Xpi denotes the restriction of X to π−1(D×

pi
), hence Xpi is an element in ĝpi .

By the residue theorem [Har77, Theorem 7.14.2, Chap. III],∑
q∈π−1(�p)

Resq〈dX, Y 〉 = 0, for any X,Y ∈ g[Σ\π−1(�p)]Γ. (16)

Thus, the action (15) indeed is an action of the Lie algebra g[Σ\π−1(�p)]Γ on H (�λ).
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Finally, we are ready to define the space of (twisted) vacua

VΣ,Γ,φ(�p,�λ)† := Homg[Σ\π−1(�p)]Γ(H (�λ),C), (17)

and the space of (twisted) covacua

VΣ,Γ,φ(�p,�λ) := [H (�λ)]g[Σ\π−1(�p)]Γ , (18)

where C is considered as the trivial module under the action of g[Σ\π−1(�p)]Γ, and
[H (�λ)]g[Σ\π−1(�p)]Γ denotes the space of covariants H (�λ)/

(
g[Σ\π−1(�p)]Γ ·H (�λ)

)
. Clearly,

VΣ,Γ,φ(�p,�λ)† � VΣ,Γ,φ(�p,�λ)∗. (19)

Remark 3.6. Fix any qi ∈ π−1(pi). If we choose �λ = (λ1, . . . , λs) to be a set of weights, where
for each i, λi is a dominant weight of gΓqi in Dc,qi , we can transfer each λi to an element in
Dc,pi through the restriction isomorphism gpi � gΓqi via Lemma 3.2. Accordingly, we denote the
associated space of covacua by VΣ,Γ,φ(�q, �λ). This terminology will often be used interchangeably.

Lemma 3.7. With the notation and assumptions as in Definition 3.5, the space of covacua
VΣ,Γ,φ(�p,�λ) is finite dimensional and, hence, by (19), so is the space of vacua VΣ,Γ,φ(�p,�λ)†.

Proof. Let g[π−1(D×
�p )]Γ be the space of Γ-equivariant maps from the disjoint union of formal

punctured discs �q∈π−1(�p)D
×
q to g. Define a Lie algebra bracket on

ĝ�p := g[π−1(D×
�p )]Γ ⊕ CC, (20)

by declaring C to be the central element and the Lie bracket is defined in the similar way as
in (11).

Now, define an embedding of Lie algebras:

β : g[Σ\π−1(�p)]Γ → ĝ�p, X �→ X�p

where X�p is the restriction of X to π−1(D×
�p ) .

By the residue theorem, β is indeed a Lie algebra homomorphism. Moreover, by
Riemann–Roch theorem, Imβ + g[π−1(D�p)]Γ has finite codimension in ĝ�p, where π−1(D�p) is the
disjoint union �q∈π−1(�p)Dq. Further, define the following surjective Lie algebra homomorphism
from the direct sum Lie algebra

s⊕
i=1

ĝpi → ĝ�p,
s∑

i=1

Xi �→
s∑

i=1

X̃i, Ci → C,

here Ci is the center C of ĝpi , and the map Xi ∈ g[π−1(D×
pi

)]Γ naturally extends to X̃i ∈
g[π−1(D×

�p )]Γ by taking π−1(D×
pj

) to 0 if j = i.
Now, the lemma follows from [Kum02, Lemma 10.2.2]. �

4. Propagation of twisted vacua

We prove the propagation theorem in this section, which asserts that adding marked points and
attaching weight 0 to those points does not alter the space of twisted vacua.

Let Σ→ Σ̄ be a Γ-cover (cf. Definition 3.1). Moreover, φ : Γ→ Aut(g) is a group
homomorphism.

Definition 4.1. Let �o = (o1, . . . , os) and �p = (p1, . . . , pa) be two disjoint non-empty sets of
smooth and distinct points in Σ̄ such that (Σ̄, �o) is a s-pointed curve and let �λ = (λ1, . . . , λs),
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�μ = (μ1, . . . , μa) be tuples of dominant weights such that λi ∈ Dc,oi and μj ∈ Dc,pj for each
1 ≤ i ≤ s, 1 ≤ j ≤ a.

We assume that π−1(oi) and π−1(pj) consist of smooth points.
Denote the tensor product

V (�μ) := V (μ1)⊗ · · · ⊗ V (μa), (21)

where V (μk) is the irreducible gpk
-module with highest weight μk.

Define a g[Σ\π−1(�o)]Γ-module structure on V (�μ) as follows:

X · (v1 ⊗ · · · ⊗ va) =
a∑

k=1

v1 ⊗ · · · ⊗X|pk
· vk ⊗ · · · ⊗ va, (22)

for vk ∈ V (μk), X ∈ g[Σ\π−1(�o)]Γ, and X|pk
denotes the restriction X|π−1(pk) ∈ gpk

. This gives
rise to the tensor product g[Σ\π−1(�o)]Γ-module structure on H (�λ)⊗ V (�μ).

The proof of the following lemma was communicated to us by Bernstein.

Lemma 4.2. Assume that Γ stabilizes a Borel subalgebra b ⊂ g. Then, there exist a Cartan
subalgebra h ⊂ b such that Γ stabilizes h.

Proof. Let G be the simply connected simple algebraic group associated to g, and let B be
the Borel subgroup associated to b. Let N be the unipotent radical of B. Then, Γ acts on N .
It is known that the space of all Cartan subalgebras in b is a N -torsor (it follows easily from
the conjugacy theorem of Cartan subalgebras). Let ho be any fixed Cartan subalgebra in b. It
defines a function ψ : Γ→ N given by γ �→ uγ , where uγ is the unique element in N such that
Aduγ(ho) = γ(ho). It is easy to check that ψ is a 1-cocycle of Γ with values in N . Note that
the group cohomology H1(Γ, N) = 0 since Γ is a finite group and N is unipotent. It follows
that ψ is a 1-coboundary, i.e. there exists uo ∈ N such that ψ(γ) = γ(uo)−1uo for any γ ∈ Γ. Set
h = Aduo(ho). It is now easy to verify that h is Γ-stable. �

Theorem 4.3. With the notation and assumptions as in Definition 4.1, assume further that Γ
stabilizes a Borel subalgebra of g. Then, the canonical map

θ :
[
H (�λ)⊗ V (�μ)

]
g[Σ\π−1(�o)]Γ

→ VΣ,Γ,φ

(
(�o, �p), (�λ, �μ)

)
is an isomorphism, where VΣ,Γ,φ is the space of covacua and the map θ is induced from the
g[Σ\π−1(�o)]Γ-module embedding

H (�λ)⊗ V (�μ) ↪→H (�λ, �μ),

with V (μj) identified as a gpj -submodule of H (μj) annihilated by ĝ+
pj

. (Observe that since

the subspace V (μj) ⊂H (μj) is annihilated by ĝ+
pj

, the embedding V (μj) ⊂H (μj) is indeed a

g[Σ\π−1(�o)]Γ-module embedding.)

Proof. By Lemma 4.2, we may assume that Γ stabilizes a Borel subalgebra b and a Cartan
subalgebra h contained in b. From now on we fix such a b and h.

Let H := H (�λ)⊗ V (μ1)⊗ · · · ⊗ V (μa−1). By induction on a, it suffices to show that the
inclusion V (μa) ↪→H (μa) induces an isomorphism (abbreviating μa by μ and pa by p)

[H ⊗ V (μ)]g[Σo]Γ
∼−→ [H ⊗H (μ)]g[Σo\π−1(p)]Γ , (23)

where Σo := Σ\π−1(�o).
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We first prove (23) replacing H (μ) by the generalized Verma module M̂(V (μ), c) for ĝp and
the parabolic subalgebra p̂p, i.e.

[H ⊗ V (μ)]g[Σo]Γ
∼−→ [H ⊗ M̂(V (μ), c)]g[Σo\π−1(p)]Γ . (24)

Consider the Lie algebra
sp := g[Σo\π−1(p)]Γ ⊕ CC, (25)

where C is central in sp and

[X,Y ] = [X,Y ]0 +
1
|Γ|
∑

q∈π−1(p)

Resq〈dX, Y 〉C, for X,Y ∈ g[Σo\π−1(p)]Γ, (26)

where [X,Y ]0 is the point-wise Lie bracket.
Let s≥0

p be the subalgebra of sp:

s≥0
p := g[Σo]Γ ⊕ CC.

Fix a point q ∈ π−1(p) and a generator σq of Γq such that σq acts on TqΣ by εq := e2πi/ep

(which is a primitive epth root of unity). By the Riemann–Roch theorem there exists a formal
parameter zq around q such that z−1

q is a regular function on Σo\{q}. Moreover, we require z−1
q

to vanish at any other point q′ in π−1(p). Replacing z−1
q by

ep∑
j=1

ε−j
q σj

q(z
−1
q ),

we can (and will) assume that
σq · z−1

q = εqz
−1
q . (27)

Recall the Lie algebras L̂(g,Γq) and L̂(g,Γq)− = (z−1
q g[z−1

q ])Γq from § 2. Since zq is a formal
parameter at q with σq · zq = ε−1

q zq, we have

L̂(g,Γq) = L̂(g,Γq)≥0 ⊕ (z−1
q g[z−1

q ])Γq . (28)

Define, for any x ∈ g and k ≥ 1,

A(x[z−k
q ]) :=

1
|Γq|
∑
γ∈Γ

γ · (x[z−k
q ]) ∈ sp,

and let V ⊂ sp be the span of {A(x[z−k
q ])}x∈g,k≥1. It is easy to check that

sp = s≥0
p ⊕ V. (29)

By Lemmas 3.2 and 3.3, we can view M̂(V (μ), c) as a generalized Verma module over L̂(g,Γq)
induced from V (μ) as L̂(g,Γq)≥0-module.

Consider the embedding of the Lie algebra

sp ↪→ L̂(g,Γq)

by taking C �→ C and any X �→ Xq. We assert that the above embedding sp ↪→ L̂(g,Γq) induces
a vector space isomorphism

γ : sp/s
≥0
p � L̂(g,Γq)/L̂(g,Γq)≥0. (30)

To prove the above isomorphism, observe first that γ is injective: for α ∈ g[Σo \ π−1(p)]Γ, if γ(α) ∈
L̂(g,Γq)≥0, then α ∈ g[(Σo \ π−1(p)) ∪ {q}]. The Γ-invariance of α forces α ∈ g[Σo], proving the
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injectivity of γ. To prove the surjectivity of γ, take a Γq-invariant α = x[z−k
q ] for k ≥ 1. Thus,

σq(x) = ε−k
q x. By the definition, since z−1

q vanishes at any point q′ ∈ π−1(p) different from q,

γ(A(α)) = α+ L̂(g,Γq)≥0.

This proves the surjectivity of γ. Thus, by the Poincaré–Birkhoff–Witt theorem, as sp-modules

M̂(V (μ), c) � U(sp)⊗U(s≥0
p )

V (μ). (31)

Let g[Σo\π−1(p)]Γ act on H as follows:

X · (v1 ⊗ · · · ⊗ vs ⊗ w1 ⊗ · · · ⊗ wa−1)

=
s∑

i=1

v1 ⊗ · · · ⊗Xoi · vi ⊗ · · · ⊗ vs ⊗ w1 ⊗ · · · ⊗ wa−1

+
a−1∑
j=1

v1 ⊗ · · · ⊗ vs ⊗ w1 ⊗ · · · ⊗X|pj · wj ⊗ · · · ⊗ wa−1

for X ∈ g[Σo\π−1(p)]Γ, vi ∈H (λi) and wj ∈ V (μj), and let C act on H by the scalar −c. By
the residue theorem, these actions combine to make H into an sp-module. Thus, the action of
C on the tensor product H ⊗ M̂(V (μ), c) is trivial.

Now, by the isomorphism (31) (in the following, g[Σo]Γ acts on V (μ) via its restriction on
π−1(p) and C acts via the scalar c)[

H ⊗ M̂(V (μ), c)
]
g[Σo\π−1(p)]Γ

=
[
H ⊗ M̂(V (μ), c)

]
sp
, since C acts trivially

�H ⊗U(sp) M̂(V (μ), c)

�H ⊗U(sp)

(
U(sp)⊗U(g[Σo]Γ⊕CC) V (μ)

)
�H ⊗U(g[Σo]Γ⊕CC) V (μ)

= H ⊗U(g[Σo]Γ) V (μ)

= [H ⊗ V (μ)]g[Σo]Γ .

This proves (24).
Now, we come to the proof of (23).
Let K(μ) be the kernel of the canonical projection M̂(V (μ), c)�H (μ). In view of (24), to

prove (23), it suffices to show that the image of

ι :
[
H ⊗K(μ)

]
g[Σo\π−1(p)]Γ

→ [H ⊗ M̂(V (μ), c)
]
g[Σo\π−1(p)]Γ

is zero: from the isomorphism (30), we get

L̂(g,Γq) = sp + L̂(g,Γq)≥0.

Moreover, write

L̂(g,Γq)≥0 = L̂(g,Γq)+ + gΓq + CC,

and observe that any element of gΓq can be (uniquely) extended to an element of gp := g[π−1(p)]Γ

(cf. Lemma 3.2). Further, Σo being affine, the restriction map g[Σo]Γ → gp is surjective, and, of
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course, g[Σo]Γ ⊂ s≥0
p . Thus, we get the decomposition:

L̂(g,Γq) = sp + L̂(g,Γq)+,

and, hence, by the Poincaré–Birkhoff–Witt theorem, U(L̂(g,Γq)) is the span of elements of the
form

Y1 . . . Ym ·X1 . . . Xn, for Yi ∈ sp, Xj ∈ L̂(g,Γq)+ and m,n ≥ 0.

Consider the decomposition (3) for σq: σq = τqε
ad h
q , under a choice of σq-stable Borel subalgebra

bq containing the same Cartan subalgebra h in the sense of § 2. (Since Γ, in particular σq, stabilizes
the pair (b, h), as in the proof of Lemma 2.5, hσq = hτ ′

q for some diagram automorphism τ ′q of g

associated to the pair (b, h). In particular, the centralizer Zg(hσ) of hσ in g equals h and, hence,
we can take hq = h.) Under such a choice, there exist sl2-triples xi, yi, hi ∈ g for each i ∈ Î(g, σq)
such that x̃i := xi[zsi

q ], ỹi := yi[z−si
q ], i ∈ Î(g, σq) are Chevalley generators of L̂(g, σq). Moreover,

xi, yi satisfy

σq(xi) = εsi
q xi and σq(yi) = ε−si

q yi. (32)

Let v+ be the highest weight vector of M̂(V (μ), c). Recall (cf. (9)) that K(μ) is generated
by ỹnμ,i+1

i · v+, for i ∈ Î(g, σq)+ consisting of i ∈ Î(g, σq) such that si > 0.
Thus, to prove the vanishing of the map ι, it suffices to show that for any i ∈ Î(g, σq)+

ι
(
h⊗ (X1 . . . Xn · ỹnμ,i+1

i · v+)
)

= 0, (33)

for h ∈H , any n ≥ 0 and Xj ∈ L̂(g,Γq)+. However, ỹnμ,i+1
i · v+ being a highest weight vector,

L̂(g,Γq)+ · (ỹnμ,i+1
i · v+) = 0.

Thus, to prove (33), it suffices to show that for any i ∈ Î(g, σq)+

ι(h⊗ (ỹnμ,i+1
i · v+)) = 0, for any h ∈H . (34)

Fix i ∈ Î(g, σq)+. Take f ∈ C[Σo] such that

fq ≡ zsi
q (mod zsi+1

q ),

and the order of vanishing of f at any q′ = q ∈ π−1(p) is at least (nμ,i + 3)si. Moreover, replacing
f by (1/|Γq|)

∑|Γq |
j=1 ε

sij
q σj

q · f , we can (and will) assume that

σq · f = ε−si
q f.

Now, take

Z =
∑

γ∈Γ/Γq

γ · (xi[f ]).

Then, writing Y = ỹi,

ZNY nμ,i+N+1 · v+ =
( ∑

γ∈Γ/Γq

(
γ · (xi[f ])

)
q

)N

Y nμ,i+N+1 · v+

= (xi[fq])NY nμ,i+N+1 · v+. (35)

To prove the last equality, observe that
(
γ1 · (xi[f ])

)
q
. . .
(
γN · (xi[f ])

)
q

has zero of order at least
(nμ,i + 3)si + (N − 1)si unless each γj · Γq = Γq. However, Y nμ,i+N+1 has order of pole equal
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to (nμ,i +N + 1)si. Since (nμ,i + 3)si + (N − 1)si > (nμ,i +N + 1)si, we get the last equality.
Thus, by Lemma 2.4 for X = xi[fq] and Y = ỹi, for any N ≥ 1, there exists α = 0 such that

ι
(
h⊗ (Y nμ,i+1 · v+)

)
= αι
(
h⊗XNY nμ,i+N+1 · v+

)
= αι
(
h⊗ ZNY nμ,i+N+1 · v+

)
, by (35)

= (−1)Nαι
(
ZN · h⊗ Y nμ,i+N+1 · v+

)
= 0, by Lemma 2.5 for large N (see the argument below).

This proves (34) and, hence, completes the proof of the theorem.
We now explain more precisely how Lemma 2.5 implies ZN · h = 0. With respect to the pair

(b, h) stable under Γ (note that b might not be the same as bq given above (3) though hq is taken
to be h), since Γ preserves the pair (b, h), the group Γ acts on the root system Φ(g, h) of g by
factoring through the group of outer automorphisms with respect to the pair (b, h). In particular,
Γ preserves the set of positive (respectively, negative) roots. From the construction of xi in § 2,
xi is either a linear combination of positive root vectors or a linear combination of negative root
vectors with respect to bq. Thus, either γ · xi ∈ n for all γ ∈ Γ, or γ · xi ∈ n− for all γ ∈ Γ, where
b− is the negative Borel of b and n (respectively, n−) is the nilradical of b (respectively, b−).
Therefore, we may apply Lemma 2.5 to show ZN · h = 0. �

Remark 4.4. Observe that the condition that Γ stabilizes a Borel subalgebra b and, hence, also a
Cartan subalgebra h ⊂ b is equivalent to the condition that the image of Γ in Aut g is contained
in D � IntH, where D is the group of diagram automorphisms of g and H is the maximal torus
of G with Lie algebra h (G being the adjoint group with Lie algebra g).

The following result is the twisted analogue of ‘Propagation of Vacua’ due to Tsuchiya, Ueno,
and Yamada [TUY89].

Corollary 4.5. With the notation and assumptions as in Theorem 4.3 (in particular, (Σ̄, �o) is
a s-pointed curve), for any smooth point q ∈ Σo := Σ \ π−1(�o) (thus, p = π(q) is a smooth point
of Σ̄) with 0 ∈ Dc,q (cf. Corollary 2.2), there are canonical isomorphisms:

(a) VΣ,Γ,φ(�o,�λ) � VΣ,Γ,φ((�o, p), (�λ, 0)); and

(b) for Σ̄ an irreducible curve, VΣ,Γ,φ(�o,�λ) � [H (0)⊗ V (�λ)]g[Σ\π−1(p)]Γ , where the point p is
assigned weight 0.

Proof. (a) Apply Theorem 4.3 for the case �p = (p) and �μ = (0).
(b) It follows from Theorem 4.3 and part (a). (In Theorem 4.3 replace �o by the singleton (p),

�λ by (0), �p by �o and �μ by �λ.) �

Remark 4.6. (a) A much weaker form of part (a) of the above corollary (where Γ is of order 2 and
�o consists of all the ramification points) is proved in [FS04, Lemma 7.1]. It should be mentioned
that they use the more general setting of twisted vertex operator algebras.

(b) When all the marked points are unramified and |Γ| is a prime, the propagation of vacua
is proved in [Dam20].

5. Factorization theorem

The aim of this section is to prove the factorization theorem which identifies the space of covacua
for a genus g nodal curve Σ̄ with a direct sum of the spaces of covacua for its normalization Σ̄′

(which is a genus g − 1 curve).
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Let π : Σ→ Σ̄ be a Γ-cover of a s-pointed curve (Σ̄, �o). We do not assume that Σ̄ is irreducible.
Moreover, φ : Γ→ Aut(g) is a group homomorphism.

Definition 5.1 [BR11, Définition 4.1.4]. Let Σ be a reduced (but not necessarily connected)
projective curve with at worst only simple nodal singularity. (Recall that a point P ∈ Σ is called a
simple node if analytically a neighborhood of P in Σ is isomorphic with an analytic neighborhood
of (0, 0) in the curve xy = 0 in A2.) Then, the action of Γ on Σ at any simple node q ∈ Σ is
called stable if the derivative σ̇ of any element σ ∈ Γq acting on the Zariski tangent space Tq(Σ)
satisfies the following:

det(σ̇) = 1 if σ fixes the two branches at q,

= −1 if σ exchanges the two branches. (36)

We say that Γ acts stably on Σ if it acts stably on each of its nodes.
From now on, by a node we will always mean a simple node.

Assume that p ∈ Σ̄ is a node (possibly among other nodes) and also assume that the fiber
π−1(p) consists of nodal points. Assume further that the action of Γ at the points q ∈ π−1(p) is
stable. Observe that, in this case, since p is assumed to be a node, any σ ∈ Γq can not exchange
the two branches at q for otherwise the point p would be smooth.

We fix a level c ≥ 1.
Let Σ̄′ be the curve obtained from Σ̄ by the normalization ν̄ : Σ̄′ → Σ̄ at only the point p.

Thus, ν̄−1(p) consists of two smooth points p′, p′′ in Σ̄′ and

ν̄|Σ̄′\{p′,p′′} : Σ̄′\{p′, p′′} → Σ̄\{p}
is a biregular isomorphism. We denote the preimage of any point of Σ̄\{p} in Σ̄′\{p′, p′′} by the
same symbol. Let π′ : Σ′ → Σ̄′ be the pull-back of the Galois cover π via ν̄. In particular, π′ is a
Galois cover with Galois group Γ. Thus, we have the following fiber diagram.

Σ′

π′

��

ν �� Σ

π

��

�

Σ̄′
ν̄

�� Σ̄

Lemma 5.2. With the same notation and assumptions as in Definition 5.1:

(1) the map ν is a normalization of Σ at every point q ∈ π−1(p);
(2) there exists a natural Γ-equivariant bijection κ : π′−1(p′) � π′−1(p′′);
(3) for any q ∈ π−1(p), we have

Γq = Γq′ = Γq′′ ,

where ν−1(q) consists of two smooth points q′, q′′, and Γq, Γq′ , and Γq′′ are stabilizer groups
of Γ at q, q′, and q′′, respectively. Moreover, Γq = Γq′ = Γq′′ is a cyclic group.

Proof. Let q be any point in π−1(p) of ramification index eq. Since π−1(p) consists of nodal
points by assumption, there are two branches in the formal neighborhood of q. If any σ ∈ Γq

exchanges two branches, then the point p = π(q) is smooth in Σ̄, which contradicts the assump-
tion that p is a nodal point. Thus, Γq must preserve branches. In particular, since no non-trivial
element of Γ fixes pointwise any irreducible component of Σ, Γq is cyclic. Therefore, by the
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condition (36), we can choose a formal coordinate system z′, z′′ around the nodal point q such that
ÔΣ,q � C[[z′, z′′]]/(z′z′′), and a generator σq of Γq such that

σq(z′) = ε−1z′ and σq(z′′) = εz′′,

where ε := e2πi/eq is the standard primitive eqth root of unity. (Observe that εmust be a primitive
eqth root of unity, since Γq acts faithfully on each of the two formal branches through q.)

We can choose a formal coordinate system x′, x′′ around p in Σ̄ such that ÔΣ̄,p �
C[[x′, x′′]]/(x′x′′) and the embedding ÔΣ̄,p ↪→ ÔΣ,q is given by x′ �→ (z′)eq , x′′ �→ (z′′)eq .

The node p splits into two smooth points p′, p′′ via ν̄. Without loss of generality, we can
assume x′ (respectively, x′′) is a formal coordinate around p′ (respectively, p′′) in Σ̄′. Then, q
will also split into two smooth points q′, q′′ via the map ν, where z′ (respectively, z′′) is a formal
coordinate around q′ (respectively, q′′). It shows that the map ν is a normalization at every point
q ∈ π−1(p).

The pullback gives a decomposition

(π ◦ ν)−1(p) = ν−1(π−1(p)) = π′−1(p′) � π′−1(p′′).

From the definition of the fiber product, there exist Γ-equivariant canonical bijections:

π′−1(p′) � π−1(p) and π′−1(p′′) � π−1(p). (37)

Hence, we get a Γ-equivariant canonical bijection κ : π′−1(p′) � π′−1(p′′). For any q ∈ π−1(p),
ν−1(q) = {q′, q′′}. By the choice of q′, q′′ as above, π′(q′) = p′ and π′(q′′) = p′′. Therefore, κ
maps q′ to q′′. Moreover, from (37), the stabilizer groups Γq, Γq′ , and Γq′ are all the same
(and of order eq). Since q′ (respectively, q′′) is a smooth point of Σ′, Γq′ (respectively, Γq′′) is
cyclic. �

Let gp denote the Lie algebra g[π−1(p)]Γ (observe that we can attach a Lie algebra gp

regardless of the smoothness of p). Then, the Γ-equivariant bijections ν : π′−1(p′) � π−1(p)
and ν : π′−1(p′′) � π−1(p) (cf. (37)) induce isomorphisms of Lie algebras κ′ : gp′ � gp and
κ′′ : gp′′ � gp, respectively. Recall that p′, p′′ are smooth points of Σ̄′. Let Dc,p′ (respectively,
Dc,p′′) denote the finite set of highest weights of irreducible representations of gp induced via
the isomorphism κ′ (respectively, κ′′) which give rise to integrable highest weight ĝp′-modules
(respectively, ĝp′′-modules) with central charge c.

Set

Σo = Σ\π−1(�o) and Σ′o = Σ′\π′−1(�o).

The map ν on restriction gives rise to an isomorphism

ν : Σ′o\π′−1{p′, p′′} � Σo\π−1(p) ↪→ Σo,

which, in turn, gives rise to a Lie algebra homomorphism

ν∗ : g[Σo]Γ → g[Σ′o\π′−1{p′, p′′}]Γ.
Let �λ = (λ1, . . . , λs) be an s-tuple of weights with λi ∈ Dc,oi ‘attached’ to oi. We denote the

highest weight of the dual representation V (μ)∗ of gp by μ∗, thus V (μ)∗ � V (μ∗).
By Lemma 5.2, there exists a canonical bijection κ : π′−1(p′) � π′−1(p′′) compatible with the

action of Γ. Thus, it induces an isomorphism of Lie algebras gp′ � gp′′ .
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Lemma 5.3. In the same setting as in Lemma 5.2, we have:

(1) there exists an isomorphism ĝp′ � ĝp′′ which restricts to the isomorphisms

p̂p′ � p̂p′′ , ĝ+
p′ � ĝ+

p′′ , and gp′ � gp′′

(see the relevant notation in § 3);
(2) μ ∈ Dc,p′ if and only if μ∗ ∈ Dc,p′′ .

Proof. For any q ∈ π−1(p), in view of Lemma 3.3, the restriction gives isomorphisms resq′ : ĝp′ �
L̂(g,Γq′) and resq′′ : ĝp′′ � L̂(g,Γq′′). By Lemma 5.2, Γq′ = Γq′′ . As in (3), let b′ (respectively,
h′ ⊂ b′) be a suitable Borel (respectively, Cartan) subalgebra of g stable under Γq′ . This gives
rise to Chevalley generators ei ∈ n′ and fi ∈ n′−, where n′ (respectively, n′−) is the nilradical
of b′ (respectively, the opposite Borel subalgebra b′−). Let ω : g→ g be the Cartan involution
taking the Chevalley generators of g: ej �→ −fj , fj �→ −ej and h �→ −h for any h ∈ h′.

Write as in § 2,

σq′ = τ ′εad h′
for a diagram automorphism τ ′ (possibly identity) and h′ ∈ hτ ′

.

Thus,
ω−1σq′ω = ω−1τ ′ωεadω−1(h′) = ω−1τ ′ωεad(−h′). (38)

However, by the definition of (any diagram automorphism) τ ′ and ω, it is easy to see that

ω−1τ ′ω = τ ′. (39)

We now need to consider two cases.

Case I: τ ′ is of order 1 or 2. In this case,

ω−1σq′ω = τ ′ε−ad h′
, by (38) and (39)

= τ ′−1ε−ad h′
, since τ ′ is assumed to be of order 1 or 2

= σ−1
q′ . (40)

Case II: τ ′ is of order 3. That is, g is of type D4 with labelled nodes

and τ ′ is the diagram automorphism induced from taking the nodes 1 �→ 3, 2 �→ 2, 3 �→ 4, 4 �→ 1.
Let τ1 be the diagram automorphism induced from taking the nodes 1 �→ 1, 2 �→ 2, 3 �→ 4, 4 �→ 3.
Then,

τ−1
1 τ ′τ1 = τ ′−1. (41)

In this case, we have

(ωτ1)−1σq′ωτ1 = τ−1
1 τ ′ε−ad h′

τ1, by (38) and (39)

= τ ′−1τ−1
1 ε−ad h′

τ1, by (41)

= τ ′−1ε−ad h′
, since (τ1)|hτ ′ =Id by [Kac90, § 8.3, Case 4]

= σ−1
q′ . (42)
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Let ωo be the Cartan involution ω in the first case and ωτ1 in the second case. Extend ωo to an
isomorphism of twisted affine Lie algebras:

ω̂o : L̂(g, σq′)→ L̂(g, σq′′), ω̂o(x[P (z′)]) := ωo(x)[P (z′′)], ω̂o(C) = C,

for any x ∈ g and P ∈ K , where σq′ and σq′′ = σ−1
q′ are the preferred generators of Γq = Γq′ = Γq′′

acting on a formal coordinate z′, z′′ around q′, q′′, respectively, via ε−1 (see the proof of
Lemma 5.2). Indeed, ω̂o is an isomorphism by the identities (40) and (42). Observe that ω̂o

restricted to hσq′ = hσq′′ is nothing but the Cartan involution. Clearly, ω̂o restricts to an iso-
morphism p̂p′ � p̂p′′ , ĝ+

p′ � ĝ+
p′′ and gp′ � gp′′ (see (12) and (13) for relevant notation). This proves

the first part of the lemma.
From the isomorphism ω̂o, the second part of the lemma follows immediately since n′σq′ is a

maximal nilpotent subalgebra of gσq′ . �
We also give another proof of the second part of the above lemma.

Another proof of Lemma 5.3, part (2). Let σq′ (respectively, σq′′) be the canonical generator of Γq′

(respectively, Γq′′). We can choose formal parameter z′ (respectively, z′′) around q′ (respectively,
q′′) such that

σq′(z′) = ε−1z′, σq′′(z′′) = ε−1z′′,

where ε = e2πi/|Γq |. As in § 2, we can write σq′ = τ ′ · εad h′
. Let x′i, y

′
i, h

′
i = [x′i, y

′
i], i ∈ Î(g, σq′) be

chosen as in § 2, where

x′i ∈ (gτ ′
)α′

i
, y′i ∈ (gτ ′

)−α′
i
, for any i ∈ I(gτ ′

),

where α′
i is the simple root of gτ ′

associated to i ∈ I(gτ ′
), and

x′0 ∈ (gτ ′
)−θ′0 , y′0 ∈ (gτ ′

)θ′0 .

Let si, i ∈ Î(g, σq′) be the integers as in § 2. We have, by the identity (5),

σq′(x′i) = εsix′i and σq′(y′i) = ε−siy′i,

for any i ∈ Î(g, σq′). Moreover, as in § 2, the elements x′i[z
′si ], y′i[z

′−si ], h′i + e−1
q 〈x′i, y′i〉siC in

L̂(g, σq′) are a set of Chevalley generators generating the non-completed Kac–Moody algebra
L̃(g, σq′) ⊂ L̂(g, σq′), where eq := |Γq′ |. It is well-known that there is a natural bijection between
the set of integrable highest weight representations of L̂(g, σq′) and L̃(g, σq′).

We now introduce the following notation:

x′′i := −y′i, y′′i := −x′i, and h′′i := −h′i,
for any i ∈ Î(g, σq′). Note that σq′′ = (σq′)−1. We can identify Î(g, σq′) and Î(g, σq′′), since gτ ′′

=
gτ ′

where τ ′′ = τ ′−1 is the diagram automorphism part of σq′′ .
Set α′′

i = −α′
i for any i ∈ I(gτ ′′

), and θ′′0 = −θ′0. We can choose α′′
i , i ∈ I(gτ ′′

) as a set of
simple roots for gτ ′′

. Then, θ′′0 is the weight of gτ ′′
as in § 2 with respect to this choice. Moreover,

x′′i , y
′′
i , i ∈ I(gτ ′′

) is a set of Chevalley generators of gτ ′′
, and x′′0 ∈ (gτ ′′

)−θ′′0 , y
′′
0 ∈ (gτ ′′

)θ′′0 also
satisfies the choice as in [Kac90, § 8.3]. We also note that

σq′′(x′′i ) = εsix′′i and σq′′(y′′i ) = ε−siy′′i ,

for any i ∈ Î(g, σq′). As above, we see that the elements x′′i [z
′′si ], y′′i [z′′−si ], h′′i + |Γq′′ |−1〈x′′i , y′′i 〉siC

as elements in L̂(g, σq′′) are Chevalley generators generating the non-completed Kac–Moody
algebra L̃(g, σq′′) ⊂ L̂(g, σq′′). Again, there is a natural bijection between the set of integrable
highest weight representations of L̂(g, σq′′) and L̃(g, σq′′).
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We now get an isomorphism of Lie algebras:

ω̂ : L̃(g, σq′) � L̃(g, σq′′)

given by
x′i[z

′si ] �→ x′′i [z
′′si ], y′i[z

′−si ] �→ y′′i [z′′−si ],

and
h′i + e−1

q 〈x′i, y′i〉siC �→ h′′i + e−1
q 〈x′′i , y′′i 〉siC,

for any i ∈ Î(g, σq′). Note that 〈x′i, y′i〉 = 〈x′′i , y′′i 〉 for any i. The map ω̂ is indeed an isomorphism,
since these Chevalley generators correspond to the same vertices of the affine Dynkin diagram.

Set

L̃(g, σq′)+ = L̂(g, σq′)+ ∩ L̃(g, σq′) and L̃(g, σq′)≥0 = L̂(g, σq′)≥0 ∩ L̃(g, σq′).

Similarly, we can introduce the Lie algebras L̃(g, σq′′)+ and L̃(g, σq′′)≥0. We can see easily that

ω̂(L̃(g, σq′)+) = L̃(g, σq′′)+ and ω̂(L̃(g, σq′)≥0) = L̃(g, σq′′)≥0.

Recall that gΓq ⊕ CC is a Levi subalgebra of L̃(g, σq′), which is generated by x′i, y
′
i and hΓq ⊕

CC where i ∈ Î(g, σq′)0 consisting of i ∈ Î(g, σq′) such that si = 0. Therefore, the isomorphism
ω̂ also induces a Cartan involution ω on gΓq , given on the Chevalley generators by

ei �→ −fi, fi �→ −ei, and h �→ −h,
for any i ∈ Î(g, σq′)0, and h ∈ hΓq . It is now clear that the isomorphism ω̂ induces a bijection
κ : Dc,q′ � Dc,q′′ given by V �→ V ∗. This completes the other proof of Lemma 5.3, part (2). �

Define the linear map

F̂ : H (�λ)→H (�λ)⊗
( ⊕

μ∈Dc,p′′

V (μ∗)⊗ V (μ)
)
, h �→ h⊗

∑
μ∈Dc,p′′

Iμ, for h ∈H (�λ), (43)

where Iμ is the identity map thought of as an element of V (μ∗)⊗ V (μ) � EndC(V (μ)).
We view V (μ∗) (respectively, V (μ)) as an irreducible representation of gp′ (respectively, gp′′)

via the isomorphism κ′ (respectively, κ′′) defined above Lemma 5.3. Let H (μ∗) (respectively,
H (μ)) denote the highest weight integrable representation of ĝp′ (respectively, ĝp′′) associated to
μ∗ (respectively, μ) of level c. Realize H (�λ)⊗H (μ∗)⊗H (μ) (which contains H (�λ)⊗ V (μ∗)⊗
V (μ)) as a g[Σ′o\π′−1{p′, p′′}]Γ-module at the points �o, p′, p′′, respectively. Then, Iμ being a
gp-invariant, F̂ is a g[Σo]Γ-module map, where we realize the range as a g[Σo]Γ-module via the
Lie algebra homomorphism ν∗. Hence, F̂ induces a linear map

F : VΣ,Γ,φ(�o,�λ)→
⊕

μ∈Dc,p′′

VΣ′,Γ,φ

((
�o, p′, p′′

)
,
(
�λ, μ∗, μ

))
.

The following theorem is the twisted analogue of the factorization theorem due to Tsuchiya,
Ueno, and Yamada [TUY89].

Theorem 5.4. With the setting as in Lemma 5.2, we further assume that Γ stabilizes a Borel
subalgebra b and π−1(�o) consists of smooth points of Σ. Then, the map

F : VΣ,Γ,φ(�o,�λ)→
⊕

μ∈Dc,p′′

VΣ′,Γ,φ

((
�o, p′, p′′

)
,
(
�λ, μ∗, μ

))

is an isomorphism.
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Dualizing the map F , we get an isomorphism

F ∗ :
⊕

μ∈Dc,p′′

V †
Σ′,Γ,φ

((
�o, p′, p′′

)
,
(
�λ, μ∗, μ

)) ∼−→ V †
Σ,Γ,φ(�o,�λ).

Proof. As discussed above, the map F̂ defined in (43) is g[Σo]Γ-equivariant. By the propagation
theorem (Theorem 4.3) at points p′ and p′′, taking covariants on both sides of F̂ with respect to
the action of g[Σo]Γ on the left side and with respect to the action of g[Σ′o]Γ on the right side,
we also obtain the map F .

We first prove the surjectivity of F . Fix a point q ∈ π−1(p), we may view V (μ∗) and V (μ)
as representations of the Lie algebra gΓq via the evaluation map evq : gp � gΓq (cf. Lemma 3.2).
Correspondingly, we may view Dc,p′′ as certain set of highest weights of gΓq . Observe first that
Γ · q′ ∩ Γ · q′′ = ∅, since π′ is Γ-invariant and π′(Γ · q′) = p′ and π′(Γ · q′′) = p′′. Choose a function
f ∈ C[Σ′o] such that

f(q′) = 1 and f|Γ·q′′∪(Γ·q′\{q′}) = 0. (44)

For any x ∈ gΓq , let

A(x[f ]) :=
1
|Γq|
∑
γ∈Γ

γ · (x[f ]) ∈ g[Σ′o]Γ. (45)

For any h ∈H (�λ) and v ∈⊕μ∈Dc,p′′
(
V (μ)∗ ⊗ V (μ)

)
, as elements of

Q := H (�λ)⊗
( ⊕

μ∈Dc,p′′

V (μ∗)⊗ V (μ)
)
,

we have the following equality (for any x ∈ gΓq)

A(x[f ]) · (h⊗ v)− h⊗ (x� v) = (A(x[f ]) · h)⊗ v, (46)

where the action � of gΓq on V (μ∗)⊗ V (μ) is via its action on the first factor only. In particular,
as elements of Q,

A(x[f ]) · (h⊗
∑

μ∈Dc,p′′

Iμ)− h⊗ β(x) = (A(x[f ]) · h)⊗
∑

μ∈Dc,p′′

Iμ, (47)

where β is the map defined by

β : U(gΓq)→
⊕

μ∈Dc,p′′

V (μ∗)⊗ V (μ), β(a) = a�
∑

μ

Iμ. (48)

Observe that Im(β) is gΓq ⊕ gΓq -stable under the component wise action of gΓq ⊕ gΓq on V (μ∗)⊗
V (μ) since Iμ is gΓq -invariant under the diagonal action of gΓq . Moreover, V (μ∗)⊗ V (μ) is an
irreducible gΓq ⊕ gΓq -module with highest weight (μ∗, μ); and Im(β) has a non-zero component
in each V (μ∗)⊗ V (μ). Thus, β is surjective.

From the surjectivity of β, we get that the map F is surjective by combining the equation
(47) and the propagation theorem (Theorem 4.3).

We next show that F is injective. Equivalently, we show that the dual map

F ∗ :
⊕

μ∈Dc,p′′

V †
Σ′,Γ,φ

(
(�o, p′, p′′), (�λ, μ∗, μ)

)→ V †
Σ,Γ,φ(�o,�λ)

is surjective.
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From the definition of V †
Σ,Γ,φ and identifying the domain of F ∗ via Theorem 4.3, we think of

F ∗ as the map

F ∗ : Homg[Σ′o]Γ

(
H (�λ)⊗

( ⊕
μ∈Dc,p′′

V (μ)∗ ⊗ V (μ)
)
,C

)
→ Homg[Σo]Γ(H (�λ),C)

induced from the inclusion

F̂ : H (�λ)→H (�λ)⊗
( ⊕

μ∈Dc,p′′

V (μ)∗ ⊗ V (μ)
)
, h �→ h⊗

∑
μ∈Dc,p′′

Iμ, for h ∈H (�λ).

Let Cp[Σo] ⊂ Cp′′ [Σ′o] ⊂ C[Σ′o] be the ideals of C[Σ′o]:

Cp[Σo] :=
{
f ∈ C[Σo] : f|π−1(p) = 0

}
,

and

Cp′′ [Σ′o] = {f ∈ C[Σ′o] : f|π′−1(p′′) = 0}.
(Observe that, under the canonical inclusion C[Σo] ⊂ C[Σ′o], Cp[Σo] is an ideal of C[Σ′o] consisting
of those functions vanishing at π′−1{p′, p′′}.) Now, define the Lie ideals of g[Σ′o]Γ:

gp[Σo]Γ :=
(
g⊗ Cp[Σo]

)Γ and gp′′ [Σ′o]Γ :=
(
g⊗ Cp′′ [Σ′o]

)Γ
. (49)

Define the linear map

gΓq → gp′′ [Σ′o]Γ
/
gp[Σo]Γ, x �→ A(x[f ]) + gp[Σo]Γ,

where x ∈ gΓq , f ∈ Cp′′ [Σ′o] is any function satisfying (44) and A(x[f ]) is defined by (45).
Clearly, the above map is independent of the choice of f satisfying (44). Moreover, it is a

Lie algebra homomorphism.
For x, y ∈ gΓq ,

[
A(x[f ]), A(y[f ])

]
=

1
|Γq|2

∑
γ,γ′∈Γ

[
γ · (x[f ]), γ′ · (y[f ])

]

=
1
|Γq|2
∑
σ∈Γq

∑
γ′∈Γ

[
γ′σ · (x[f ]), γ′ · (y[f ])

]

+
1
|Γq|2

∑
γ /∈γ′Γq

∑
γ′∈Γ

[
γ · (x[f ]), γ′ · (y[f ])

]

=
1
|Γq|
∑
γ′∈Γ

γ′ · ([x, y][f ]
)

mod gp[Σo]Γ.

To prove the last equality, observe that, for γ /∈ γ′Γq, (γ · f) · (γ′ · f) ∈ Cp[Σo]. In addition, for
σ ∈ Γq, σ · f − f ∈ Cp[Σo] and f2 − f ∈ Cp[Σo].

Let
ϕ : U(gΓq)→ U

(
gp′′ [Σ′o]Γ

/
gp[Σo]Γ

)
be the induced homomorphism of the enveloping algebras.
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To prove the surjectivity of F ∗, take Φ ∈ Homg[Σo]Γ(H (�λ),C) and define the linear map

Φ̃ : H (�λ)⊗
( ⊕

μ∈Dc,p′′

V (μ)∗ ⊗ V (μ)
)
→ C

via

Φ̃(h⊗ β(a)) = Φ(ϕ(at) · h), for h ∈H (�λ) and a ∈ U(gΓq),

where t : U(gΓq)→ U(gΓq) is the anti-automorphism taking x �→ −x for x ∈ gΓq , β is the map
defined by (48) and ϕ is defined above. (Observe that even though ϕ(a) · h is not well-defined,
but Φ(ϕ(a) · h) is well-defined, i.e. it does not depend upon the choice of the coset representatives
in gp′′ [Σ′o]Γ

/
gp[Σo]Γ.)

To show that Φ̃ is well-defined, we need to show that for any a ∈ Kerβ and h ∈H (�λ),

Φ(ϕ(at) · h) = 0. (50)

This will be proved in the next Lemma 5.6.
We next show that Φ̃ is a g[Σ′o]Γ-module map. For any element X =

∑
xi[gi] ∈ g[Σ′o]Γ where

xi ∈ g and gi ∈ C[Σ′o], we need to check that for any h ∈H (�λ) and a ∈ U(gΓq),

Φ̃(X · (h⊗ β(a))) = 0. (51)

Take any Γq-invariant f ′ ∈ C[Σ′o] (respectively, f ′′ ∈ C[Σ′o]) satisfying (44) (respectively,
f ′′(q′′) = 1 and f ′′|Γ·q′∪(Γ·q′′\{q′′}) = 0). Then,

C[Σ′o] = Cp[Σo] + Sf ′ + Sf ′′ , where Sf ′ :=
∑

γ∈Γ/Γq

C(γ · f ′), Sf ′′ :=
∑

γ∈Γ/Γq

C(γ · f ′′).

Thus,

g[Σ′o]Γ = gp[Σo]Γ +
(
g⊗ Sf ′

)Γ +
(
g⊗ Sf ′′

)Γ
.

It suffices to prove (51) in the following three cases of X.

Case 1: X ∈ gp[Σo]Γ. In this case

Φ̃
(
X · (h⊗ β(a))

)
= Φ̃
(
(X · h)⊗ β(a)

)
+ Φ̃
(
h⊗X · β(a)

)
= Φ
(
ϕ(at) ·X · h), since X ∈ gp[Σo]Γ

= Φ
(
X · ϕ(at) · h)+ Φ

(
[ϕ(at), X] · h)

= 0, since Φ is a g[Σo]Γ-module map and [ϕ(at), X] ∈ g[Σo]Γ.

Case 2: X ∈ (g⊗ Sf ′
)Γ. Write

X =
∑

γ∈Γ/Γq

xγ [γ · f ′], for some xγ ∈ g.

Observe first that since {γ · f ′}γ∈Γ/Γq
are linearly independent, x1 ∈ gΓq . Moreover, we claim

that

X − ϕ(x1) ∈ gp[Σo]Γ, i.e. X −
∑

γ∈Γ/Γq

γ · (x1[f ′]) ∈ gp[Σo]Γ. (52)
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To prove (52), since X and
∑

γ∈Γ/Γq
γ · (x1[f ′]) both are Γ-invariant, it suffices to observe that

their difference vanishes both at q′ and q′′. Now,

Φ̃
(
X · (h⊗ β(a))

)
= Φ̃
(
(X · h)⊗ β(a)

)
+ Φ̃
(
h⊗X · β(a)

)
= Φ
(
ϕ(at) ·X · h)− Φ

(
ϕ(atx1) · h

)
= Φ
(
ϕ(at)(X − ϕ(x1)) · h

)
= Φ
(
(X − ϕ(x1))ϕ(at) · h)+ Φ

(
[ϕ(at), X − ϕ(x1)] · h

)
= 0,

by (52) and since gp[Σo]Γ is an ideal in g[Σ′o]Γ.

Case 3: X ∈ (g⊗ Sf ′′
)Γ. Write

X =
∑

γ∈Γ/Γq

xγ [γ · f ′′], for some xγ ∈ g.

Same as in Case 2, we have x1 ∈ gΓq . Moreover, we claim that

X + ϕ(x1) ∈ g[Σo]Γ, i.e. X +
∑

γ∈Γ/Γq

γ · (x1[f ′]) ∈ g[Σo]Γ. (53)

To prove (53), it suffices to observe (from the Γ-invariance) that X +
∑

γ∈Γ/Γq
γ · (x1[f ′]) takes

the same value at both q′ and q′′. Now,

Φ̃
(
X · (h⊗ β(a))

)
= Φ̃
(
(X · h)⊗ β(a)

)
+ Φ̃
(
h⊗X · β(a)

)
= Φ̃
(
(X · h)⊗ β(a)

)
+ Φ̃
(
h⊗ x1 �r β(a)

)
, where �r denotes the action

of gΓq on V (μ∗)⊗ V (μ) on the second factor only

= Φ̃
(
(X · h)⊗ β(a)

)− Φ̃
(
h⊗ β(ax1)

)
, since the actions � and �r commute

and Iμ is a diagonal gΓq -invariant

= Φ
(
ϕ(at) ·X · h)+ Φ

(
ϕ(x1)ϕ(at) · h)

= Φ
(
[ϕ(at), X] · h)+ Φ

(
(X + ϕ(x1))ϕ(at) · h)

= 0, since [ϕ(at), X] ∈ g[Σo]Γ and using (53).

This completes the proof of (51) and, hence, Φ̃ is a g[Σ′o]Γ-module map.
From the definition of Φ̃, it is clear that F ∗(Φ̃) = Φ. This proves the surjectivity of F ∗ (and,

hence, the injectivity of F ) modulo the next lemma. Thus, the theorem is proved (modulo the
next lemma). �

Definition 5.5. For any μ ∈ D (where D is the set of dominant integral weights of gΓq),
consider the algebra homomorphism

βμ : U(gΓq)→ EndC(V (μ)),

defined by

βμ(a)(ν̄) = a · ν̄, for any a ∈ U(gΓq) and ν̄ ∈ V (μ).

Let Kμ be the kernel of βμ, which is a two-sided ideal of U(gΓq) (called a primitive ideal).
From the definition of β (cf. (48)), it is easy to see that, under the identification of V (μ∗)⊗ V (μ)
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with EndC(V (μ)),

β(a)(ν̄) = at · ν̄, for any a ∈ U(gΓq) and ν̄ ∈ V (μ). (54)

Thus,

Kerβ =
⋂

μ∈Dc,p′′

Kt
μ. (55)

From the definition of βμ, it follows immediately that for any left ideal K ⊂ U(gΓq) such that
U(gΓq)/K is an integrable gΓq -module, if the gΓq -module U(gΓq)/K has isotypic components of
highest weights {μi}i∈Λ ⊂ D, then

K ⊃
⋂
i∈Λ

Kμi . (56)

We are now ready to prove the following lemma.

Lemma 5.6. With the notation as in the proof of Theorem 5.4 (cf. identity (50)), for any a ∈
Kerβ, Φ ∈ Homg[Σo]Γ(H (�λ),C), and h ∈H (�λ),

Φ(ϕ(at) · h) = 0. (57)

Proof. Let sp′ be the Lie algebra

sp′ :=
(
g⊗ Cp′′ [Σ′o\π′−1(p′)]

)Γ ⊕ CC,

where Cp′′ [Σ′o\π′−1(p′)] ⊂ C[Σ′o\π′−1(p′)] is the ideal consisting of functions vanishing at
π′−1(p′′), with the Lie bracket defined as in formula (26) and C is central in sp′ . There is a
Lie algebra embedding

sp′ ↪→ ĝp′ ,
∑

i

xi[fi] �→
∑

i

xi[(fi)p′ ] and C �→ C. (58)

Let H (�λ)∗ be the full vector space dual of H (�λ). The Lie algebra sp′ acts on H (�λ) where
x[f ] acts on H (�λ) as in (15) and the center C acts by the scalar −c. By the residue theorem, it
is indeed a Lie algebra action.

This gives rise to the (dual) action of sp′ on H (�λ)∗. Let M ⊂H (�λ)∗ be the sp′-submodule
generated by Φ ∈H (�λ)∗. We claim that the action of sp′ on M extends to a ĝp′-module struc-
ture on M via the embedding (58). Let s+

p′ ⊂ sp′ be the subalgebra gp[Σo]Γ defined by (49) of
Theorem 5.4. Then, by the definition of Φ,

s+
p′ · Φ = 0. (59)

For any element X =
∑

i xi[fi] ∈ sp′ with a basis {xi} of g and fi ∈ Cp′′ [Σ′o\π′−1(p′)], we define

o(X) := max
i
{o(fi)},

where o(fi) is the sum of orders of pole of fi at the points of π′−1(p′). (If fi is regular at a point
in π′−1(p′), we say that the order of pole at that point is 0.)

Define an increasing filtration {Fd(M)}d≥0 of M by

Fd(M) = span of
{(
X1 . . . Xk

) · Φ : Xi ∈ sp′ and
k∑

i=1

o(Xi) ≤ d
}
.

2219

https://doi.org/10.1112/S0010437X23007418 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007418


J. Hong and S. Kumar

From (59), it is easy to see that for any Ψ ∈ Fd(M), and any Y =
∑
xi[gi] ∈ gp[Σo]Γ such that

each gi vanishes at every point of π′−1(p′) of order at least d+ 1,

Y ·Ψ = 0. (60)

Now, for any y ∈ ĝp′ , pick ŷ ∈ sp′ such that

ŷp′ − y ∈ ĝd+1
p′ , (61)

where ŷp′ denotes the restriction of ŷ on π′−1(Dp′) and ĝd+1
p′ denotes elements of g[π′−1(Dp′)]Γ

that vanish at each point of π′−1(p′) of order at least d+ 1 (note that ĝ1
p′ = ĝ+

p′). In fact, if

y ∈ t[π′−1(Dp′)]Γ for some Γ-stable subspace t of g, then we can take ŷ ∈ (t⊗ Cp′′ [Σ′o\π′−1(p′)]
)Γ.

Define, for any Ψ ∈ Fd(M),

y ·Ψ := ŷ ·Ψ and C ·Ψ := cΨ. (62)

From (60), it follows that (62) gives a well-defined action y ·Ψ (i.e. it does not depend upon
the choice of ŷ satisfying (61)). Observe that, taking ŷ = 0,

y ·Ψ = 0, for y ∈ ĝd+1
p′ . (63)

Of course, the action of ĝp′ on M defined by (62) extends the action of sp′ on M .
We next show that this action indeed makes M into a module for the Lie algebra ĝp′ . To

show this, it suffices to show that, for y1, y2 ∈ ĝp′ and Ψ ∈ Fd(M),

y1 · (y2 ·Ψ)− y2 · (y1 ·Ψ) = [y1, y2] ·Ψ. (64)

Take ŷ1, ŷ2 ∈ sp′ such that

(ŷ1)p′ − y1 and (ŷ2)p′ − y2 ∈ ĝ
d+1+o(y1)+o(y2)
p′ ,

where, for y =
∑

i xi[fi] ∈ ĝp′ , o(y) := maxi{o(fi)}, o(fi) being the sum of the orders of poles at
the points of π′−1(p′). Using the definition (62) and observing that o(ŷj) = o(yj), it is easy to
see that (64) is equivalent to the same identity with y1 replaced by ŷ1 and y2 by ŷ2. The latter
of course follows since M is a representation of sp′ . As a special case of (63), we get

ĝ+
p′ · Φ = 0. (65)

We next show that M is an integrable ĝp′-module. To prove this, it suffices to show that for any
vector y ∈ (n± ⊗ C[π′−1(D×

p′)]
)Γ (n+ := n), y acts locally nilpotently on M , where n (respectively,

n−) is the nilradical of the Borel subalgebra b (respectively, of the opposite Borel subalge-
bra b−) (cf. § 2). Since M is generated by Φ as a ĝp′-module, by [Kum02, Lemma 1.3.3 and
Corollary 1.3.4], it suffices to show that y acts nilpotently on Φ.

Choose No > 0 such that

(ad n)No(g) = 0, and also (ad n−)No(g) = 0. (66)

For any y ∈ (n± ⊗ C[π′−1(D×
p′)]
)Γ ⊂ ĝp′ , pick ŷ ∈ (n± ⊗ Cp′′ [Σ′o\π′−1(p′)]

)Γ such that (cf. (61))

ŷp′ − y ∈ ĝ
o(y)(No−1)+1
p′ . (67)

For any associative algebra A and element y ∈ A, define the operators Ly(x) = yx, Ry(x) = xy,
and ad(y) = Ly −Ry. Considering the operator Rn

y = (Ly − ad(y))n (for any n ≥ 1) applied to
ŷp′ − y in the algebra U(ĝp′) and using the binomial theorem (since Ly and ad(y) commute),
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we get

(ŷp′ − y)yn =
k∑

j=0

(
n

j

)
(−1)jyn−j

(
(ad(y))j(ŷp′ − y)

)
, (68)

where the summation runs only up to k = min{n,No − 1} because of the choice of No

satisfying (66). Then, for any d ≥ 1, by induction on d using (65) we get

yd · Φ = ŷd · Φ. (69)

To prove the above, observe that (ŷ − y)yd · Φ = 0 by the choice of ŷ satisfying (67) and the
identities (68) and (65).

For any positive integer N , let Cp[Σo]N ⊂ C[Σo] be the ideal consisting of those g ∈ C[Σo]
such that its pull-back to Σ′o via ν has a zero of order ≥ N at any point of π′−1(p′). Let
gp[Σo]Γ,N ⊂ g[Σo]Γ be the Lie subalgebra defined as

[
g⊗ Cp[Σo]N

]Γ. By the same proof as that
of Lemma 3.7, gp[Σo]Γ,N ·H (�λ) is of finite codimension in H (�λ).

Let V be a finite-dimensional complement of gp[Σo]Γ,o(y)(No−1)+1 ·H (�λ) in H (�λ). Since ŷ
acts locally nilpotently on H (�λ) (cf. Lemma 2.5) and V is finite dimensional, there exists N
(which we take ≥ No) such that

ŷN · V = 0. (70)

Considering now the binomial theorem for the operator Ln
y = (ad(y) +Ry)n, we get (in any

associative algebra)

ynx =
n∑

j=0

(
n

j

)(
(ad(y))jx

)
yn−j .

Take any ẑ ∈ gp[Σo]Γ,o(y)(No−1)+1. By the above identity in the enveloping algebra U
(
(g⊗

Cp′′ [Σ′o \ π′−1(p′)])Γ
)
, using the identity (66),

ŷN · ẑ =
No−1∑
j=0

(
N

j

)(
(ad ŷ)j(ẑ)

)
ŷN−j .

Thus,

ŷN · (gp[Σo]Γ,o(y)(No−1)+1 ·H (�λ)
) ⊂ g[Σo]Γ ·H (�λ). (71)

Combining (69)–(71), we get that

yN · Φ = ŷN · Φ = 0.

This proves that M ⊂H (�λ)∗ is an integrable ĝp′-module (generated by Φ). Let Mo ⊂M be
the gp′-submodule generated by Φ. Decompose Mo into irreducible components:

Mo =
⊕
μ∈D

V (μ)⊕nμ ,

where D is the set of dominant integral weights of gp′ . Take any highest weight vector vo in
any irreducible gp′-submodule V (μ) of Mo. Since ĝ+

p′ annihilates Mo (cf. (65)), vo generates
an integrable highest weight ĝp′-submodule of M of highest weight μ with central charge c. In
particular, any V (μ) appearing inMo satisfies μ ∈ Dc,p′ (by the definition ofDc,p′), i.e. μ∗ ∈ Dc,p′′

by Lemma 5.3.
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By the evaluation map evq′ : gp′ � gΓq , we may view Mo as a module over gΓq and each V (μ)
the irreducible representation of gΓq . Thus, from (56) of Definition 5.5, applied to the map

U(gΓq)→Mo, a �→ a · Φ,
we get that for any a ∈ Kerβ, a · Φ = 0, i.e. Φ(ϕ(at) · h) = 0, for any h ∈H (�λ). (Observe that
Kμ∗ = Kt

μ.) This proves the lemma and, hence, Theorem 5.4 is fully established. �

6. Twisted Kac–Moody algebras and Sugawara construction over a base

We define twisted Kac–Moody Lie algebras, their Verma modules and integrable highest weight
modules with parameters and prove the independence of parameters for the integrable highest
weight modules. We also prove that the Sugawara operators acting on the integrable highest
weight modules (of twisted affine Kac–Moody algebras) are independent of the parameters up
to scalars.

Let R be a commutative algebra over C. In this section, all commutative algebras are over
C, and we fix a root of unity ε = e2πi/m of order m and a central charge c > 0. In addition, as
earlier, g is a simple Lie algebra over C and σ is a Lie algebra automorphism such that σm = Id.

Definition 6.1. (a) We say that an R-algebra OR is a complete local R-algebra if there exists
t ∈ OR such that OR � R[[t]] as an R-algebra, where R[[t]] denotes the R-algebra of formal power
series over R. We say such a t is an R-parameter of OR. Let KR be the R-algebra containing
OR by inverting t. Thus, KR � R((t)). Note that KR does not depend on the choice of the
R-parameters.

(b) An R-rotation of OR of order m is an R-algebra automorphism σ of OR (of order m)
such that σ(t) = ε−1t for some R-parameter t. Such an R-parameter t is called a σ-equivariant
R-parameter. Observe that any R-algebra automorphism of OR of order m may not be an
R-rotation. Clearly, an R-algebra automorphism of OR extends uniquely as an automorphism
of KR, which we still denote by σ.

Given a pair (OR, σ) of a complete local R-algebra OR and an R-rotation of order m, we can
attach an R-linear Kac–Moody algebra L̂(g, σ)R,

L̂(g, σ)R := (g⊗C KR)σ ⊕R · C,
where C is a central element of L̂(g, σ)R, and for any x[g], y[h] ∈ (g⊗C KR)σ,

[x[g], y[h]] = [x, y][gh] +
1
m

Rest=0

(
(dg)h
)〈x, y〉C. (72)

Here the residue Res(dg)h is well-defined and independent of the choice of R-parameters
(cf. [Har77, Chap. III, Proof of Theorem 7.14.1]). We denote by L̂(g, σ)≥0

R the R-Lie subalgebra
(g⊗C OR)σ ⊕R · C.

Given a complete local R-algebra OR, let mR denote the ideal of OR generated by a formal
parameter t. Note that mR does not depend on the choice of t. Then, OR/mR � R. This allows
us to give a natural map for an R-rotation σ of OR(

g⊗C OR

)σ → (g⊗R)σ,

which is independent of the choice of the parameter t. Given any morphism of commutative
C-algebras f : R→ R′, we define

OR⊗̂RR
′ := lim←−

k

(
(OR/m

k
R)⊗R R

′).
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Then, OR⊗̂RR
′ is a complete local R′-algebra. For any R-parameter t ∈ OR, t′ := t⊗̂1 is an

R′-parameter of OR⊗̂RR
′. Let σ be any R-rotation of OR of order m. Then, it induces an

R′-rotation of OR⊗̂RR
′. We still denote it by σ.

Lemma 6.2. Let OR be a complete local R-algebra with an R-rotation σ of order m. Given any
finite morphism of commutative C-algebras f : R→ R′, there exists a natural isomorphism of
Lie algebras L̂(g, σ)R ⊗R R

′ � L̂(g, σ)R′ , where L̂(g, σ)R′ is the R′-Kac–Moody algebra attached
to OR′ := OR⊗̂RR

′ and the induced rotation σ.

Proof. It suffices to check that KR ⊗R R
′ � KR′ , which is well-known (since f is a finite

morphism). �
Let V be an irreducible representation of gσ with highest weight λ ∈ Dc, where Dc is defined

in § 2. Then VR := V ⊗C R is naturally a representation of gσ ⊗C R. Define the generalized Verma
module

M̂(V, c)R := UR(L̂(g, σ)R)⊗
UR(L̂(g,σ)≥0

R )
VR,

where UR(·) denotes the universal enveloping algebra of R-Lie algebra, and VR is a module over
UR(L̂(g, σ)≥0

R ) via the projection map L̂(g, σ)≥0
R → (gσ ⊗C R)⊕R · C and such that C acts on

VR by c.

Lemma 6.3. The Verma module M̂(V, c)R is a free R-module. Given any morphism R→ R′

of C-algebras, there exists a natural isomorphism M̂(V, c)R ⊗R R
′ � M̂(V, c)R′ as L̂(g, σ)R ⊗

R′-modules, where M̂(V, c)R′ is the generalized Verma module attached to OR′ := OR⊗̂RR
′ and

the action of L̂(g, σ)R ⊗R R
′ on M̂(V, c)R′ is via the canonical morphism L̂(g, σ)R ⊗R R

′ →
L̂(g, σ)R′ .

Proof. Let t be a σ-equivariant R-parameter. There exists a decomposition as R-module:

(g⊗C R((t)))σ = (g⊗C R[[t]])σ ⊕ (g⊗C t
−1R[t−1])σ.

Hence, M̂(V, c)R � UR((g⊗ t−1R[t−1])σ)⊗C V . Note that (g⊗ t−1R[t−1])σ is a Lie algebra
which is a free module over R. By the Poincaré–Birkhoff–Witt theorem for any R-Lie algebra that
is free as an R-module (cf. [CE56, Theorem 3.1, Chapter XIII]), M̂(V, c)R is a free R-module.

Note that there is a natural morphism L̂(g, σ)R ⊗R R
′ → L̂(g, σ)R′ . It induces a natural

morphism κ : M̂(V, c)R ⊗R′ → M̂(V, c)R′ . The map κ is an isomorphism since it induces the
following natural isomorphism

R′ ⊗R (UR((g⊗C t
−1R[t−1])σ)⊗C V ) � UR′((g⊗C t

′−1R′[t′−1])σ)⊗C V,

where t′ = t⊗̂1. �
We can choose a σ-stable Borel subalgebra b ⊂ g, a σ-stable Cartan subalgebra h ⊂ b, the

elements {xi, yi}i∈Î(g,σ), and the set of non-negative integers {si | i ∈ Î(g, σ)} as in § 2, such that

L̂(g, σ)R contains the elements xi[tsi ], yi[t−si ]. Let V = V (λ) be the irreducible gσ-module with
highest weight λ ∈ Dc (cf. Lemma 2.1 for the description of Dc). Let N̂(V, c)R be the L̂(g, σ)R-
submodule of M̂(V, c)R generated by {yi[t−si ]nλ,i+1 · vλ}i∈Î(g,σ)+ , where vλ is the highest weight

vector of V (λ), nλ,i is defined by the identity (6) and (as in § 2) Î(g, σ)+ := {i ∈ Î(g, σ) : si > 0}.
Lemma 6.4. The module N̂(V, c)R does not depend on the choice of the σ-equivariant
R-parameter t.

Proof. Let t′ be another σ-equivariant R-parameter. It suffices to show that for each i ∈ Î(g, σ)+,
yi[t′−si ]nλ,i+1 · vλ = cyi[t−si ]nλ,i+1 · vλ for some constant c ∈ R× (where R× denotes the set of
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units in R). By the σ-equivariance of t and t′, we can write t′−si = ct−si +
∑

k>−si,m|si+k akt
k,

for some c ∈ R× and ak ∈ R.
Case 1. If i ∈ Î(g, σ)+ and 0 < si < m, then t′−si = ct−si + g, where g =

∑
k>0 akt

k with
ak ∈ R (since 0 < si < m and m|(si + k)). Since yi[g] · vλ = 0, it is clear that yi[t′−si ]nλ,i+1 · vλ =(
cyi[t−si ]

)nλ,i+1 · vλ.
Case 2. If so = m, then t′−m = ct−m + g, where g =

∑
k≥0 akt

k with ak ∈ R. Since so = m,
by [Kac90, Identity 8.5.6], each sj = 0 for j = o and r = 1. Thus, the simple root vectors of
gσ are {xj}j 	=o with (simple) roots {αj}j 	=o. Since yo is a root vector of the root θ0 and θ0 is
a positive linear combination

∑
j 	=o ajαj , yo is a positive root vector of gσ. Hence, yo · vλ = 0.

Thus, it follows that yo[g] · vλ = 0. Hence, yo[t′−m]nλ,o+1 · vλ =
(
cyo[t−m]

)nλ,o+1 · vλ.
Case 3. If si = m for i = o, then again by [Kac90, Identity 8.5.6], r = 1 and each sj = 0 for

j = i. Thus, the simple root vectors of gσ are {xj}j 	=i with (simple) roots {αj}j /∈{i,o} ∪ {−θ0}.
Hence, −aiαi = −θ0 +

∑
j /∈{i,o} ajαj giving that −αi is a positive root of gσ (since ai, aj > 0

being coefficients of the highest root written as a sum of simple roots) and, hence, yi · vλ = 0.
The rest of the argument is the same as in Case 2. This proves the lemma. �

We now define the following R-linear representation of L̂(g, σ)R:

H (V )R := M̂(V, c)R/N̂(V, c)R.

Lemma 6.5. (1) The modules N̂(V, c)R and H (V )R are free over R. The module N̂(V, c)R is a
R-module direct summand of M̂(V, c)R.

(2) For any morphism f : R→ R′ of commutative C-algebras, there exists a natu-
ral isomorphism N̂(V, c)R ⊗R R

′ � N̂(V, c)R′ and H (V )R ⊗R R
′ �H (V )R′ as modules over

L̂(g, σ)R ⊗R R
′, where the action of L̂(g, σ)R ⊗R R

′ on N̂(V, c)R′ and H (V )R′ is via the canonical
morphism L̂(g, σ)R ⊗R R

′ → L̂(g, σ)R′ .
(3) Choose any σ-equivariant R-parameter t. Then, N̂(V, c)R ⊂ M̂(V, c)+R. Moreover, for

any other L̂(g, σ)R-graded submodule A of M̂(V, c)R such that A ∩ VR = (0), A is contained
in N̂(V, c)R. Here M̂(V, c)+R :=

⊕
d≥1 M̂(V, c)R(d) and (for d ≥ 0)

M̂(V, c)R(d) :=
∑

ni≥0,
∑

i ni=d

X1[t−n1 ] · · ·Xk[t−nk ] · VR ⊂ M̂(V, c)R, where Xi[t−ni ] ∈ L̂(g, σ)R.

Further, A being graded means A =
⊕

d≥0A ∩ (M̂(V, c)R(d)).
Observe that M̂(V, c)R(d) does depend upon the choice of the parameter t.
Hence, N̂(V, c)R and H (V )R do not depend on the choice of b, h, and xi, yi, i ∈ Î(g, σ).

Proof. Fix a σ-equivariant R-parameter t. For each i ∈ Î(g, σ)+, the element yi[t−si ]nλ,i+1 · vλ is
a highest weight vector (cf. identity (9)). Hence,

N̂(V, c)R =
∑

i∈Î(g,σ)+

UR((g⊗C R[t−1])σ)yi[t−si ]nλ,i+1 · vλ. (73)

Note that UR((g⊗C R[t−1])σ) � U((g⊗C C[t−1])σ)⊗C R as R-algebras. Since R is flat over
C, it is easy to see that (as a submodule of M̂(V, c)R = M̂(V, c)C ⊗C R, where M̂(V, c)C :=
U(L̂(g, σ)C)⊗

U(L̂(g,σ)≥0
C

)
V is a C-lattice in M̂(V, c)R, which depends on the choice of t, where

L̂(g, σ)C :=
[
g⊗C C((t))

]σ ⊕ CC and L̂(g, σ)≥0
C

:=
[
g⊗C C[[t]]

]σ ⊕ CC)

N̂(V, c)R � N̂(V, c)C ⊗C R, (74)
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where N̂(V, c)C := (
∑

i∈Î(g,σ)+ U((g⊗C C[t−1])σ)yi[t−si ]nλ,i+1 · vλ) is a C-lattice of N̂(V, c)R.

Hence, N̂(V, c)R is free over R and it is a direct summand (as an R-module) of M̂(V, c)R.
From this we readily see that

H (V )R �H (V )C ⊗C R, (75)

where H (V )C := M̂(V, c)C/N̂(V, c)C is a C-lattice in H (V )R (depending on the choice of t),
and hence it is also free over R. This finishes the proof of part (1) of the lemma.

By the above equation (74) and the associativity of the tensor product: (M ⊗R S)⊗S T �
M ⊗R T , we also have N̂(V, c)R ⊗R R

′ � N̂(V, c)R′ . Similarly, by the above equation (75),
H (V )R ⊗R R

′ �H (V )R′ . This concludes part (2) of the lemma.
We now proceed to prove part (3) of the lemma. By (73), N̂(V, c)R ⊂ M̂(V, c)+R. Observe first

that {
v ∈H (V )C : X[tn] · v = 0∀n > 0 and X[tn] ∈ L̂(g, σ)C

}
= V. (76)

This is easy to see since H (V )C is an irreducible L̂(g, σ)C-module. Choosing a basis of R over
C, from this we easily conclude that{

v ∈H (V )R : X[tn] · v = 0∀n > 0 and X[tn] ∈ L̂(g, σ)C

}
= VR. (77)

For any non-zero v ∈ A′ := A/(A ∩ N̂(V, c)R) ↪→H (V )R, v =
∑
vd with vd ∈H (V )R(d), set

|v| =∑ d : vd = 0, where the gradation H (V )R(d) is induced from that of M̂(V, c)R. Choose a
non-zero vo ∈ A′ such that |vo| ≤ |v| for all non-zero v ∈ A′. Then,

X[tn] · vo = 0 for all n ≥ 1 and X[tn] ∈ L̂(g, σ)C. (78)

Otherwise, |X[tn] · vo| < |vo|, which contradicts the choice of vo.
By (77), we get that vo ∈ VR, which contradicts the choice of graded A since A ∩ VR = (0).

Thus, A′ = 0, i.e. A ⊂ N̂(V, c)R. This proves the third part of the lemma. �

We now begin with the definition of Sugawara operators {Ξn |n ∈ Z} for the Kac–Moody
algebra L̂(g, σ)R attached to a complete local R-algebra OR with an R-rotation of order m, and
an automorphism σ of g such that σm = Id. We fix a σ-equivariant R-parameter t.

Recall the eigenspace decomposition g =
⊕

n∈Z/mZ gn of σ, where

gn := {x ∈ g |σ(x) = εnx}.
Note that σ preserves the normalized invariant form 〈 , 〉 on g, i.e. for any x, y ∈ g we have
〈σ(x), σ(y)〉 = 〈x, y〉. For each n ∈ Z/mZ it induces a non-degenerate bilinear form 〈 , 〉 : gn ×
g−n → C. We choose a basis {ua | a ∈ An} of gn indexed by a set An. Let {ua | a ∈ An} be the
basis of g−n dual to the basis {ua | a ∈ An} of gn.

The normalized invariant R-bilinear form on L̂(g, σ)R is given as follows (cf. [Kac90,
Theorem 8.7]),

〈x[f ], y[g]〉 =
1
r

(
Rest=0 t

−1f(t)g(t)
)〈x, y〉, 〈x[f ], C〉 = 0, and 〈C,C〉 = 0,

where x[f ], y[g] ∈ L̂(g, σ)R and r is the order of the diagram automorphism associated to σ.
Then, the following relation is satisfied:

〈ua[tn], ub[t−k]〉 =
1
r
δa,bδn,k for any a ∈ An and b ∈ Ak.
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Definition 6.6. An R-linear L̂(g, σ)R-module MR is called smooth if for any v ∈MR, there
exists an integer d (depending upon v) such that

x[f ] · v = 0, for all f ∈ tdOR and x[f ] ∈ (g⊗C OR)σ.

Observe that this definition does not depend upon the choice of the parameter t.

The generalized Verma module M̂(V, c)R (and, hence, the quotient module H (V )R) is clearly
smooth.

We construct the following R-linear Sugawara operators on any smooth representation MR

of L̂(g, σ)R of level c = −ȟ (which depends on the choice of t),

Lt
0 :=

1
2(c+ ȟ)

( ∑
a∈A0

uau
a + 2
∑
n>0

∑
a∈A−n

ua[t−n]ua[tn] +
1

2m2

m−1∑
n=0

n(m− n) dim gn

)
, (79)

Lt
k :=

1
mk

[−tmk+1∂t, L
t
0]

=
1

mk(c+ ȟ)

(∑
n>0

n
∑

a∈A−n

(
ua[t−n+mk]ua[tn]− ua[t−n]ua[tn+mk]

))
, for k = 0, (80)

where ȟ is the dual Coxeter number of g. Note that the smoothness ensures that Lt
k is a well-

defined operator on MR for each k ∈ Z. Moreover, it is easy to see that Lt
k does not depend upon

the choice of the basis {ua} of g.
The following result can be found in [KW88, § 3.4] and [Wak86].

Proposition 6.7. For any n, k ∈ Z and x ∈ gn, as operators on a smooth representation MR

of L̂(g, σ)R of central charge c = −ȟ.
(a) We have [

x[tn], Lt
k

]
=

n

m
x[tn+mk].

In particular, Lt
0 commutes with gσ.

(b) We have

[Lt
n, L

t
k] = (n− k)Lt

n+k + δn,−k
n3 − n

12
dim g

c

c+ ȟ
.

Let us recall the definition of the Virasoro algebra VirR over R. It is the Lie algebra over R
with R-basis {dn; C̄}n∈Z and the commutation relation is given by

[dn, dk] = (n− k)dn+k + δn,−k
n3 − n

12
C̄; [dn, C̄] = 0. (81)

An R-derivation of KR is an R-linear map θ : KR → KR such that θ(fg) = θ(f)g + fθ(g),
for any f, g ∈ KR. Let ΘKR/R denote the Lie algebra of all continuous R-derivations of KR,
where we put the m-adic topology on KR, i.e. {f + mN}N∈Z,f∈KR

is a basis of open subsets.
(Here mN denotes tNOR, which does not depend upon the choice of t.) With the choice of the
R-parameter t in OR, we have the equality ΘKR/R = R((t))∂t, where ∂t is the derivation on KR

such that ∂t(R) = 0 and ∂t(t) = 1. Let ΘKR,R denote the C-Lie algebra of all continuous C-linear
derivations θ of KR that are liftable from R, i.e. the restriction θ|R is a C-linear derivation of R.
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Let ΘR denote the Lie algebra of C-linear derivations of R. There exists a short exact sequence:

0→ ΘKR/R → ΘKR,R
Res−−→ ΘR → 0, (82)

where Res denotes the restriction map of derivations from KR to R. See more details in [Loo13,
§ 2]. It induces the following short exact sequence:

0→ Θσ
KR/R → Θσ

KR,R
Res−−→ ΘR → 0, (83)

where Θσ
KR/R (respectively, Θσ

KR,R) is the space of σ-equivariant derivations in ΘKR/R (respec-
tively, ΘKR,R). Then, Θσ

KR/R = R((tm))t∂t. We define a central extension

Θ̂σ
KR/R := Θσ

KR/R ⊕RC̄
of the R-Lie algebra Θσ

KR/R by

[
f∂t, g∂t

]
=
(
f∂t(g)− g∂t(f)

)
∂t + Rest=0

(
t3mA3(t−1f)t−1gt−1 dt

) C̄
12m

, (84)

for f∂t, g∂t ∈ R((tm))t∂t, where A is the operator t−m(m+ t∂t). Observe that this bracket
corresponds to the bracket of the Virasoro algebra defined by the identity (81) if we take dk =
−(1/m)tmk+1∂t for any k ∈ Z. In this case C̄ corresponds to C̄. Therefore, Θ̂σ

KR/R defines a
completed version of the Virasoro algebra over R.

For any θ ∈ Θσ
KR/R with θ =

∑
k≥−N amk+1t

mk+1∂t, we define a Sugawara operator associated
to θ

Lt
θ :=
∑

k≥−N

(−mamk+1)Lt
k (85)

on smooth modules of L̂(g, σ)R of central charge c = −ȟ.
In the following lemma, the operator Lt

θ is described more explicitly on any smooth module.

Lemma 6.8. For any θ ∈ R((tm))t∂t, the operator Lt
θ acts on any smooth module MR with

central charge c = −ȟ as follows:

Lt
θ(u1[f1] · · ·un[fn] · v) = u1[f1] · · ·un[fn] · Lt

θ(v) +
n∑

i=1

(
u1[f1] · · ·ui[θ(fi)] · · ·un[fn] · v), (86)

where u1[f1], . . . , un[fn] ∈ L̂(g, σ)R and v ∈MR.

Proof. It is enough to show that [Lt
θ, ui[fi]] = ui[θ(fi)] for each i = 1, . . . , n:

[Lt
θ, ui[fi]] =

∑
k≥−N

(−mamk+1)[Lt
k, ui[fi]]

=
∑

k≥−N

(−amk+1)ui[−tmk+1∂t(fi)]

= ui[θ(fi)], (87)

where the first equality follows from the definition (85), and the second equality follows from
part (a) of Proposition 6.7. �

Note that the choice of a σ-equivariant R-parameter t gives the R-module splitting Θσ
KR,R =

Θσ
KR/R ⊕ ιt(ΘR), where (for δ ∈ ΘR) ιt(δ)(f) =

∑
k δ(ak)tk if f =

∑
k akt

k. For any f∂t ∈ Θσ
KR/R

2227

https://doi.org/10.1112/S0010437X23007418 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007418


J. Hong and S. Kumar

and δ ∈ ΘR,

[ιt(δ), f∂t] = ιt(δ)(f)∂t, [ιt(δ1), ιt(δ2)] = ιt[δ1, δ2], (88)

and define

[ιt(δ), rC̄] = δ(r)C̄ for r ∈ R.
The C-linear brackets (84) and (88) define a completed extended Virasoro algebra Θ̂σ

KR,R
over R (which is a C-Lie algebra), where

Θ̂σ
KR,R = Θ̂σ

KR/R ⊕ ιt(ΘR).

Take any smooth L̂(g, σ)R-module MR with C-lattice MC (i.e. MC ⊗R �MR) stable under
L̂(g, σ)C. (Observe that L̂(g, σ)C depends upon the choice of the parameter t.) Let δ act
C-linearly on MR via its action only on the R-factor under the decomposition MR �MC ⊗R.
We denote this action on MR by Lt

δ. Observe that Lt
δ depends upon the choice of the parameter

t as well as the choice of the C-lattice MC in MR.
For any θ ∈ Θσ

KR,R, write θ = θ′ + ιt(θ′′) (uniquely), where θ′ ∈ Θσ
KR/R and θ′′ ∈ ΘR. We

define the extended Sugawara operator Lt
θ associated to θ acting on any smooth MR := MC ⊗C R

(with C-lattice MC as above) by

Lt
θ := Lt

θ′ + Lt
θ′′ . (89)

Then,

Lt
θ′′(u1[f1] · · ·un[fn] · v) =

n∑
i=1

u1[f1] · · ·ui[ιt(θ′′)(fi)] · · ·un[fn] · v, (90)

for v ∈MC and ui[fi] ∈ L̂(g, σ)R. From this we can easily deduce the more general formula when
v ∈MR.

The following proposition follows easily from Proposition 6.7 and the definition of the
operator Lt

θ.

Proposition 6.9. (1) Let MR be a smooth module of L̂(g, σ)R with C-lattice MC as above
with respect to a σ-equivariant R-parameter t and central charge c = −ȟ. Then, we have a C-Lie
algebra homomorphism

Ψ : Θ̂σ
KR,R → EndC(MR)

given by

rC̄ �→ r

(
cdim g

c+ ȟ

)
IMR

; θ �→ Lt
θ, for any θ ∈ Θσ

KR,R, r ∈ R. (91)

Moreover, Ψ is an R-module map under the R-module structure on EndC(MR) given by

(r · f)(v) = r · f(v), for r ∈ R, v ∈MR, f ∈ EndC(MR).

Note that ΘR is an R-module under (r · δ)(s) = r · δ(s), for r, s ∈ R and δ ∈ ΘR.
(2) Further, for any θ ∈ Θσ

KR,R, v ∈MR and a ∈ R,

Lt
θ(a · v) = θ(a) · v + a · Lt

θ(v). (92)

The following lemma shows that the representation of Θσ
KR,R on M̂(V, c)R (and, hence, on

H (V )R) is independent of the choice of the σ-equivariant R-parameters up to a multiple of the
identity operator.
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Lemma 6.10. Let V = V (λ) be an irreducible gσ-module with highest weight λ ∈ Dc. Let t′ be
another σ-equivariant R-parameter in OR. For any θ ∈ Θσ

KR,R there exists b(θ, λ, t, t′) ∈ C such

that Lt
θ = Lt′

θ + b(θ, λ, t, t′) Id on M̂(V, c)R and, hence, on H (V )R.

Here, with the choice of the parameter t, we have chosen the C-lattice M̂(V, c)C of M̂(V, c)R

to be U
(
(g⊗ C((t)))σ ⊕ CC

) · V and the C-lattice of H (V )R to be the image of M̂(V, c)C.

Proof. Assume first that θ ∈ Θσ
KR/R. Let Lt

θ and Lt′
θ denote the Sugawara operators associated to

θ with respect to the parameters t and t′, respectively. For any u[f ] ∈ L̂(g, σ)R, from the identity
(87), we have the following formula:

[u[f ], Lt
θ] = −u[θ(f)], [u[f ], Lt′

θ ] = −u[θ(f)]. (93)

This gives

[u[f ], Lt
θ − Lt′

θ ] = 0 for any u[f ] ∈ L̂(g, σ)R. (94)

It follows that Lt
θ − Lt′

θ commutes with the action of L̂(g, σ)R (and, hence, also with the action
of Lt

0 as in the identity (79)) on M̂(V, c)R. In particular, using Proposition 6.7(a) for k = 0,
(Lt

θ − Lt′
θ )vo = λvo for some λ ∈ C, where vo is a highest weight vector of V . This shows that

the R-linear map Lt
θ − Lt′

θ = b(θ, λ, t, t′) Id on the whole of M̂(V, c)R. This proves the lemma in
the case θ ∈ Θσ

KR/R.
We now prove the general case. Different choices of σ-equivariant R-parameters t, t′ give

different splittings ιt, ιt′ ,

Θσ
KR,R = R((tm))t∂t ⊕ ιt(ΘR) = R((t′m))t′∂t′ ⊕ ιt′(ΘR).

For any θ ∈ Θσ
KR,R, we may write uniquely

θ = θ′t + ιt(θ′′t ) = θ′t′ + ιt′(θ′′t′), (95)

where θ′t ∈ R((tm))t∂t, θ′t′ ∈ R((t′m))t′∂t′ , and θ′′t , θ′′t′ ∈ ΘR. Observe that

θ′′t = θ′′t′ = θ|R. (96)

Applying (95) to t′, we get

θ′t′ = θ′t +
ιt(θ′′t )(u)
t∂t(u) + u

t∂t,

where u = t′/t ∈ O×R. Note that (ιt(θ′′t )(u)/(t∂t(u) + u))t∂t ∈ R[[tm]]t∂t, and the constant coeffi-
cient of t∂t in (ιt(θ′′t )(u)/(t∂t(u) + u))t∂t is θ′′t (u0)/u0 where u0 ∈ R× is the leading coefficient of
u = u0 + umt

m + · · · ∈ R[[tm]].
As proved above, Lt

θ′
t′
− Lt′

θ′
t′

is a scalar operator, as θ′t′ ∈ Θσ
KR/R. Thus, to prove that Lt

θ − Lt′
θ

is a scalar operator, it suffices to prove that Lt
β + Lt

θ′′t
− Lt′

θ′′
t′

is a scalar operator, since Lt
β =

Lt
θ′t
− Lt

θ′
t′
, where β := θ′t − θ′t′ . Now, for u1[f1], . . . , un[fn] ∈ L̂(g, σ)R and v ∈ V , by the identities
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(86) and (90), we get(
Lt

β + Lt
θ′′t
− Lt′

θ′′
t′

)
(u1[f1] . . . un[fn] · v)

= u1[f1] . . . un[fn] · (Lt
βv) +

n∑
i=1

u1[f1] . . . ui[β(fi) + ιt(θ′′t )fi − ιt′(θ′′t′)fi] . . . un[fn] · v

= u1[f1] . . . un[fn] · (Lt
βv), since β(fi) + ιt(θ′′t )fi − ιt′(θ′′t′)fi = 0 by (95)

=
mθ′′t (u0)

u0
u1[f1] . . . un[fn] · (Lt

0v), since Lt
k · v = 0 for all k > 0 and β ∈ R[[tm]]t∂t

=
mθ′′t (u0)

u0
u1[f1] . . . un[fn] · dv, for some constant d ∈ C,

by the definition of Lt
0 since

∑
a∈A0

uau
a is the Casimir operator of gσ. This proves the lemma. �

7. Flat projective connection on sheaf of twisted covacua

We define the sheaf of twisted covacua for a family ΣT of s-pointed Γ-curves. We further show
that this sheaf is locally free of finite rank for a smooth family ΣT over a smooth base T . In fact,
we prove that it admits a flat projective connection.

In this section, we take the parameter space T to be an irreducible scheme over C and let Γ
be a finite group. We fix a group homomorphism φ : Γ→ Aut(g).

Definition 7.1. A family of curves over T is a proper and flat morphism ξ : ΣT → T such that
every geometric fiber is a connected reduced curve (but not necessary irreducible). For any b ∈ T
the fiber ξ−1(b) is denoted by Σb.

Let Γ act faithfully on ΣT and that ξ is Γ-invariant (where Γ acts trivially on T ). Let
π : ΣT → ΣT /Γ = Σ̄T be the quotient map, and let ξ̄ : Σ̄T → T be the induced family of curves
over T . Observe that ξ̄ is also proper. For any section p of ξ̄, denote by π−1(p) the set of sections
q of ξ such that π ◦ q = p.

Definition 7.2. A family of s-pointed Γ-curves over T is a family of curves ξ : ΣT → T over
T with an action of a finite group Γ as above, and a collection of sections �q := (q1, . . . , qs) of ξ,
such that:

(1) p1, . . . , ps are mutually non-intersecting to each other and, for each i, π−1(pi(T )) is contained
in the smooth locus of ξ and π−1(pi(T ))→ T is étale, where pi = π ◦ qi is the section of ξ̄;

(2) for any geometric point b ∈ T ,
(
Σ̄b, p1(b), . . . , ps(b)

)
is a s-pointed curve in the sense of

Definition 3.4; moreover, πb : Σb → Σ̄b is a Γ-cover in the sense of Definition 3.1.

Let Σo
T denote the open subset ΣT \

⋃s
i π

−1(pi(T )) of ΣT . Let ξo : Σo
T → T denote the

restriction of ξ.

Lemma 7.3. The morphism ξo : Σo
T → T is affine.

Proof. See a proof by van Dobben de Bruyn on mathoverflow [vDdB]. �

Let f : T ′ → T be a morphism of schemes. Then, we can pull-back the triple (ΣT ,Γ, �q) to
T ′ to get a family (f∗(ΣT ),Γ, f∗(�q)) of pointed Γ-curves over T ′, where f∗(ΣT ) = T ′ ×T ΣT ,
f∗(�q) = (f∗q1, . . . , f∗qs).
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Lemma 7.4. Let Γ act on each geometric fiber Σb of ΣT stably (cf. Definition 5.1). Then, for any
section p of ξ̄ such that π−1(p(T )) is contained in the smooth locus of ξ, if π−1(p) is non-empty
(where π−1(p) = {sections q of ΣT → T such that π ◦ q = p}), then:

(1) for any q = q′ ∈ π−1(p), q(T ) and q′(T ) are disjoint;
(2) Γ acts on π−1(p) transitively, and the stabilizer group Γq is equal to the stabilizer group

Γq(b) at the point q(b) ∈ Σb for any geometric point b ∈ T .

Proof. It is easy to see that π−1(p) is finite (it also follows from (97)). Let π−1(p) =
{q1, q2, . . . , qk}. For each b ∈ T , {q1(b), q2(b), . . . , qk(b)} is a Γ-stable set and it is contained in
the fiber π−1(p(b)). Since Γ acts on π−1(p(b)) transitively, it follows that

π−1(p(b)) = {q1(b), q2(b), . . . , qk(b)}.
From this it is easy to see that Γ acts transitively on π−1(p).

Set Z := ξ(
⋃

i	=j qi(T ) ∩ qj(T )). Then, Z is a proper closed subset of T . Let U be the
open subset T\Z of T . Then, {q1(U), q2(U), . . . , qk(U)} are mutually disjoint to each other.
In particular,

k =
|Γ|
|Γqi(b)|

, for any b ∈ U. (97)

By [BR11, Lemma 4.2.1], for each 1 ≤ i ≤ k, the order of the stabilizer group Γqi(b) is constant
along T . For any b′ ∈ Z, there exists i = j such that qi(b′) = qj(b′). It follows that |Γ|/|Γqi(b′)| =
|π−1(p(b′))| < k, which is a contradiction. Therefore, T = U , i.e. {q1(T ), q2(T ), . . . , qk(T )} are
disjoint to each other. This finishes the proof of part (1).

Let Γq be the stabilizer group of q ∈ π−1(p). It is clear that

Γq ⊂ Γq(b), for any geometric point b ∈ T . (98)

We have

k =
|Γ|
|Γq(b)|

≤ |Γ||Γq| ≤ k,

where the first equality follows from (97) (since U = T ) and the second inequality follows
from (98). The third inequality follows since k := |π−1(p)|. Thus, we get Γq = Γq(b) for any
geometric point b ∈ T by (98) and, moreover, Γ acts transitively on π−1(p). This concludes part
(2) of the lemma. �

Definition 7.5. (1) A formal disc over T is a formal scheme (T,OT ) over T (in the sense of
[Har77, Chap. II, § 9]), where OT is an OT -algebra which has the following property: for any
point b ∈ T there exists an affine open subset U ⊂ T containing b such that OT (U) is a complete
local OT (U)-algebra (see Definition 6.1(a)).

Let (T,KT ) be the locally ringed space over T defined so that KT (U) is the OT (U)-algebra
containing OT (U) obtained by inverting a (and, hence, any) OT (U)-parameter tU of OT (U).
Then, (T,KT ) is called the associated formal punctured disc over T .

(2) A rotation of a formal disc (T,OT ) over T of order m is an OT -module automorphism σ of
(T,OT ) of order m such that, for any b ∈ T , σ(tU ) = ε−1tU for some formal parameter tU around
b, where ε := e2πi/m.
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Lemma 7.6. With the assumption and notation as in Definition 7.1, let q be a section of ξ :
ΣT → T such that q(T ) is contained in the smooth locus of ξ. Then:

(1) the formal scheme (T, ξ∗ÔΣT ,q(T )) is a formal disc over T , where ÔΣT ,q(T ) denotes the formal
completion of ΣT along q(T ) (cf. [Har77, Chap. II, § 9]);

(2) the stabilizer group Γq is a cyclic group acting faithfully on the formal disc (T, ξ∗(ÔΣT ,q(T )));
further, Γq has a generator σ̃q acting via rotation of (T, ξ∗(ÔΣT ,q(T ))); moreover, the action
of Γq on local σ̃q-equivariant parameters is given by a primitive character χ.

Proof. Part (1) follows from [Gro97, Corollaire 16.9.9, Théorèm 17.12.1(c′)]. For part (2),
choose a formal parameter tU ∈

(
ξ∗ÔΣT ,q(T )

)
(U). Let σq ∈ Γq be a generator. Set t̃U :=

(1/|Γq|)
∑|Γq |−1

i=0 ε−ij
q σi

q(tU ), where εq := e2πi/|Γq | and σq(tU ) = εjqtU+ higher terms. Then, t̃U is a
formal parameter in

(
ξ∗ÔΣT ,q(T )

)
(U) such that

σq(t̃U ) = εjq t̃U . (99)

Since Γ acts faithfully on ΣT , the action of Γq is faithful on the formal disc (T, ξ∗ÔΣT ,q(T )). In
particular, by (99), εjq is a primitive |Γq|th root of unity. Thus, we can find a generator σ̃q(U) ∈ Γq

such that

σ̃q(U)t̃U = ε−1
q t̃U . (100)

In fact, σ̃q(U) is the unique generator of Γq satisfying the above equation (100) for any formal
parameter t̃U . From this it is easy to see that the generator σ̃q(U) does not depend upon U . We
denote it by σ̃q. It determines the primitive character χ of Γq, which satisfies χ(σ̃q) = ε−1

q . �

Denote by Oq the sheaf of OT -algebra ξ∗ÔΣT ,q(T ) over T , and let (T,Kq) be the associated
formal punctured disc over T . For any section q of ξ contained in the smooth locus of ξ, define
the sheaf of Kac–Moody algebra L̂(g,Γq)T over T by

L̂(g,Γq)T := (g⊗C Kq)Γq ⊕ OTC,

where the Lie bracket is defined as in (72). For any λ ∈ Dc,q := Dc,σ̃q we define a sheaf of
integrable representation H (λ)T over T as follows: for any open affine subset U ⊂ T such that
Oq(U) is a complete local OT (U)-algebra,

U �→H (λ)OT (U).

By Lemma 6.5, this gives a well-defined sheaf over T . For each section p of ξ̄ such that π−1(p)
is non-empty and some (and, hence, any) q ∈ π−1(p) is contained in the smooth locus of ξ, we
may define the following sheaf of Lie algebras over OT (cf. Definition 3.1),

ĝp :=
( ⊕

q∈π−1(p)

g⊗C Kq

)Γ

⊕ OT · C and gp :=
( ⊕

q∈π−1(p)

g⊗C ξ∗Oq(T )

)Γ

.

The restriction gives an isomorphism ĝp � L̂(g,Γq)T , and gp � gΓq ⊗C OT as in Lemmas 3.2
and 3.3. For any λ ∈ Dc,q, we still denote by H (λ)T the associated representation of ĝp via the
isomorphism ĝp � L̂(g,Γq)T .

Definition 7.7 (Sheaf of twisted conformal blocks). Let (ΣT ,Γ, �q) be a family of s-pointed
Γ-curves over an irreducible scheme T . Set �p = π ◦ �q. Let �λ = (λ1, . . . , λs) be a s-tuple of highest
weights, where λi ∈ Dc,qi for each i.
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Now, let us consider the sheaf of OT -module:

H (�λ)T := H (λ1)T ⊗OT
H (λ2)T ⊗OT

· · · ⊗OT
H (λs)T (101)

and

ĝ�p :=
( s⊕

i=1

( ⊕
q̄i∈π−1(pi)

g⊗C Kq̄i

)Γ)
⊕ OTC. (102)

We can define a OT -linear bracket in ĝ�p as in (11); in particular, C is a central element of ĝ�p.
Then, ĝ�p is a sheaf of OT -Lie algebra. There is a natural OT -linear Lie algebra homomorphism

s⊕
i=1

ĝpi → ĝ�p, where Ci �→ C.

The componentwise action of
⊕s

i=1 ĝpi on H (�λ)T induces an action of ĝ�p on H (�λ)T . We
also introduce the following OT -Lie algebra under the pointwise bracket:

g(Σo
T )Γ := [g⊗C ξ

o
∗OΣo

T
]Γ, where Σo

T = ΣT \(
s⋃

i=1

π−1(pi(T ))). (103)

There is an embedding of sheaves of OT -Lie algebras:

β : g(Σo
T )Γ ↪→ ĝ�p,

∑
k

xk[fk] �→
∑

q∈π−1(�p)

∑
k

xk[(fk)q], (104)

for xk ∈ g and fk ∈ ξo∗OΣo
T

such that
∑

k xk[fk] ∈ g[Σo
T ]Γ, where (fk)q denotes the image of fk in

Kq via the localization map ξo∗OΣo
T
→ Kq.

By the residue theorem, β is indeed a Lie algebra embedding. (Observe that Lemma 7.3 has
been used to show that β is an embedding.)

Finally, define the sheaf of twisted covacua (also called the sheaf of twisted dual conformal
blocks) VΣT ,Γ,φ(�q, �λ) over T as the quotient sheaf of OT -modules

VΣT ,Γ,φ(�q, �λ) := H (�λ)T

/
g(Σo

T )Γ ·H (�λ)T , (105)

where g(Σo
T )Γ acts on H (�λ)T via the embedding β (given by (104)) and g(Σo

T )Γ ·H (�λ)T ⊂
H (�λ)T denotes the image sheaf under the sheaf homomorphism

αT : g(Σo
T )Γ ⊗OT

H (�λ)T →H (�λ)T (106)

induced from the action of g(Σo
T )Γ on H (�λ)T .

Here we use the notation VΣT ,Γ,φ(�q, �λ) to denote the sheaf of twisted covacua (see
Remark 3.6).

Theorem 7.8. (1) The sheaf VΣT ,Γ,φ(�q, �λ) is a coherent OT -module.
(2) For any morphism f : T ′ → T between schemes, there exists a natural isomorphism

OT ′ ⊗OT
(VΣT ,Γ,φ(�q, �λ)) � Vf∗(ΣT ),Γ,φ(f∗(�q), �λ).

In particular, for any point b ∈ T the restriction VΣT ,Γ,φ(�q, �λ)|b is the space of twisted dual

conformal blocks attached to (Σb,Γ, φ, �p(b), �λ).
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Proof. We first prove part (1). Recall the embedding β : g(Σo
T )Γ ↪→ ĝ�p of OT -Lie algebras

from (104). In addition, consider the OT -Lie subalgebra

p̂�p :=
[ ⊕

q∈π−1(�p)

g⊗C ξ∗ÔΣT ,q(T )

]Γ
⊕ OTC

of ĝ�p and let g(Σo
T )Γ + p̂�p be the OT -subsheaf of ĝ�p spanned by Imβ and p̂�p. Then, as can be

seen, the quotient sheaf ĝ�p

/(
g(Σo

T )Γ + p̂�p

)
is a coherent OT -module (cf. [Loo13, Lemma 5.1]).

Thus, locally we can find a finite set of elements {xj} of ĝ�p such that each xj acts locally finitely
on H (�λ)T and

ĝ�p = g(Σo
T )Γ + p̂�p +

∑
j

OTxj

(cf. [Kum02, Proof of Lemma 10.2.2]). Now, following the proof of Lemma 3.7 and recalling that
the Poincaré–Birkhoff–Witt theorem holds for any Lie algebra s over a commutative ring R such
that s is free as an R-module (cf. [CE56, Theorem 3.1, Chapter XIII]), we get part (1) of the
theorem.

We now prove part (2). By the definition of the sheaf of covacua, VΣT ,Γ,φ(�q, �λ) is the cokernel
of the OT -morphism αT : g(Σo

T )Γ ⊗OT
H (�λ)T →H (�λ)T , which gives rise to the exact sequence

(on tensoring with OT ′):

OT ′
⊗
OT

(
g(Σo

T )Γ
⊗
OT

H (�λ)T

)

�

Id⊗αT �� OT ′
⊗
OT

H (�λ)T

�

��

�� OT ′
⊗
OT

VΣT ,Γ,φ(�q, �λ)

�

�� 0

g(Σo
T ′)Γ
⊗
OT ′

H (�λ)T ′ �� H (�λ)T ′ �� VΣT ′ ,Γ,φ(f∗�q, �λ) �� 0

where we have identified the bottom left term of the above under(
OT ′
⊗
OT

g(Σo
T )Γ
)⊗

OT ′

(
OT ′
⊗
OT

H (�λ)T

)
� g(Σo

T ′)Γ
⊗
OT ′

H (�λ)T ′

and the second vertical isomorphism is obtained by Lemma 6.5. The right-most vertical
isomorphism follows from the five lemma, proving the second part of the lemma. �

In the rest of this section we assume that the family ξ : ΣT → T of s-pointed Γ-curves is
such that T is a smooth and irreducible scheme over C and ξ : ΣT → T is a smooth morphism.
In particular, ΣT is a smooth scheme.

Let ΘT be the sheaf of vector fields on T . Let ΘΣo
T /T denote the OT -module of vertical vector

fields on Σo
T with respect to ξo, and let ΘΣo

T ,T denote the OT -module of vector fields V on Σo
T

that locally descend to vector fields on T (i.e. there exists an open cover Ui of T such that
(dξo)(V|ξo−1(Ui)

) is a vector field on Ui). Since ξo : Σo
T → T is an affine and smooth morphism,

there exists a short exact sequence of OT -modules:

0→ ΘΣo
T /T → ΘΣo

T ,T
dξo

−−→ ΘT → 0. (107)

This short exact sequence induces the following short exact sequence of OT -modules:

0→ ΘΓ
Σo

T /T → ΘΓ
Σo

T ,T
dξo

−−→ ΘT → 0, (108)
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where ΘΓ
Σo

T /T (respectively, ΘΓ
Σo

T ,T ) denotes the OT -submodule of Γ-invariant vector fields in
ΘΣo

T /T (respectively, ΘΣo
T ,T ).

For any b ∈ T , we can find an affine open subset b ∈ U ⊂ T , and a s-tuple of formal
parameters �t := (t1, t2, . . . , ts) where ti is a formal Γqi-equivariant OT (U)-parameter around qi
(cf. Lemma 7.6). For any θ ∈ ΘΓ

Σo
T ,T (U) := ΘΣo

T ,T (U)Γ, we denote by θi the image in ΘKqi ,T
(U)Γqi ,

where ΘKqi ,T
(U) is the space of continuous C-linear derivations of Kqi under the m-adic topology

(given below Proposition 6.7) that are liftable from the vector fields on U . We define the operator
L�t

θ on H (�λ)U by

L
�t
θ(h1 ⊗ · · · ⊗ hs) :=

∑
i

h1 ⊗ · · · ⊗ Lti
θi
· hi ⊗ · · · ⊗ hs, (109)

where, for 1 ≤ i ≤ s, Lti
θi

is the extended Sugawara operator associated to θi with respect to the
Kac–Moody algebra L̂(g,Γqi)U defined by (89), where we choose the C-lattice in H (λi)U as in
Lemma 6.10.

Lemma 7.9. For any θ ∈ ΘΣo
T ,T (U)Γ, the operator L�t

θ preserves g(Σo
U )Γ ·H (�λ)U , where Σo

U :=
ξo−1(U).

Proof. For any x[f ] ∈ g(Σo
U ), let A(x[f ]) denote the average

∑
σ∈Γ σ(x)[σ(f)] ∈ g(Σo

U )Γ. For any
�h = h1 ⊗ · · · ⊗ hs ∈H (�λ)U , and θ ∈ ΘΣo

T ,T (U)Γ, by the formulae (86) and (90), one can easily
check that

L
�t
θ(A(x[f ]) · �h) = A(x[θ(f)])(�h) +A(x[f ])(L�t

θ · �h).

It thus follows that L�t
θ preserves g(Σo

U )Γ ·H (�λ)U . �

From the above lemma, the operator L�t
θ induces an operator denoted ∇�t

θ on VΣT ,Γ,φ(�q, �λ)|U .

Theorem 7.10. With the same notation and assumptions as in Theorem 7.8, assume, in addi-
tion, that ξ : ΣT → T is a smooth morphism and T is smooth. Then, VΣT ,Γ,φ(�q, �λ) is a locally
free OT -module of finite rank.

Proof. It is enough to show that the space of twisted covacua VΣT ,Γ,φ(�q, �λ)|U is locally free
for any cover of affine open subsets U ⊂ T with a s-tuple of formal parameters �t := (t1, . . . , ts)
around �q := (q1, . . . , qs), where ti is a Γqi-equivariant OT (U)-parameter. From the short exact
sequence (108), we may assume (by shrinking U if necessary) that there exists a OT (U)-linear
section a : ΘT (U)→ ΘΣo

T ,T (U)Γ of dξo|U : ΘΣo
T ,T (U)Γ → ΘT (U). By part (2) of Proposition 6.9,

the following map

θ �→ ∇�t
a(θ) : VΣT ,Γ,φ(�q, �λ)|U → VΣT ,Γ,φ(�q, �λ)|U

defines a connection on VΣT ,Γ,φ(�q, �λ)|U . Thus, by the same proof as in [HTT08, Theorem 1.4.10],
VΣT ,Γ,φ(�q, �λ)|U is locally free. By Theorem 7.8, VΣT ,Γ,φ(�q, �λ) is a coherent OT -module and, hence,
it is of finite rank. �

Let V be a locally free OT -module of finite rank. Let D1(V ) denote the OT -module of
operators P : V → V such that for any f ∈ OT , the Lie bracket [P, f ] is an OT -module morphism
from V to V . Clearly, D1(V ) is a C-Lie algebra.

Definition 7.11 [Loo13]. A flat projective connection over V is a sheaf of OT -modules
L ⊂ D1(V ) containing OT (where OT acts on V by multiplication) such that L is a C-Lie
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subalgebra and

0 �� OT
i �� L

Symb
�� ΘT

�� 0 (110)

is a short exact sequence, where Symb denotes the symbol map defined by

(SymbP )(f) = [P, f ] for P ∈ L and f ∈ OT .

Observe that Symb is a Lie algebra homomorphism.

Following this definition, choose a local section ∇ : ΘU → L |U of Symb on some open subset
U ⊂ T . Then, ∇ defines a connection on V over U , since for any X ∈ ΘU , f ∈ OU and v ∈ V ,

∇X(f · v) = f∇Xv +X(f) · v.
For any X,Y ∈ ΘU , the curvature K (X,Y ) := [∇X ,∇Y ]−∇[X,Y ] ∈ OU .

We now construct a flat projective connection LT on the sheaf of covacua VΣT ,Γ,φ(�q, �λ). Let
U be any affine open subset of T with a s-tuple of parameters �t around �q as above. Define LT (U)
to be the OT (U)-module spanned by {∇�t

θ | θ ∈ ΘΣo
T ,T (U)Γ} and OT (U). By Lemma 6.10, LT (U)

does not depend on the choice of parameters �t. Therefore, the assignment U �→ LT (U) glues to
be a sheaf LT over T .

Theorem 7.12. With the same notation and assumptions as in Theorem 7.10, assume further
that the ramification locus in each geometric fiber Σb of ΣT is contained in Γ · �q(b). Then, the
sheaf LT of operators on VΣT ,Γ,φ(�q, �λ) is a flat projective connection on VΣT ,Γ,φ(�q, �λ).

Proof. For any b ∈ T , choose an affine open subset b ∈ U with an s-tuple of parameters �t
around �q. Given θ1, θ2 ∈ ΘΣo

T ,T (U)Γ, by Proposition 6.9 and formula (109), the difference
∇�t

[θ1,θ2] − [∇�t
θ1
,∇�t

θ2
] is a OT (U)-scalar operator and so is [∇�t

θ, f ] for f ∈ OT (U). It follows that

LT is a sheaf of C-Lie algebra acting on VΣT ,Γ,φ(�q, �λ).
Note that ΘΓ

Σo
T /T |b � Θ(Σo

b)
Γ, where Σo

b is the affine curve Σb\π−1(�p(b)), �p = π ◦ �q
and Θ(Σo

b)
Γ is the Lie algebra of Γ-invariant vector fields on Σo

b . In view of part (2)
of Theorem 7.8, VΣT ,Γ,φ(�q, �λ)|b � VΣb,Γ,φ(�q(b), �λ). Therefore, the OT (U)-linear map ∇�t :
ΘΣo

T /T (U)Γ → EndOT (U)(VΣT ,Γ,φ(�q, �λ)|U ) induces a projective representation of Θ(Σo
b)

Γ on the

space of covacua VΣb,Γ,φ(�q(b), �λ) attached to the s-pointed curve (Σb, �q(b)). By Lemma 6.10, the
map ∇�t is independent of the choice of �t if we consider it projectively as a map

∇�t : ΘΣo
T /T (U)Γ → EndOT (U)(VΣT ,Γ,φ(�q, �λ)|U )/OT (U).

Note that Θ(Σo
b)

Γ is isomorphic to the Lie algebra Θ(Σ̄o
b) of vector fields on the affine

curve Σ̄b\�p(b) (since Γ · �q(b) contains the ramification locus). By [BFM91, Lemma 2.5.1], Θ(Σ̄o
b)

and hence Θ(Σo
b)

Γ is an infinite-dimensional simple Lie algebra. Since VΣb,Γ,φ(�q(b), �λ) is a
finite-dimensional vector space, Θ(Σo

b)
Γ can only act by scalars on VΣb,Γ,φ(�q(b), �λ). Therefore,

for any θ ∈ ΘΣo
T /T (U)Γ, the operator ∇�t

θ acts via multiplication by an element of OT (U) on

VΣT ,Γ,φ(�q, �λ)|U . Thus, the sequence (110) for L = LT is exact. It follows that LT is indeed a
flat projective connection on VΣT ,Γ,φ(�q, �λ). �

8. Local freeness of the sheaf of twisted conformal blocks on stable
compactification of Hurwitz stacks

We consider families of stable s-pointed Γ-curves and we show that the sheaf of twisted covacua
over the stable compactification of a Hurwitz stack is locally free.
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In this section, we fix a group homomorphism φ : Γ→ Aut (g) such that Γ stabilizes a Borel
subalgebra b of g.

Definition 8.1 [BR11, Définition 4.3.4]. We say that a family of s-pointed Γ-curves (ΣT , �q)
over a scheme T (see Definition 7.2) is stable if:

(0) each geometric fiber Σb of ΣT is (connected) with only nodal singularity;
(1) the family of s-pointed curves (Σ̄T , �p) is stable where �p := π ◦ �q, i.e. for any geometric point

b ∈ T the fiber Σ̄b is a connected reduced curve with at most nodal singularity and the
automorphism group of the pointed curve (Σ̄b, �p(b)) is finite;

(2) the action of Γ on each geometric fiber Σb is stable in the sense of Definition 5.1 (in particular,
Σb has only nodal singularity); moreover, Γ · �q(b) contains all the ramification points for any
b ∈ T .

A s-pointed Γ-curve is called stable if it is stable as a family over a point.

Remark 8.2. For a family of s-pointed Γ-curves (ΣT , �q) over T satisfying properties (0) and
(2) as above, the stability of (Σ̄T , �p) is equivalent to the stability of (ΣT ,Γ · �q) (cf. [BR11,
Proposition 5.1.3]).

Moreover, under the assumption that Γ · �q contains all the ramification points in Σ, at any
nodal point q ∈ Σ, q being unramified and stable, det(σ̇) = 1, σ fixes the two branches for any
σ ∈ Γq and Γq is cyclic (cf. [BR11, Corollaire 4.3.3 and the comment after Definition 6.2.3]). In
this case, any stable s-pointed Γ-curve (Σ, �p) is exactly a s-pointed admissible Γ-cover in the
sense of Jarvis, Kaufmann, and Kimura [JKK05, Definitions 2.1 and 2.2]. The only difference is
that, in our definition, stable s-pointed Γ-curves are connected, and admissible s-pointed Γ-covers
defined in [JKK05] can be disconnected.

Let (Co, �qo) be a s-pointed Γ-curve such that Γ acts stably on Co (cf. Definition 5.1). Let C̃o

be the normalization of Co at the points Γ · r, where r is a (stable) nodal point of Co. The nodal
point r splits into two smooth points r′, r′′ in C̃o. The following lemma shows that there exists a
canonical smoothing deformation of (Co, �qo) over a formal disc Dτ := Spec C[[τ ]]. We denote by
D×

τ the associated punctured formal disc Spec C((τ)).

Lemma 8.3. With the same notation as above, we assume that the stabilizer group Γr at r is
cyclic and does not exchange the branches. Then, there exists a formal deformation (C, �q) of
the s-pointed Γ-curve (Co, �qo) over a formal disc Dτ with the formal parameter τ , a family of
s-pointed Γ-curves (C̃, �̃q) over Dτ , and a morphism ζ : C̃ → C of families of s-pointed Γ-curves
over Dτ , such that the following properties hold:

(1) over the closed point o ∈ Dτ , ζ|o : C̃o → Co is the normalization of Co at the points Γ · r,
and over the formal punctured disc D×

τ , we have C̃|
D
×
τ
� C̃o × D×

τ ;

(2) for each i = 1, . . . , s, ζ ◦ q̃i = qi and �q(o) = �qo (we also use �q to denote the sections �̃q in C̃ if
there is no confusion);

(3) the completed local ring ÔC,r of OC at r is isomorphic to C[[z′, z′′, τ ]]/〈τ − z′z′′〉 � C[[z′, z′′]],
where Γr acts on z′ (respectively, z′′) via a primitive character χ (respectively, χ−1); more-
over, (z′, τ/z′) (respectively, (z′′, τ/z′′)) gives a formal coordinate around r′ (respectively,
r′′) in C̃, where we still denote by z′ (respectively, z′′) the function around r′ (respectively,
r′′) by pulling back z′ (respectively, z′′) via ζ;

(4) there exists a Γ-equivariant isomorphism of algebras

κ : ÔC̃\Γ·{r′,r′′},C̃o\Γ·{r′,r′′} � OC̃o\Γ·{r′,r′′}[[τ ]], (111)
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where ÔC̃\Γ·{r′,r′′},C̃o\Γ·{r′,r′′} is the completion of OC̃\Γ·{r′,r′′} along C̃o\Γ · {r′, r′′}; moreover,

�̃q in C̃ and �qo in C̃o are compatible under this isomorphism, i.e. the points qo,i ∈ C̃o\Γ ·
{r′, r′′} (for i = 1, . . . , s) identified with the algebra homomorphisms βi : OC̃o\Γ·{r′,r′′} → C

extended to

βτ
i : ÔC̃\Γ·{r′,r′′},C̃o\Γ·{r′,r′′} → C[[τ ]]

under the identification κ correspond to the section q̃i of C̃ → Dτ .

Proof. In the non-equivariant case, this smoothing construction as formal deformation is sketched
by Looijenga in [Loo13, § 6], and detailed argument from formal deformation to algebraic
deformation can be found in [Dam20, § 6.1]. These constructions/arguments can be easily gen-
eralized to the equivariant setting when Γr acts on the node stably and does not exchange the
branches. �

Let L̂(g,Γr′) (respectively, L̂(g,Γr′′)) be the Kac–Moody algebra attached to the point r′

(respectively, r′′) in C̃o. Recall that (Lemma 5.3) μ∗ ∈ Dc,r′ if and only if μ ∈ Dc,r′′ where
V (μ∗) � V (μ)∗. (By Lemma 5.2, Γr′ = Γr′′ and, hence, gΓr′ = gΓr′′ .) Let H (μ∗) (respectively,
H (μ)) be the highest weight integrable representation of L̂(g,Γr′) (respectively, L̂(g,Γr′′))
as usual.

Lemma 8.4. There exists a non-degenerate pairing bμ : H (μ∗)×H (μ)→ C such that for any
h1 ∈H (μ∗), h2 ∈H (μ), and x[z′n] ∈ L̂(g,Γr′),

bμ(x[z′n] · h1, h2) + bμ(h1, x[z′′−n] · h2) = 0.

Note that x[z′n] ∈ L̂(g,Γr′) if and only if x[z′′−n] ∈ L̂(g,Γr′′).

Proof. From Lemma 5.3 (especially see ‘another proof of Lemma 5.3 Part (2)’), there exists
an isomorphism ω̂ : L̃(g,Γr′) � L̃(g,Γr′′), such that the representation of L̃(g,Γr′′) on H (μ)
via ω̂−1 is isomorphic to H (μ∗), where L̃(g,Γr′) is the non-completed Kac–Moody algebra.
By [Kac90, § 9.4], there exists a contravariant form b̄μ : H (μ∗)×H (μ∗)→ C such
that

b̄μ(x[f ] · h1, h2) + b̄μ(h1, �(x[f ])h2) = 0, for any x[f ] ∈ L̃(g,Γr′), h1, h2 ∈H (μ∗),

where � is the Cartan involution of L̃(g,Γr′) mapping x′i[z
′si ] (respectively, y′i[z

′−si ]) to −y′i[z′−si ]
(respectively, −x′i[z′si ]) for any i ∈ Î(g,Γr′), see these notation in the second proof of Lemma 5.3
part (2). Observe that the composition ω̂ ◦� : L̃(g,Γr′)→ L̃(g,Γr′′) is an isomorphism of Lie
algebras mapping x[z′n] to x[z′′−n]. Hence, the lemma follows after we identify the second copy
of H (μ∗) in b̄μ with H (μ) via ω̂−1 mentioned above. �

There exist direct sum decompositions by t-degree (putting the t-degree of the highest weight
vectors at 0):

H (μ∗) =
∞⊕

d=0

H (μ∗)−d, H (μ) =
∞⊕

d=0

H (μ)−d.

The non-degenerate pairing bμ in Lemma 8.4 induces a non-degenerate pairing bμ,d :
H (μ∗)−d ×H (μ)−d → C for each d ≥ 0. Let b∗μ,d ∈ (H (μ∗)−d)∗ ⊗ (H (μ)−d)∗ be the dual of
bμ,d. The contravariant form b̄μ on H (μ∗) with respect to L̃(g,Γr′) induces an isomorphism c′μ :
(H (μ∗)−d)∗ �H (μ∗)−d. Similarly, the contravariant form on H (μ) with respect to L̃(g,Γr′′)
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induces an isomorphism c′′μ : (H (μ)−d)∗ �H (μ)−d (the Cartan involution on L̃(g,Γr′′) taken
here is obtained from � on L̃(g,Γr′) via the isomorphism ω̂). Set Δμ,d := (c′μ ⊗ c′′μ)(b∗μ,d) ∈
H (μ∗)−d ⊗H (μ)−d if d ≥ 0 and 0 if d < 0. Note that Δμ,0 is exactly the element Iμ induced
from the identity map on V (μ) (see the formula (43)). In view of Lemma 8.4, Δμ,d satisfies the
following property (for any d, n ∈ Z)

(x[z′n]⊗ 1) ·Δμ,d+n + (1⊗ x[z′′−n]) ·Δμ,d = 0, for any x[z′n] ∈ L̂(g,Γr′). (112)

We now construct the following ‘gluing’ tensor element (following [Loo13, Lemma 6.5] in the
non-equivariant setting),

Δμ :=
∑
d≥0

Δμ,dτ
d ∈ (H (μ∗)⊗H (μ)

)
[[τ ]].

Let θ′, θ′′ be the maps of pulling-back functions via the map ζ : C̃ → C

θ′ : ÔC,r → ÔC̃,r′ ⊂ C((z′))[[τ ]] and θ′′ : ÔC,r → ÔC̃,r′′ ⊂ C((z′′))[[τ ]],

where ÔC,r is the completion of OC along r, and ÔC̃,r′ and ÔC̃,r′′ are defined similarly. For any

f(z′, z′′) =
∑

i≥0,j≥0 ai,jz
′iz′′j ∈ ÔC,r, we have

θ′(f) = f(z′, τ/z′) =
∑
j≥0

(∑
i≥0

ai,jz
′i−j

)
τ j ,

and

θ′′(f) = f(τ/z′′, z′′) =
∑
i≥0

(∑
j≥0

ai,jz
′′j−i

)
τ i.

The morphisms θ′, θ′′ induce a C[[τ ]]-module morphism θ : (g⊗ ÔC,r)Γr → (g⊗ C((z′)))Γr′ [[τ ]]⊕
(g⊗ C((z′′)))Γr′′ [[τ ]], where τ acts on ÔC,r via

τ · f(z′, z′′) = z′z′′f(z′, z′′).

Thus, we get an injective map from (g⊗ ÔC,r)Γr into L̂(g,Γr′)[[τ ]]⊕ L̂(g,Γr′′)[[τ ]] (but not a Lie
algebra homomorphism), which acts on (H (μ∗)⊗H (μ))[[τ ]].

Lemma 8.5. The element Δμ ∈
(
H (μ∗)⊗H (μ)

)
[[τ ]] is annihilated by (g⊗ ÔC,r)Γr via the

morphism θ defined as above.

Proof. For any x[z′iz′′j ] ∈ (g⊗ ÔC,r)Γr ,

x[z′iz′′j ] ·Δμ =
∑
d∈Z

(x[z′i−j ]⊗ 1)Δμ,dτ
d+j +

∑
d∈Z

(1⊗ x[z′′j−i])Δμ,dτ
d+i

= −
∑
d∈Z

(1⊗ x[z′′j−i])Δμ,d+j−iτ
d+j +

∑
d∈Z

(1⊗ x[z′′j−i])Δμ,dτ
d+i, by (112)

= 0.

From this it is easy to see that x[f ] ·Δμ = 0 for any x[f ] ∈ (g⊗ ÔC,r)Γr . This proves the
lemma. �

For each i = 1, . . . , s, let H (λi)Dτ (respectively, H (λi)) denote the integrable representa-
tion of L̂(g,Γqi)Dτ (respectively, L̂(g,Γqi,o)) attached to ÔC,qi (respectively, ÔCo,qi,o) as in § 6,
and let H (�λ)Dτ (respectively, H (�λ)) denote their tensor product over C[[τ ]] (respectively, C).
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For each i = 1, . . . , s, we choose a (Γqi , χi)-equivariant formal parameter zi around qi,
i.e. ÔC,qi � C[[τ ]][[zi]], where χi is a primitive character of Γqi . It gives rise to a trivialization
(cf. formula (75))

t�λ : H (�λ)Dτ �H (�λ)⊗C C[[τ ]].

We now construct a morphism of C[[τ ]]-modules:

F̃�λ
: H (�λ)⊗C C[[τ ]] −→

⊕
μ∈Dc,r′′

(H (�λ)⊗H (μ∗)⊗H (μ))[[τ ]]

given by
∞∑
i=0

hiτ
i �→

∞∑
i,d=0

(hi ⊗Δμ,d)τ i+d,

where, for each i, hi ∈H (�λ). Finally, we set

F�λ
:= F̃�λ

◦ t�λ : H (�λ)Dτ −→
⊕

μ∈Dc,r′′

(H (�λ)⊗H (μ∗)⊗H (μ))[[τ ]].

Consider the following canonical homomorphisms (obtained by pull-back and restrictions):

OC\Γ·�q → OC̃\Γ·�q → OC̃\Γ·(�q ∪{r′,r′′}) → ÔC̃\Γ·(�q ∪{r′,r′′}),C̃o\Γ·(�qo∪{r′,r′′}) � OC̃o\Γ·(�qo∪{r′,r′′})[[τ ]],

where the last isomorphism is obtained from the isomorphism κ of Lemma 8.3 (see the
isomorphism (111)). This gives rise to a Lie algebra homomorphism (depending upon the
isomorphism κ):

κ�q : g[C\Γ · �q]Γ → [g⊗ OC̃o\Γ·(�qo∪{r′,r′′})
]Γ[[τ ]].

Hence, the Lie algebra g[C\Γ · �q]Γ acts on
(
H (�λ)⊗H (μ∗)⊗H (μ)

)
[[τ ]] via the action of

[
g⊗

OC̃o\Γ·(�qo∪{r′,r′′})
]Γ on H (�λ)⊗H (μ∗)⊗H (μ) at the points {�qo, r′, r′′} as given just before

Theorem 5.4 and extending it C[[τ ]]-linearly.
Recall from Definition 7.7 the action of g[C\Γ · �q]Γ on H (�λ)Dτ . Further, g[C\Γ · �q)Γ acts on

(H (μ∗)⊗H (μ))[[τ ]] via the Lie algebra homomorphism (obtained by the restriction):

g[C\Γ · �q]Γ → (g⊗ ÔC,r)Γr

and the action of (g⊗ ÔC,r)Γr on (H (μ∗)⊗H (μ))[[τ ]] (which is a Lie algebra action only
projectively) is given just before Lemma 8.5.

Theorem 8.6. We have the following:

(1) the morphism F�λ
is g[C\Γ · �q]Γ-equivariant;

(2) the morphism F�λ
induces an isomorphism of sheaf of covacua over Dτ ,

F̄�λ
: VC,Γ,φ(�q, �λ)→

⊕
μ∈Dc,r′′

VC̃o,Γ,φ

(
(�qo, r′, r′′), (�λ, μ∗, μ)

)
[[τ ]]. (113)

Note that here we take slightly different notation for the spaces/sheaves of covacua, see
Remark 3.6.
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Proof. By Lemma 8.5, the morphism

F ′
�λ

: H (�λ)Dτ →H (�λ)Dτ ⊗C[[τ ]]

⊕
μ∈Dc,r′′

(H (μ∗)⊗H (μ))[[τ ]]

given by h �→∑μ∈Dc,r′′
h⊗Δμ, is a morphism of g[C\Γ · �q]Γ-modules. Moreover, there exists an

embedding obtained from the isomorphism t�λ:

i : H (�λ)Dτ ⊗C[[τ ]]

⊕
μ∈Dc,r′′

(H (μ∗)⊗H (μ))[[τ ]] ↪→
⊕

μ∈Dc,r′′

(H (�λ)⊗H (μ∗)⊗H (μ))[[τ ]].

Observe that F�λ
= i ◦ F ′

�λ
. This concludes part (1) of the theorem.

We now proceed to prove part (2) of the theorem. Using part (1) of the theorem and the
morphism κ�q, we get the C[[τ ]]-morphism (113). Taking quotient by τ , by the factorization
theorem (Theorem 5.4) the morphism F̄�λ

gives rise to an isomorphism

VCo,Γ,φ(�qo, �λ)→
⊕

μ∈Dc,r′′

VC̃o,Γ,φ

(
(�qo, r′, r′′), (�λ, μ∗, μ)

)
.

As a consequence of the Nakayama lemma (cf. [AM69, Exercise 10, Chap. 2]), F̄�λ
is surjective.

(Observe that by Theorem 7.8, both the domain and the range of F̄�λ
are finitely generated

C[[τ ]]-modules.) Now, since the range of F̄�λ
is a free C[[τ ]]-module, we get that F̄�λ

splits over
C[[τ ]]. Thus, applying the Nakayama lemma (cf. [AM69, Proposition 2.6]) again to the kernel K
of F̄�λ

, we get that K = 0. Thus, F̄�λ
is an isomorphism, proving part (2). �

Definition 8.7. We say that a stable s-pointed Γ-curve (Σ, q1, . . . , qs) has marking data η =(
(Γ1, χ1), (Γ2, χ2), . . . , (Γs, χs)

)
if for each i, the stabilizer group at qi is a (cyclic) subgroup

Γi ⊂ Γ and χi is the induced (automatically primitive) character of Γi on the tangent space
TqiΣ.

We now introduce the moduli stack H Mg,Γ,η, which associates to each C-scheme T the
groupoid of stable family ξ : ΣT → T of s-pointed Γ-curves over T , such that each geometric
fiber is of genus g and is of marking data η. In particular,

⋃s
i=1 Γ · qi(T ) contains the ramifi-

cation divisor of π : ΣT → ΣT /Γ (cf. [BR11, Definition 4.1.6]). Note that for any stable family
of s-pointed Γ-curves in H Mg,Γ,η, its geometric fibers contain at worst only nodal singular-
ity such that their stabilizer groups are cyclic which do not exchange the branches (cf. [BR11,
Corollaire 4.3.3], and the comment after [BR11, Definition 6.2.3]).

For any γ1, . . . , γs ∈ Γ, (Σ, γ1q1, . . . , γsqs) has the conjugate marking data

((γ1Γ1γ
−1
1 ,γ1 χ1), . . . , (γsΓsγ

−1
s ,γs χs)),

where (γiχi)(γigiγ
−1
i ) := χi(gi), for gi ∈ Γi. We denote by [η], the Γs-conjugacy class of η.

Theorem 8.8. The stack H Mg,Γ,η is a proper and smooth Deligne–Mumford stack of finite
type.

Proof. (Sketch) We can associate to (ΣT , �q) (a stable family ξ : ΣT → T of s-pointed Γ-curves)
the Γ-stable relative Cartier divisor

⋃
i Γ · (qi(T )) in ΣT which is étale over T . The Γ×s-conjugacy

classes [η] of η is the marking type of
⋃

i Γ · (qi(T )). Let [ξ] be the subclass of those conjugacy
classes [Γi, χi] such that Γi is non-trivial. Then, [ξ] is the associated ramification datum of stable
s-pointed Γ-curves in H Mg,Γ,η. Let H Mg,Γ,[ξ],[η] be the stable compactification of a Hurwitz
stack defined in [BR11, Definition 6.2.3]. The natural morphism H Mg,Γ,η →H Mg,Γ,[ξ],[η] is
clearly representable, étale, and essentially surjective. By [BR11, Théorèm 6.3.1], H Mg,Γ,[ξ],[η]

is a smooth proper Deligne–Mumford stack and, hence, so is H Mg,Γ,η. �
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Let Dc,i be the set of dominant weights of gΓi associated to the highest weight integrable
(irreducible) representations of L̂(g,Γi, χi) := L̂(g, σi), where σi ∈ Γi is the unique element such
that χi(σi) = e2πi/|Γi|. Choose a collection �λ = (λ1, . . . , λs) of dominant weights, where λi ∈ Dc,i

for each i. Recall that being a Deligne–Mumford stack, H Mg,Γ,η has an atlas δ : X →H Mg,Γ,η

such that δ is étale and surjective. By Theorem 8.8,X is a smooth (but not necessarily connected)
scheme of finite type over C.

We can attach to δ : X →H Mg,Γ,η the coherent sheaf VΣX ,Γ,φ(�qX , �λ) of conformal blocks,
where (ΣX , �qX) is the associated stable family of s-pointed Γ-curves over X. This attachment
can be done componentwise on X via Definition 7.7.

For any two atlases X,Y of H Mg,Γ,η and a morphism f : Y → X compatible with the atlas
structures, by Theorem 7.8, there exists a canonical isomorphism

αf : f∗VΣX ,Γ,φ(�qX , �λ) � VΣY ,Γ,φ(�qY , �λ),

where (ΣX , �qX) and (ΣY , �qY ) are the families of stable s-pointed Γ-curves associated to these two
atlases X,Y . Given three atlases X,Y, Z and morphisms g : Z → Y and f : Y → X, Theorem 7.8
ensures the obvious cocycle condition. Therefore, we get a coherent sheaf Vg,Γ,φ(η,�λ) on H Mg,Γ,η

such that δ∗Vg,Γ,φ(η,�λ) � VΣX ,Γ,φ(�qX , �λ) for any atlas δ : X →H Mg,Γ,η. Some basics of coherent
sheaves on Deligne–Mumford stacks can be found in [Kum22, Definition C.20].

Theorem 8.9. For any genus g ≥ 0, any marking data η =
(
(Γ1, χ1), (Γ2, χ2), . . . , (Γs, χs)

)
and

any set of dominant weights �λ = (λ1, . . . , λs) with λi ∈ Dc,i, the sheaf of conformal blocks

Vg,Γ,φ(η,�λ) is locally free over H Mg,Γ,η.

Proof. It suffices to show that the coherent sheaf VΣX ,Γ,φ(�qX , �λ) is locally free, where X is an
atlas of H Mg,Γ,η. Since X is a disjoint union of smooth irreducible schemes, we can work with
a fixed component Xα of X, and show that the associated sheaf of conformal blocks restricted
to Xα is locally free.

We introduce a filtration on H Mg,Γ,η:

H M
0
g,Γ,η ⊂H M

1
g,Γ,η ⊂ · · · ⊂H M

k
g,Γ,η = H Mg,Γ,η,

where H M
i
g,Γ,η is the open substack of H Mg,Γ,η with each geometric fiber consisting of at

most i many Γ-orbits of nodal points. Note that H M
0
g,Γ,η consists of stable smooth s-pointed

Γ-curves. With the restriction on the genus to be fixed g, there exists k ≥ 0 such that the number
of orbits of nodal points is bounded by k. This filtration induces an open filtration on Xα via δ,

X0
α ⊂ X1

α ⊂ · · · ⊂ Xk
α = Xα.

We now prove inductively that the coherent sheaf VΣ
Xi

α
,Γ,φ(�qXi

α
, �λ) is locally free, where �qXi

α

is the restriction of �q to Xi
α. When i = 0, in view of Theorem 7.10, VΣ

X0
α

,Γ,φ(�qX0
α
, �λ) is locally free.

(Observe that by [Har77, Chap. III, Theorem 10.2], ΣX0
α
→ X0

α is a smooth morphism.) Assume
that VΣ

Xi−1
α

,Γ,φ(�qXi−1
α
, �λ) is locally free where i ≥ 1. By the smoothing construction in Lemma 8.3,

for any x ∈ Xi
α\Xi−1

α , there exists a morphism βx : Dτ →H M
i
g,Γ,η such that βx(o) = δ(x) and

βx(gτ ) ∈H M
i−1
g,Γ,η\H M

i−2
g,Γ,η, where gτ is the generic point of Dτ . Recall that δ : X →H Mg,Γ,η

is étale and surjective, hence βx can be lifted to β′x : Dτ → Xα such that δ ◦ β′x = βx and
β′x(o) = x. It follows that β′x(gτ ) ∈ Xi−1

α \Xi−2
α . By Theorems 7.8 and 8.6, the rank of

VΣ
Xi−1

α
,Γ,φ(�qXi−1

α
, �λ) (which is locally free by induction) is equal to the dimension of VΣx,Γ,φ(�qx, �λ).
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It follows that VΣ
Xi

α
,Γ,φ(�qXi

α
, �λ) is also locally free (cf. [Har77, Chap. II, Exercise 5.8(c)]).

This concludes the proof of the theorem. �
The dimension of H Mg,Γ,η is equal to 3ḡ − 3 + s (cf. [BR11, Theorem 5.1.5]) if it is not

empty, where by Riemann–Hurwitz formula the genus ḡ of Σ/Γ for any Σ ∈H Mg,Γ,η, satisfies
the following equation (cf. [Har77, Chap. IV, Corollary 2.4]):

2g − 2 = |Γ|(2ḡ − 2) +
s∑

i=1

|Γ|
|Γi|(|Γi| − 1).

If dimH Mg,Γ,η = 0, then we must have ḡ = 0 and s = 3.

Lemma 8.10. If dim H Mg,Γ,η > 0, then any stable s-pointed curve (Σ̄, �p) of genus ḡ and
consisting of only one node, admits a stable s-pointed Γ-cover (Σ, �q) ∈H Mg,Γ,η.

Proof. By assumption, 3ḡ − 3 + s > 0. It follows that either ḡ ≥ 1 or s ≥ 4. Hence, we can always
find a stable s-pointed curve C̄ of genus ḡ over C[[τ ]] such that the special fiber C̄o has only
one node, and the generic fiber C̄K is smooth, where K = C((τ)). Let M ḡ,s be the moduli
stack of stable s-pointed curves of genus ḡ. By [BR11, Proposition 6.5.2(iii)], the morphism
H Mg,Γ,η →M ḡ,s given by (Σ, �q) �→ (Σ̄, �̄q), where Σ̄ = Σ/Γ and �̄q is the image of �q in Σ̄, is
surjective. It follows that after a finite base change of K , C̄K has a Galois cover CK with
Galois group Γ and the prescribed marking data. By semi-stable reduction theorem (cf. [BR11,
Proposition 5.2.2]), after another finite base change of K , CK can be uniquely extended to a
stable s-pointed Γ-curve C over C[[τ ]] (cf. [BR11, Proposition 5.1.2]). Hence, the special fiber
Co is a stable s-pointed Γ-curve, whose quotient Co/Γ is exactly the given stable s-pointed
curve C̄o. This concludes the proof of the lemma. �
Remark 8.11. (1) In the case Γ is cyclic, H Mg,Γ,η is irreducible (which can be deduced from
the irreducibility of H Mg,Γ,[ξ],[η] proved in [BR11, Corollary 6.4.3]). Then, by Lemma 8.10,
Theorem 8.9 and the factorization theorem (Theorem 5.4), one can see that to compute the
dimension of the space of conformal blocks on smooth stable s-pointed Γ-curve, we are reduced
to considering the case: cyclic covers over P1 with s = 3.

(2) For any s-pointed smooth Γ-curve (Σ, �q) and weights �λ = (λ1, . . . , λs) with λi ∈ Dc,qi , as
in Definition 3.5, we can attach the space of conformal blocks. Here we do not need to assume
that
⋃

i Γ · qi contains all the ramified points of Σ→ Σ̄. Thanks to the propagation theorem
(Corollary 4.5(a)), the dimension of the space of conformal blocks in this case can be reduced
to the case that all the ramified points are contained in

⋃
i Γ · qi when 0 ∈ Dc,q for any ramified

point q in Σ.
(3) The morphism f : H Mg,Γ,η →M g,s′ given by mapping the stable s-pointed Γ-curve

(Σ, �q) to the stable s′-pointed curve (Σ,
⋃

i,γ∈Γ γ · qi) (cf. Remark 8.2) (where s′ =
∑s

i=1 |Γ|/|Γi|)
is representable and finite (cf. [BR11, Proposition 6.5.2] for the corresponding result for
H Mg,Γ,[ξ],[η]; now composing this with the representable and finite morphism H Mg,Γ,η →
H Mg,Γ,[ξ],[η], the assertion about f follows). By taking the pushforward, the locally free sheaf
of conformal blocks on H Mg,Γ,η gives rise to many characteristic classes in the cohomology of
M g,s′ . It could give rise to interesting applications.

9. Connectedness of MorΓ(Σ∗, G)

In this section as well as in §§ 10–12, we consider a group homomorphism φ : Γ→ Aut (g) such
that Γ stabilizes a Borel subalgebra b of g. Moreover, Σ denotes a smooth irreducible projec-
tive curve with a faithful action of Γ with the projection π : Σ→ Σ̄ := Σ/Γ and G the simply
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connected simple algebraic group over C with Lie algebra g. Let B be the Borel subgroup of G
with Lie algebra b. Observe that in earlier sections, we did not require Σ to be smooth unless
explicitly stated.

We prove the connectedness of the ind-group MorΓ(Σ∗, G). In particular, we show that the
twisted Grassmannian Xq = G(D∗

q)
Γq/G(Dq)Γq is irreducible.

Let A lg be the category of commutative algebras with identity over C (which are not
necessarily finitely generated) and all C-algebra homomorphisms between them.

Definition 9.1. A C-space functor (respectively, C-group functor) is a covariant functor

F : A lg→ S et (respectively, G roup)

which is a sheaf for the fppf (faithfully flat of finite presentation—Fidèlement Plat de
Présentation Finie) topology, i.e. for any R ∈ A lg and any faithfully flat finitely presented
R-algebra R′, the diagram

F (R)→ F (R′)⇒ F
(
R′⊗

R
R′) (114)

in exact, where S et (respectively, G roup) is the category of sets (respectively, groups). In
particular, F (R)→ F (R′) is one-to-one.

From now on we shall abbreviate faithfully flat finitely presentedR-algebra by fppf R-algebra.
By a C-functor morphism ϕ : F → F ′ between two C-space functors, we mean a set map

ϕR : F (R)→ F ′(R) for any R ∈ A lg such that the following diagram is commutative for any
algebra homomorphism R→ S.

F (R)
ϕR ��

��

F ′(R)

��
F (S)

ϕS �� F ′(S)

Direct limits exist in the category of C-space (C-group) functors. For any ind-scheme X =
(Xn)n≥0 over C, the functor SX is a C-space functor by virtue of the faithfully flat descent
(cf. [Gro71, VIII 5.1, 1.1 and 1.2]), where SX(R) is the set of all the morphisms Mor(SpecR,X).
This allows us to realize the category of ind-schemes over C as a full subcategory of the category
of C-space functors.

We recall the following well-known lemma (cf. [Kum22, Lemma B.2]).

Lemma 9.2. Let F o : A lg→ S et be a covariant functor. Assume that

F o(R)→ F o(R′) is one-to-one (115)

for any R ∈ A lg and any fppf R-algebra R′.
Then, there exists a C-space functor F containing F o (i.e. F o(R) ⊂ F (R) for any R) such

that for any C-space functor G and a natural transformation θo : F o → G , there exists a unique
natural transformation θ : F → G extending θo.

Moreover, such a F is unique up to a unique isomorphism extending the identity map of F o.
We call such a F the fppf-sheafification of F o.
If F o is a C-group functor, then its fppf-sheafification F is a C-group functor.

We recall the following result communicated by Faltings. A detailed proof (due to B. Conrad)
can be found in [Kum22, Theorem 1.3.22].
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Theorem 9.3. Let G = (Gn)n≥0 be an ind-affine group scheme filtered by (affine) finite type
schemes over C and let G red = (G red

n )n≥0 be the associated reduced ind-affine group scheme.
Assume that the canonical ind-group morphism i : G red → G induces an isomorphism (di)e :
Lie(G red) ∼−→ LieG of the associated Lie algebras (cf. [Kum22, Corollary B.21]). Then, i is an
isomorphism of ind-groups, i.e. G is a reduced ind-scheme.

Definition 9.4 (Twisted affine Grassmannian). Recall that for any affine scheme Y = SpecS
with the action of a group H, the closed subset Y H acquires a closed subscheme structure by
taking

Y H := Spec
(
S/〈g · f − f〉g∈H,f∈S

)
,

where 〈g · f − f〉 denotes the ideal generated by the collection g · f − f . With this scheme
structure, Y H represents the functor R� MorH(SpecR, Y ).

For any point q ∈ Σ, let σq be the generator of the stabilizer Γq such that χq(σq) = εq, where
εq := e2πi/|Γq | (cf. Definition 3.1). Choose a formal parameter zq at q in Σ such that

σq · z−1
q = εqz

−1
q , cf. the identity (27). (116)

Consider the functor

R� G
(
R((zq))

)Γq/G
(
R[[zq]]

)Γq .

Its fppf-sheafification is denoted by the functor X q = X (G, q,Γ).
Recall that there exists an open subset V ⊂ G((zq)) (where G((zq)) := G

(
C((zq))

)
) such that

the product map

G
(
R[z−1

q ]
)− ×G(R[[zq]]

) � V(R) is a bijection for any R,

where G
(
R[z−1

q ]
)− is the kernel of G

(
R[z−1

q ]
)→ G(R), z−1

q �→ 0 (cf. [Fal03, Corollary 3] or
[Kum22, Lemma 1.3.16]). Moreover, the functor G

(
R[z−1

q ]
)− is represented by an ind-group

variety (in particular, reduced) structure on G[z−1
q ]− (cf. [Fal03, Corollary 3] and [Kum22,

Corollary 1.3.3 and Theorem 1.3.23]). This gives rise to a bijection(
G
(
R[z−1

q ]
)−)Γq ×G(R[[zq]]

)Γq � V(R)Γq . (117)

Declare {gVΓq/G[[zq]]Γq}g∈G((zq))Γq as an open cover of

Xq = X(G, q,Γ) := G((zq))Γq/G[[zq]]Γq

and put the ind-scheme structure on gVΓq/G[[zq]]Γq via its bijection

gVΓq/G[[zq]]Γq � (G[z−1
q ]−
)Γq induced from the identification (117)

with the closed ind-subgroup scheme structure on
(
G[z−1

q ]−
)Γq coming from G[z−1

q ]−. In partic-

ular,
(
G[z−1

q ]−
)Γq represents the functor

(
G(R[z−1

q ])−
)Γq . Thus, we get an ind-scheme structure

on Xq such that the projection G((zq))Γq → Xq admits local sections in the Zariski topology.
Moreover, the injection Xq ↪→ G((zq))/G[[zq]] is a closed embedding. Further, Xq represents the
functor X q since the ind-projective variety G((zq))/G[[zq]] represents the fppf-sheafification of
the functor G

(
R((zq))

)
/G
(
R[[zq]]

)
. In particular,

X q(C) = Xq. (118)

Let U (respectively, U−) be the unipotent radical of B (respectively, of the opposite Borel
subgroup B−). By considering the ind-subgroup schemes

(
U [z−1

q ]−
)Γq and

(
U−[z−1

q ]−
)Γq of
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(
G[z−1

q ]−
)Γq , it is easy to see that the Lie algebras

Lie
((
G[z−1

q ]−
)Γq
)

= Lie
(((

G[z−1
q ]−
)Γq
)
red

)
,

since the Lie subalgebras
(
u⊗ C[z−1

q ]−
)Γq and

(
u− ⊗ C[z−1

q ]−
)Γq generate the Lie algebra(

g⊗ C[z−1
q ]−
)Γq (cf. § 2), where Yred denotes the corresponding reduced ind-subscheme. Thus,(

G[z−1
q ]−
)Γq is a (reduced) ind-group variety (cf. Theorem 9.3). Hence, Xq also is a (reduced)

ind-projective variety.
Observe thatXq being reduced, it is the (twisted) affine Grassmannian considered in [Kum02,

§ 7.1] based at q corresponding to the twisted affine Lie algebra ĝπ(q) � L̂(g,Γq) (cf. § 2 and
Lemma 3.3) and its parabolic subalgebra L̂(g,Γq)≥0. To prove this, follow the same argument
as in [LS97, Proof of Proposition 4.7] and the construction of the projective representation of
G((zq))Γq given by (subsequent) Theorem 10.3.

Let q̄ = {q1, . . . , qs} be a set of points of Σ (for s ≥ 1) with distinct Γ-orbits and let Σ∗ :=
Σ\Γ · q̄. Recall that Ξ = Ξq̄ := MorΓ(Σ∗, G) is an ind-affine group scheme, which is a closed ind-
subgroup scheme of Mor(Σ∗, G) as Γ-fixed points. We abbreviate MorΓ(Σ∗, G) = G(C[Σ∗])Γ by
G(Σ∗)Γ. Then, Ξ represents the functor:

R ∈ Alg� Ξ(R) := MorΓ(Σ∗
R, G),

where Σ∗
R := Σ∗ × SpecR, with the trivial action of Γ on R. This follows from the corresponding

result for the functor R� Mor(Σ∗
R, G) (without the Γ-action) which is represented by G(Σ∗)

(cf. [Kum22, Lemma 5.2.10]).
Let Ξan denote the group Ξ with the analytic topology. The following result in the non-

equivariant case (i.e. Γ = (1)) is due to Drinfeld. We adapt his arguments (cf. [Kum22, Proof of
Theorem 8.1.1]).

Theorem 9.5. The group Ξan is path-connected and, hence, Ξ is irreducible.

Proof. Take any points q′1, . . . , q′n, q′n+1 ∈ Σ \ Γ · q̄ with distinct Γ-orbits and set (for any 0 ≤ i ≤
n+ 1)

Ξi = Ξq̄∪{q′1,...,q′i} = G(Σ∗
i )

Γ, where Σ∗
i := Σ∗\Γ · {q′1, . . . , q′i}.

Consider the functor
F ◦ : R� Ξn+1(R)/Ξn(R).

It is easy to see that

F ◦(R) ↪→ F ◦(R′), for any C-algebras R ⊂ R′. (119)

Let ̂Ξn+1/Ξn be the fppf-sheafification of F ◦ (cf. Lemma 9.2).
We claim that as the C-space functors

̂Ξn+1/Ξn �X q, (120)

where q = q′n+1. Define the morphism

Ξn+1(R)→X q(R), γ �→ γq,

where γq is the power series expansion of γ at q in the parameter zq. The above morphism clearly
factors through

Ξn+1(R)/Ξn(R)→X q(R)
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and, hence, we get a morphism of C-space functors

θ̂ : ̂Ξn+1/Ξn →X q.

Conversely, we define a map ψ̂ : X q → ̂Ξn+1/Ξn as follows. Fix R ∈ A lg. Take γR ∈
G
(
R((zq))

)Γq . Let G = G (Σ,Γ, φ) be the parahoric Bruhat–Tits group scheme (cf.
Definition 11.1). Then, by [Hei10, Proposition 4], γR corresponds to a G -torsor over Σ̄× SpecR
together with a section σR over (Σ̄\π(q))R and a section μR over (Dπ(q))R such that

μR = σR · γR, over (D×
q )R. (121)

This is possible since γR extends uniquely to an element of
(
G(π−1D×

π(q))
Γ
)
R

(cf. Definition 3.1).
There exists an R-algebra R′ with SpecR′ → SpecR an étale cover (in particular, R′ is a fppf
R-algebra) such that the pull-back G -torsor EγR′ over Σ̄R′ admits a section θR′ over (π(Σ∗

n))R′

(cf. [Hei10, Theorem 4]). (Observe that G being simply connected, generic GC(Σ) is simply
connected.) Define

θR′ = σR′ · ψθR′ (γR′), over (Σ∗
n+1)R′ ,

where σR′ is the pull-back of the section σR to (Σ̄ \ π(q))R′ and γR′ denotes the image of γR

in G
(
R′((zq))

)Γq . Now, set ψ̂(γR′) = ψθR′ (γR′) mod Ξn(R′). It is easy to see that ψ̂(γR′) does
not depend upon the choices of σR, μR, and θR′ satisfying (121). Moreover, ψ̂ factors through
G
(
R′[[zq]]

)Γq . Thus, we get a C-functor morphism (still denoted by) ψ̂ : X q → ̂Ξn+1/Ξn. Further,
it is easy to see that θ̂ and ψ̂ are inverses of each other. This proves the assertion (120). In
particular, the functor ̂Ξn+1/Ξn is also representable represented by its C-points ̂Ξn+1/Ξn(C).
We abbreviate Ξi(C) by Ξi. From (120), we see that

Ξn+1/Ξn ↪→ ̂Ξn+1/Ξn(C) �X q(C).

Moreover, from the above definition of ψ̂ and the identity (118), ψ̂ : X q(C) ∼−→ ̂Ξn+1/Ξn(C) lands
inside Ξn+1/Ξn. Thus, we get

Ξn+1/Ξn = ̂Ξn+1/Ξn(C) �X q(C). (122)

This identification gives rise to an ind-variety structure on Ξn+1/Ξn transported from that
of Xq = X q(C). Moreover, with this ind-variety structure, Ξn+1/Ξn represents the functor

̂Ξn+1/Ξn. It is easy to see (by considering the corresponding map at R-points) that with this
ind-variety structure on Ξn+1/Ξn, the action map:

Ξn+1 × (Ξn+1/Ξn)→ Ξn+1/Ξn

is a morphism of ind-schemes.
For any morphism f : SpecR→ Ξn+1/Ξn, there exists an étale cover SpecS → SpecR such

that the projection Ξn+1 → Ξn+1/Ξn splits over SpecS. From this it is easy to see that(
Ξn+1/Ξn

)an has the quotient topology induced from Ξan
n+1. Moreover, for any ind-variety

Y = (Yn)n≥0, any compact subset of Y an lies in some YN (which is easy to verify). Thus,
Ξan

n+1 →
(
Ξn+1/Ξn

)an is a Serre fibration. This gives rise to an exact sequence (cf. [Spa66, Chap. 7,
§ 2, Theorem 10])

π1((Xq)an)→ π0(Ξan
n )→ π0(Ξan

n+1)→ π0((Xq)an). (123)

However,
π1((Xq)an) = π0((Xq)an) = 0, (124)
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from the Bruhat decomposition (cf. [Kum02, Proposition 7.4.16]). Thus, we get

π0(Ξan
n ) � π0(Ξan

n+1). (125)

Now, we are ready to prove the theorem. Take

σ ∈ Ξq̄ := MorΓ(Σ∗, G) = G(C[Σ∗])Γ ⊂ G(K)Γ,

where K is the quotient field of C[Σ∗]. Since G is simply connected, by the following lemma,
G(K)Γ is generated by subgroups U(K)Γ and U−(K)Γ, where (as before) U (respectively, U−)
is the unipotent radical of B (respectively, of the opposite Borel subgroup B−). Moreover, U
and U− being unipotent groups and K ⊃ C, U(K)Γ � u(K)Γ under the exponential map (and
similarly for U−). Thus, we can write

σ = Exp(x1) . . .Exp(xd), for some xi ∈ u(K)Γ ∪ u−(K)Γ.

Thus, there exists a finite set q̄′ = {q′1, . . . , q′n+1} ⊂ Σ∗ with disjoint Γ-orbits such that all the
poles of any xi (which means the poles of f j

i writing xi =
∑

j e
j ⊗ f j

i for a basis ej of u or u−)
are contained in Γ · q̄′. Thus, σ ∈ Ξn+1. Consider the curve

σ̂ : [0, 1]→ Ξan
n+1, t �→ Exp(tx1) . . .Exp(txd) joining e to σ.

Since
π0(Ξan

n ) � π0(Ξan
n+1), by (125),

we get that e and σ lie in the same path component of Ξan, thus Ξan is path-connected. Using
[Kum02, Lemma 4.2.5] we get that Ξ is irreducible. �

Our original proof of the following lemma was more direct (and involved). We thank Philippe
Gille for pointing out the following argument relying on results of Borel–Tits and Steinberg.

Lemma 9.6. Let G,Σ,Γ be as in the beginning of this section and let K be the function field
of Σ. Let U (respectively, U−) be the unipotent radical of B (respectively, of the opposite Borel
subgroup B−). Then, G(K)Γ is generated (as an abstract group) by U(K)Γ and U−(K)Γ.

Proof. Denote Ko = KΓ. Then, G(K)Γ can be considered as a group scheme over Ko. Moreover,
since Γ stabilizes the Borel subgroup B of G(C), G(K)Γ is a quasi-split group scheme (over Ko).
Moreover, G(K ⊗Ko K̄o)Γ with the trivial action of Γ on K̄o can be identified with G(K̄o) since
Γ acts faithfully on K, where K̄o is the algebraic closure of K. Now, the lemma follows from
combining the results [BT73, Proposition 6.2 and Remark 6.6] and [Ste16, Lemma 64]. �
Remark 9.7. The above lemma is also true (by the same proof) for K replaced by C((zq)) and
Γ replaced by Γq. In particular, this gives another proof of π0

(
(Xq)an

)
= 0.

As a special case of Theorem 9.5, we get the following. The connectedness of Xq in a more
general setting is obtained by Pappas and Rapoport [PR08, Theorem 0.1].

Corollary 9.8. With the notation as in Definition 9.4, the (twisted) affine Grassmannian Xq

is an irreducible ind-projective (reduced) variety.

Proof. Let Σ = P1, q̄ = {∞, 0}, and the action of Γ = Γq given as follows: let σq be any generator
of Γq (of order eq := |Γq|). Define the action of Γq on P1 by setting

σq · z = e2πi/eqz, for any z ∈ P1.

Consider the natural transformation between the functors

G
(
R[z, z−1]

)Γq → G
(
R((z))

)Γq/G
(
R[[z]]
)Γq .
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This gives rise to the morphism between the corresponding ind-schemes:

θ : G
(
C[z, z−1]

)Γq → Xq = G((z))Γq/G[[z]]Γq .

From the isomorphism (cf. (122) of Theorem 9.5):

Ξn+1/Ξn � Xq

applied to the above example of Σ = P1, q̄ = {∞, 0} and the action of Γ as above, we get that θ is
surjective. SinceG

(
C[z, z−1]

)Γq is irreducible (by Theorem 9.5) and, hence, so isXq. Observe that
in the proof of Theorem 9.5 we used the connectedness and simply-connectedness of (Xq)an; in
particular, this corollary builds upon the connectedness of (Xq)an to prove the stronger result. �

10. Central extension of twisted loop group and its splitting over Ξ

We construct the central extensions of the twisted loop groupG(D∗
q)

Γq . We introduce the notion of
‘canonical’ splitting and prove the existence of its canonical splitting over Ξ := MorΓ(Σ \ Γ · q,G)
when c is divisible by |Γ|. The treatment in this section is parallel to that in [Kum22, § 1.4], where
the corresponding theory is explained in the untwisted case.

We continue to have the same assumptions on G,Γ and Σ as in the beginning of § 9. Fix any
base point q ∈ Σ and let Σ∗ := Σ\Γ · q and Ξ = Ξq := MorΓ(Σ∗, G). Then, Ξ is an irreducible
ind-affine group scheme (cf. Theorem 9.5). Let zq be a formal parameter on Σ around q satisfying
the condition (116). This gives rise to a morphism

Ξ ↪→ L q
G,

obtained by taking the Laurent series expansion at q (with respect to the parameter zq at q),
where L q

G := G((zq))Γq .

Definition 10.1 (Adjoint action of L q
G). Define the R-linear adjoint action of the group func-

tor L q
G(R) := G

(
R((zq))

)Γq on the Lie-algebra functor L̂(g,Γq)(R) :=
(
g⊗R((zq))

)Γq ⊕R.C
(extending R-linearly the bracket in L̂(g,Γq)(R)) by

(A d γ)(x⊕ sC) = γxγ−1 +
(
s+

1
|Γq| Res

zq=0
〈γ−1 dγ, x〉

)
C,

for γ ∈ L q
G(R), x ∈ (g⊗R((zq))

)Γq , and s ∈ R, where 〈 , 〉 is the R((zq))-bilinear extension of
the normalized invariant form on g (normalized as in § 2) and taking an embedding i : G ↪→ SLN

we view G(R((zq))) as a subgroup of N ×N invertible matrices over the ring R((zq)). From the
functoriality of the conjugation, γxγ−1 ∈ (g⊗R((zq))

)Γq and it does not depend upon the choice
of the embedding i. A similar remark applies to γ−1 dγ. Here dγ for γ = (γij) ∈MN (R((zq)))
denotes dγ :=

(
γij/dzq

)
.

It is easy to check that for any γ ∈ L q
G(R), A d γ : L̂(g,Γq)(R)→ L̂(g,Γq)(R) is a R-linear

Lie algebra homomorphism. Moreover, for γ1, γ2 ∈ L q
G(R),

A d(γ1γ2) = A d(γ1)A d(γ2). (126)

One easily sees that for any C-algebra R and x ∈ (g⊗R((zq))
)Γq , the derivative

Ȧ d(x)(y) = [x, y], for any y ∈ L̂(g,Γq)(R). (127)

Let H (λ) be an integrable highest weight (irreducible) representation of L̂(g,Γq) (with
central charge c). It clearly extends to a R-linear representation ρ̄R of L̂(g,Γq)(R) in

2249

https://doi.org/10.1112/S0010437X23007418 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007418


J. Hong and S. Kumar

H (λ)R := H (λ)⊗C R. A proof of the following result is parallel to the proof due to Faltings in
the untwisted case (cf. [BL94, Lemma A.3]).

Proposition 10.2. For any R ∈ A lg and γ ∈ G(R((zq))
)Γq , locally over SpecR, there exists

an R-linear automorphism ρ̂R(γ) of H (λ)R uniquely determined up to an invertible element of
R satisfying

ρ̂R(γ)ρ̄R(x)ρ̂R(γ)−1 = ρ̄R(A d(γ) · x), for any x ∈ L̂(g,Γq)(R). (128)

As a corollary of the above proposition, we get the following.

Theorem 10.3. There exists a homomorphism ρR : G
(
R((zq))

)Γq →PGLH (λ)(R) of group
functors such that

ρ̇ = ρ̇(C) : T1(L
q
G(C)) =

(
g⊗ C((zq))

)Γq → EndC(H (λ))/C · IdH (λ) (129)

coincides with the projective representation H (λ) of
(
g⊗ C((zq))

)Γq .

Definition 10.4 (Central extension). Let 0 ∈ Dc,q, where Dc,q denotes Dc for the twisted affine
Lie algebra L̂(g,Γq) (cf. Lemma 2.1 and Corollary 2.2). By the above theorem, we have a
homomorphism of group functors:

ρR : L q
G(R)→PGLHc(R),

where Hc := H (0) with central charge c for the twisted affine Lie algebra L̂(g,Γq). In addition,
there is a canonical homomorphism of group functors

πR : GLHc(R)→PGLHc(R).

From this we get the fiber product group functor Ĝ q
c :

Ĝ q
c (R) := L q

G(R) ×
PGLHc (R)

GLHc(R).

By definition, we get homomorphisms of group functors

pR : Ĝ q
c (R)→ L q

G(R) and ρ̂R : Ĝ q
c (R)→ GLHc(R)

making the following diagram commutative.

Ĝ q
c (R)

pR

��

ρ̂R �� GLHc(R)

πR

��
L q

G(R)
ρR

�� PGLHc(R)

The following is the central extension we are seeking:

1→ C∗ → Ĝ q
c

p−→ L q
G → 1, where Ĝ q

c := Ĝ q
c (C). (130)

It is easy to see that the Lie algebra Lie(Ĝ q
c (R)) := T1(Ĝ

q
c )R is identified with the fiber product

Lie algebra:

ĝq(R) =
(
g⊗R((zq))

)Γq ×
EndR((Hc)R)/R. Id

EndR((Hc)R),

for any C-algebra R.

Lemma 10.5. The Lie algebra ĝq := Lie Ĝ q
c (C) can canonically be identified with the twisted

affine Lie algebra L̂(g,Γq).
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Proof. Define

ψ : L̂(g,Γq)→ ĝq, x+ zC �→ (x, ρ̄(x) + zc Id), for x ∈ g((zq))Γq and z ∈ C.

From the definition of the bracket in L̂(g,Γq) and Theorem 10.3, ψ is an isomorphism of Lie
algebras. �

Combining Theorem 10.3, Definition 10.4, and Lemma 10.5, we get the following.

Corollary 10.6. We have a homomorphism of group functors,

ρ̂ : Ĝ q
c → GLHc

such that its derivative at R = C,

˙̂ρ : ĝq → EndC(Hc)

under the identification of Lemma 10.5 coincides with the Lie algebra representation

ρ̄ : L̂(g,Γq)→ EndC(Hc).

Moreover, for any γ̂ ∈ Ĝ q
c (R) and x ∈ ĝq(R),

ρ̂R(γ̂)ρ̄R(x)ρ̂R(γ̂)−1 = ρ̄R(A d(pR(γ̂))x), as operators on (Hc)R. (131)

Theorem 10.7. (1) The central extension p : Ĝ q
c → L q

G (as in Definition 10.4) splits over
G[[zq]]Γq for any c ≥ 1 such that 0 ∈ Dc = Dc,q. Moreover, we can choose the splitting so that
the corresponding tangent map is the identity via Lemma 10.5.

(2) The above central extension splits over Ξ if c is a multiple of |Γ|. Moreover, we can choose
the splitting so that the corresponding tangent map is the identity via Lemma 10.5.

(By Corollary 2.2, if |Γ| divides c, then 0 ∈ Dc.)
We call the unique splitting satisfying the above property canonical.

Proof. We first prove part (1) of the theorem. By Proposition 10.2 (using the fact, as in § 2, that
the annihilator of g[[zq]]Γq in Hc is exactly Cv+), the map

ρ : G((zq))Γq → PGLHc

restricted to G[[zq]]Γq lands inside PGL+
Hc

consisting of those (projective) automorphisms which
take the highest weight vector v+ of Hc to C×v+. Take the subgroup GL+

Hc
consisting of those

automorphisms which take v+ �→ v+. Then, the map GL+
Hc
→ PGL+

Hc
= Im(GL+

Hc
) is an iso-

morphism providing the splitting of GLHc → PGLHc over PGL+
Hc

. Thus, the central extension
p : Ĝ q

c → L q
G splits over G[[za]]Γq . Denote this splitting by σ.

We next prove that σ̇ (via Lemma 10.5) is the identity map: let

σ̇(x) = x+ λ(x)C, for x ∈ g[[zq]]Γq ,

where λ : g[[zq]]Γq → C is a C-linear map. Thus, for any x ∈ g[[zq]]Γq ,

˙̂ρ ◦ σ̇(x)(v+) = x · v+ + λ(x)cv+ = λ(x)cv+. (132)

However, since ρ̂(Im(σ)) ⊂ GL+
Hc

,

˙̂ρ ◦ σ̇(x)(v+) = 0, for all x ∈ g[[zq]]Γq . (133)

Combining (132) and (133), we get λ ≡ 0. This proves that σ̇ is the identity map.
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We now prove part (2) of the theorem. Consider the embedding obtained via the restriction:

iq : Ξ = G(Σ\Γ · q)Γ ↪→ G(D∗
q)

Γq .

In addition, consider the embedding

jq =
∏

jγ
q : G(D∗

q) ↪→
∏

γ∈Γ̂/Γq

G(D∗
γ·q),

where jγ
q : G(D∗

q)
∼−→ G(D∗

γ·q) is defined by

jγ
q (f)(γz) = γ · f(z), for γ ∈ Γ̂/Γq, z ∈ D∗

q , and f ∈ G(D∗
q).

Here Γ̂/Γq denotes a (fixed) set of coset representatives of the cosets Γ/Γq.
Let H̄1 denote the integrable highest weight module of highest weight 0 and central charge 1

of the untwisted affine Lie algebra L̂(g) based at q, i.e. the central extension of g((zq)), where
zq is a formal parameter for Σ at q. Identifying G(D∗

γ·q) with G(D∗
q) via jγ

q , we get a projective
representation ρ and the commutative diagram

G̃ q
ĵq

��

pq

��

Ĝ Γ·q
ρ̂

��

pΓ·q
��

GL(H̄1 ⊗ · · · ⊗ H̄1)

π

��
G(D∗

q)
jq

��
∏

γ∈Γ̂/Γq
G(D∗

γ·q)
ρ

�� PGL(H̄1 ⊗ · · · ⊗ H̄1)

(134)

where we take |Γ/Γq| copies of H̄1 and ρ̂ (respectively, ĵq) is the pull-back of GL(H̄1 ⊗ · · · ⊗ H̄1)
(respectively, Ĝ Γ·q) induced from ρ (respectively, jq). Since H̄1 has central charge 1, it is easy to
see that G̃ q is the central extension of G(D∗

q) corresponding to the central charge = |Γ/Γq|.
Since the L̂(g,Γq)-submodule of H̄1 generated by the highest weight vector is of central

charge |Γq| (cf. (2)), we get that the restriction pΓq of the central extension pq : G̃ q → G(D∗
q) to

G(D∗
q)

Γq is the central extension corresponding to the central charge |Γ|. By the same proof as
of [Sor99, Proposition 3.3] (see also [Kum22, Theorem 8.2.1]), the central extension pΓ·q splits
over G(Σ\Γ · q).

Now, any splitting σ of pΓ·q over G(Σ\Γ · q) clearly induces a splitting σ̂ of the central
extension pq : p−1

q (G(D∗
q)

Γq)→ G(D∗
q)

Γq over G(Σ\Γ · q)Γ.
Observe next that any splitting σ of pΓ·q : Ĝ Γ·q →∏

γ∈Γ̂/Γq
G(D∗

γ·q) over G(Σ\Γ · q) satisfies
σ̇ = Id. This follows trivially from the fact that

[g(Σ\Γ · q), g(Σ\Γ · q)] = g(Σ\Γ · q).
Now, the induced splitting σ̂ of the central extension pq : p−1

q (G(D∗
q)

Γq)→ G(D∗
q)

Γq over
G(Σ\Γ · q)Γ clearly satisfies ˙̂σ = Id. This proves the theorem. �

Remark 10.8. Because of the possible existence of non-trivial characters of GΓq (respectively,
GΓq′ for q′ ∈ Σ\Γ · q), the splittings of Ĝ q

c → L q
G over G[[zq]]Γq (respectively, G(Σ\Γ · q)Γ) may

not be unique.

By a theorem of Steinberg (cf. [Ste68]), the fixed subgroup Gσ is connected for any finite
order automorphism σ of G.
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Proposition 10.9. Let σ be a finite order automorphism of g of order m and let m divide s̄c,
where s̄ is defined above Corollary 2.2. For any λ ∈ Dc, the irreducible gσ-module V (λ) integrates
to a representation of Gσ.

Proof. Decompose σ = τεad h as in (3). To prove that V (λ) integrates to a Gσ-module, it suffices
to show that the torusHσ = Hτ acts on V (λ), whereH is the maximal torus ofG with Lie algebra
h (h being a σ-stable Cartan subalgebra). By Lemma 2.1, since m divides s̄c (by assumption),
λ(α∨

i ) ∈ Z for all the simple coroots α∨
i of gτ , i.e. λ belongs to the weight lattice of gτ . Thus, if

Gτ is simply connected, λ gives rise to a character of Hτ . Thus, in this case Hτ acts on V (λ).
Recall that for a diagram automorphism τ , Gτ is simply connected unless (g, r) = (A2n, 2), where
r is the order of τ . In this case Gτ = SO(2n+ 1) and following the notation of the identity (6),

[xo, yo] = −(α∨
1 + · · ·+ α∨

n−1 + α∨
n/2)

with the Bourbaki convention [Bou05, Planche II]. Since nλ,i is required to lie in Z≥0, for all
i ∈ Î(g, σ), and m divides s̄c, we get

λ(α∨
n)/2 ∈ Z.

Thus, λ belongs to the root lattice of gτ and, hence, λ gives rise to a character of Hτ . This proves
that Hτ acts on V (λ), proving the proposition. �

11. Uniformization theorem (a review)

We continue to have the same assumptions on G,Γ,Σ as in the beginning of § 9. We recall
some results due to Heinloth [Hei10] (conjectured by Pappas and Rapoport [PR08, PR10]) only
in the generality we need and in the form suitable for our purposes. In particular, we recall
the uniformization theorem due to Heinloth for the parahoric Bruhat–Tits group schemes G in
our setting. We introduce the moduli stack ParbunG of quasi-parabolic G -torsors over Σ̄ and
construct the line bundles over ParbunG .

Definition 11.1 (Parahoric Bruhat–Tits group scheme). Consider the Γ-invariant Weil restric-
tion G = G (Σ,Γ, φ) via π : Σ→ Σ̄ := Σ/Γ of the constant group scheme Σ×G→ Σ over Σ. More
precisely, G is given by the following group functor over Σ̄:

U � G(U ×Σ̄ Σ)Γ,

for any scheme U over Σ̄, where U ×Σ̄ Σ is the fiber product of U and Σ over Σ̄. Then, G → Σ̄
is a smooth affine group scheme over Σ̄.

This provides a class of examples of parahoric Bruhat–Tits group schemes.

For any point p ∈ Σ̄, the fiber Gp � G if p is an unramified point. However, if p is a ramified
point, the group Gp has unipotent radical Up and

Gp/Up � GΓq , for any q ∈ π−1(p). (135)

Take any point q ∈ π−1(p) and let Dp ⊂ Σ̄ (respectively, Dq ⊂ Σ) be the formal disc around p in
Σ̄ (respectively, around q in Σ). Then,

G (Dp) � G(Dq)Γq . (136)

Similarly, for the punctured discs D×
p and D×

q ,

G (D×
p ) � G(D×

q )Γq . (137)

Thus,
G (D×

p )/G (Dp) � Xq (cf. Definition 9.4).
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In particular, it is also an irreducible (reduced) ind-projective variety (cf. Corollary 9.8).

Definition 11.2 (Moduli stack of G -torsors). Consider the stack BunG assigning to a commu-
tative C-algebra R the category of GR-torsors over Σ̄R := Σ̄× SpecR, where GR is the pull-back
of G via the projection from Σ̄R to Σ̄. Then, as proved by Heinloth [Hei10, Proposition 1], BunG

is a smooth algebraic stack, which is locally of finite type.
We need the following parabolic generalization of BunG . Let �p = (p1, . . . , ps) (s ≥ 1) be a

set of distinct points in Σ̄. Label the points �p by parabolic subgroups �P = (P1, . . . , Ps), where
Pi is a parabolic subgroup of Gpi . Via the isomorphism (135), we can think of Pi as a parabolic
subgroup P qi

i of GΓqi for any qi ∈ π−1(pi).
A quasi-parabolic G -torsor of type �P over (Σ̄, �p) is, by definition, a G -torsor E over Σ̄

together with points σi in Epi/Pi. This gives rise to the stack: R� the category of GR-torsors
ER over Σ̄R together with sections σi of (ER|{pi}×SpecR

)/Pi → SpecR. We denote this stack by

ParbunG = ParbunG (�P ).

We recall the following uniformization theorem. It was proved by Heinloth [Hei10, Theorem 4,
Proposition 4, and Theorem 5] (and conjectured by Pappas and Rapoport [PR10]) for BunG

(in fact, he proved a more general result). Its extension to ParbunG follows by the same proof.
(Since G is simply connected, it is easy to see that so is the generic GC(Σ).)

Theorem 11.3. Take any qi ∈ π−1(pi), q ∈ Σ\π−1{p1, . . . , ps} and any parabolic type �P at the
points �p. Then, as stacks,

ParbunG (�P ) �
[
G(Σ\Γ · q)Γ

∖(
Xq ×

s∏
i=1

(GΓqi/P qi
i )
)]
, (138)

where G(Σ\Γ · q)Γ acts on Xq via its restriction to D∗
q and it acts on GΓqi/P qi

i via its evalua-

tion at qi. Here [G(Σ\Γ · q)Γ∖(Xq ×∏s
i=1(G

Γqi/P qi
i )
)
] denotes the quotient stack (cf. [Kum22,

Example C.18(b)]) obtained by taking the quotient of the projective ind-variety Xq ×∏s
i=1(G

Γqi/P qi
i ) by the ind-group G(Σ\Γ · q)Γ.

Moreover, the projection Xq ×∏s
i=1(G

Γqi/P qi
i )→ParbunG (�P ) is locally trivial in the

smooth topology.

Remark 11.4. Even though we will not use it, there is also an isomorphism of stacks:

ParbunG (�P ) �
[
G(Σ\Γ · �q)Γ

∖( s∏
i=1

(Xqi(P qi
i ))
)]
,

where Γ · �q :=
⋃s

i=1 Γ · qi and Xqi(P qi
i ) is the partial twisted affine flag variety which is, by

definition, G(D×
qi

)Γqi/Pi and Pi is the inverse image of P qi
i under the surjective evaluation map

G(Dqi)
Γqi → GΓqi .

Corollary 11.5. The ind-group scheme G(Σ\Γ · q)Γ is reduced. Moreover, it is irreducible by
Theorem 9.5.

Proof. We follow the same argument as in [LS97, § 5]. Consider the projection

β : Xq ×
s∏

i=1

(GΓqi/P qi
i )→ParbunG (�P ).
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By Theorem 11.3, there exists a neighborhood U →ParbunG (�P ) in the smooth topology such
that β∗(U) � U ×G(Σ\Γ · q)Γ. Since Xq is reduced by Corollary 9.8 and, of course, GΓqi/P qi

i

are reduced, we get that G(Σ\Γ · q)Γ is reduced. �
Definition 11.6 (Line bundles on ParbunG ). Let Ξ := G(Σ\Γ · q)Γ and assume that 0 ∈ Dc,q.
Recall (cf., e.g., [BL94, § 7.1]) that, by virtue of Theorem 11.3,

Pic
(
ParbunG (�P )

) � PicΞ

(
Xq ×

s∏
i=1

(GΓqi/P qi
i )
)
. (139)

Moreover, from the see-saw principle (also see [Har77, Chap. III, Exercise 12.6]), since Xq is
ind-projective and Pic of each factor is discrete,

Pic
(
Xq ×

s∏
i=1

(GΓqi/P qi
i )
)
� Pic(Xq)×

s∏
i=1

Pic(GΓqi/P qi
i ).

Let us consider the following canonical homomorphism:

PicΞ(Xq)×
s∏

i=1

PicΞ(GΓqi/P qi
i )→ PicΞ

(
Xq ×

s∏
i=1

(GΓqi/P qi
i )
)
.

Consider the morphism
Ĝ q

c →Hc\{0}, g �→ gv+,

where v+ is a highest weight vector of Hc. This factors through a morphism (via
Theorem 10.7(1)):

Xq = Ĝ q
c /(G(Dq)Γq × C×)→ P(Hc).

Pulling back the dual of the tautological line bundle on P(Hc), we get a Ĝ q
c -equivariant line

bundle L
q
c on Xq given by the character

G(Dq)Γq × C× → C×, (g, z) �→ z.

Observe that the canonical splitting of G(Dq)Γq is taken for the central extension Ĝ q
c correspond-

ing to the central charge c.
Now, if c is a multiple of |Γ|, the central extension Ĝ q

c → G(D×
q )Γ splits over Ξ. As in

Theorem 10.7(2), take the canonical splitting. This provides a Ξ-equivariant structure on the
line bundle L

q
c over Xq.

Similarly, for any λi ∈ Dc,qi , the gΓqi -module V (λi) with highest weight λi integrates to a
GΓqi -module V (λi) if |Γ| divides c (cf. Proposition 10.9). Take the highest weight vector v+ ∈
H (λi) which is an (irreducible) integrable highest weight L̂(g,Γqi) = ĝqi-module with highest
weight λi and central charge c. Then, V (λi) is the GΓqi -submodule of H (λi) generated by v+. Let
P qi

i be the parabolic subgroup of GΓqi which stabilizes the line Cv+. Define the GΓqi -equivariant
ample line bundle

L qi(λi) := GΓqi ×P
qi
i

(Cv+)∗ → GΓqi/P qi
i .

Then, L qi(λi) is Ξ-equivariant line bundle by virtue of the following evaluation map at qi:

ei : Ξ := G(Σ\Γ · q)Γ → GΓqi .

Thus, we obtain the Ξ-equivariant line bundle

Lq
c �L q1(λ1)� · · ·�L qs(λs)

over Xq ×∏s
i=1(G

Γqi/P qi
i ), for any c divisible by |Γ| and λi ∈ Dc,qi .
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Thus, under the isomorphism (139), we get the corresponding line bundle L(c;�λ) over the
stack ParbunG (�P ), where �P = (P q1

1 , . . . , P qi
s ) and P qi

i is the stabilizer in GΓqi of the line C · v+ ⊂
H (λi).

12. Identification of twisted conformal blocks with the space of global sections of
line bundles on moduli stack

In this final section, we establish the identification of twisted conformal blocks and generalized
theta functions on the moduli stack ParbunG .

We continue to have the same assumptions onG, Γ, Σ, and φ : Γ→ Aut(g) as in the beginning
of § 9. Let �q = (q1, . . . , qs) (s ≥ 1) be marked points on Σ with distinct Γ-orbits and let �λ =
(λ1, . . . , λs) be weights with λi ∈ Dc,qi attached to the points qi. Let P qi

i be the stabilizer of the
line Cv+ ⊂H (λi) in GΓqi .

Recall the definition of the moduli stack ParbunG (�P ) of quasi-parabolic G -torsors over (Σ̄, �p)
of type �P = (P q1

1 , . . . , P qs
s ) from Definition 11.2, where �p = (π(q1), . . . , π(qs)). In addition, recall

from Definition 11.6 the definition of the line bundle L
q
c over Xq for any c such that 0 ∈ Dc,q,

and any q ∈ Σ\⋃s
i=1 Γ · qi and the definition of the ample homogeneous line bundle L qi(λi) over

the flag variety GΓqi/P qi
i . When |Γ| divides c, these line bundles give rise to a line bundle L(c;�λ)

over the stack ParbunG (�P ) (cf. Definition 11.6).
The following result confirms a conjecture by Pappas and Rapoport [PR10, Conjecture 3.7]

in the case of the parahoric Bruhat–Tits group schemes considered in our paper.

Theorem 12.1. Assume that |Γ| divides c and Γ stabilizes a Borel subgroup of G. Then, there
is a canonical isomorphism:

H0(ParbunG (�P ),L(c, �λ)) � VΣ,Γ,φ(�p,�λ)†,

where VΣ,Γ,φ(�p,�λ)† is the space of (twisted) vacua (cf. identity (17)).

Proof. From the uniformization theorem (Theorem 11.3), there is an isomorphism of stacks:

ParbunG (�P ) �
[
G(Σ\Γ · q)Γ

∖(
Xq ×

s∏
i=1

(GΓqi/P qi
i )
)]
.

Moreover, by definition, the line bundle L(c, �λ) over ParbunG (�P ) is the descent of the line
bundle

Lq
c �L q1(λ1)� · · ·�L qs(λs)

over Xq ×∏s
i=1(G

Γqi/P qi
i ) (Definition 11.6). Thus, we have the following isomorphisms:

H0(ParbunG (�P ),L(c, �λ)) � H0

(
Xq ×

s∏
i=1

(GΓqi/P qi
i ),Lq

c �L q1(λ1)� · · ·�L qs(λs)
)G(Σ\Γ·q)Γ

� (H ∗
c ⊗ V (λ1)∗ ⊗ · · · ⊗ V (λs)∗

)G(Σ\Γ·q)Γ

� (H ∗
c ⊗ V (λ1)∗ ⊗ · · · ⊗ V (λs)∗

)g(Σ\Γ·q)Γ

� VΣ,Γ,φ(�p,�λ)†,

where the first isomorphism follows from [BL94, Lemma 7.2] (also see [Kum22,
Proposition C.23]); the second isomorphism follows from the standard Borel–Weil theorem
and its generalization for the Kac–Moody case due to Kumar as well as Mathieu
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[Kum02, Corollary 8.3.12]; the third isomorphism follows from [BL94, Proposition 7.4] since
G(Σ\Γ · q)Γ is reduced and irreducible (Corollary 11.5) and Xq is reduced and irreducible by
Corollary 9.8; and the last isomorphism follows from propagation of vacua (Corollary 4.5(b)).
This finishes the proof of the theorem. �
Remark 12.2. (a) If we drop the assumption that

(∗) Γ stabilizes a Borel subgroup of G,

we still have the isomorphism:

H0(ParbunG (�P ),L(c, �λ)) � (H ∗
c ⊗ V (λ1)∗ ⊗ · · · ⊗ V (λs)∗

)g(Σ\Γ·q)Γ (140)

since Theorem 11.3 remains valid without the assumption (∗). Since our Propagation Theorem
(Corollary 4.5) requires the assumption (∗), the space on the right side of (140) is not known to
be isomorphic with VΣ,Γ,φ(�p,�λ)† in general.

(b) The condition ‘|Γ| divides c’ cannot, in general, be dropped since for λi ∈ Dc,qi to be
a dominant integral weight of gΓqi imposes some divisibility condition on c with respect to Γqi

(cf. Lemma 2.1 and Proposition 10.9).
In addition, Heinloth’s example [Hei10, Remark 19(4)] shows that the line bundle

Lq
c �L q1(λ1)� · · ·�L qs(λs)

does not, in general, descend to the moduli stack ParbunG (�P ) for an arbitrary c.
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