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Abstract

A number is squareful if the exponent of every prime in its prime factorization is at least two. In this
paper, we give, for a fixed /, the number of pairs of squareful numbers n, n + [ such that »n is less than a
given quantity.
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1. Introduction

Recall that a positive integer n is a squareful number when, if a prime number p
divides n, then p2 also divides n. In other words, the exponents e; in the prime
factorization p{'pS ... p;” of n are all at least two. Hence all numbers of the form
a*b? are squareful. In fact, any squareful number n can be written uniquely as a*b> for
some positive integers a and b, with b squarefree. Here squarefree means that, in the
prime factorization of n = pi‘ pgz ... pv, all the exponents e; are equal to one. It is well
known (see, for example, [7]) that there are asymptotically Cx!/? squareful numbers
up to x for some positive constant C. Similar to the concept of twin primes, one can
talk about twin squareful numbers, namely when both n and n + 1 are squareful. By
looking at the Pell equation x> — 8y*> = 1, one can see that there are infinitely many

twin squareful numbers. In the summer of 2009, Koo posed the following question.

QuesTionN 1. How many twin squareful numbers n, n + 1 are there with n < x? Do they
have ‘zero density’ among all squareful numbers up to x?
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More generally, we consider the following question.

Question 2. For a given positive integer /, how many twin squareful numbers n, n + [
are there with n < x? Do they have ‘zero density’ among all squareful numbers up
to x?

Let N(x; ) denote the number of positive integers n < x such that n and n + [ are
both squareful.

We will prove the following result.

THEOREM 3. Ifx>2 and [ > 1, then
N(x; 1) < ds(Dx*3(log x)?,
where ds(1) is the number of ways to write | as a product of three positive integers.

Since 2/5 < 1/2, this shows that twin squareful numbers indeed have ‘zero density’
among all squareful numbers if / is not too big. For a fixed integer /, we have a slight
improvement.

TueorREM 4. If x> 2 and | > 1, then
N(x; 1) <; x"" log x.

Note that 7/19 = 0.36842.. . ..
We suspect that the following conjecture is true.

ConsecTurk 5. For any positive e, there exists a positive constant C, such that
N(x; 1) < Cext
forall x,/> 1.

Towards Conjecture 5, we have the following conditional result.

THEOREM 6. Assume the abc-conjecture. Then for any positive integer | and any
positive e,

N(x; 1) <y x°.

The paper is organized as follows. We prove Theorems 3 and 6 first, then the more
involved Theorem 4. Throughout the paper, we write F(x) < G(x) or F(x) = O(G(x))

.....

,,,,,

Also, |§| stands for the number of elements in a set S'.
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2. Proof of Theorem 3
To begin, let us define the divisor function

d2’3(l’l)= Z 1.

a,b
a*b’=n

In particular d, 3(n) is supported on squareful numbers only. Clearly,

NG D<) dos(mydaz(n+ D). ()
This looks like the divisor sum
> dmyd(n +1) 2
nsx

where d(n) is the usual divisor function, which counts the number of divisors of n.
Many people have studied (2), starting with Ingham [6]. Our inspiration comes from
Ingham’s work.

Proor oF Tueorem 3. The sum )., dr3(n)d3(n+1) in (1) can be rewritten as
counting the number of quadruples of positive integers

S ={(a,b,c,d):a’b® - *d> =1, d® < x}.
We will switch our focus to the variables a, b, c, d, just as Ingham did. Observe that
AP d = (czd3)(czd3 +D)<x(x+0)< 2%% = X.

Let 0 < A < 1 be a parameter, which we will choose later. Clearly either a>c> < X* or
b*d® < X'=*. Let S| be the subset of § satisfying the extra condition a’c?> < X* and S,
be the subset of S satisfying the extra condition 5°d® < X'~*. Then

Sil= ). Ni(@e) and [Sal= ). Na(h,d),
ac<XA? bd<X(1-D/3
where
Ni(a, ¢) = {(b,d): a®b® — *d® =l and &° < x/c?)|
and
No(b, d) = {(a, ¢): bPa® — d°c? =l and ¢* < x/d°})|.

We have a Thue equation of the form Ax> — By’ =1 in Ni(a, ¢). A uniform bound
on the number of solutions, depending on the degree and / only, was first obtained
by Evertse [4]. Here we use a later improvement by Bombieri and Schmidt [2] and
have N;(a, ¢) < C3“? for some positive absolute constant C, where w(l) denotes the
number of distinct prime factors of /. Hence

1S 1] < 39O xY2 Jog X
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by a standard result on divisor sums. It is worth mentioning that when /=1, a
remarkable result of Bennett [1] gives Ni(a, ¢) < 1.

As for Ny(b, d), here we are counting the number of solutions to a Pell equation. By
Estermann [3, Hilfssatz 2], N,(b, d) < 2d(l)(log X + 1). Hence

1S5 < d()X1=Y3(log X)?.
On choosing 4 = %
S| <18 1] + 182 < ds(DX'(log X),

where d3(/) is the number of ways to write [ as a product of three positive integers
and 3“0 < ds(l). Therefore N(x) < |S| < ds(I)x*>(log x)?, as X < x?, which gives
Theorem 3. O

3. Proof of Theorem 6

First, let us recall the famous abc-conjecture. For a positive integer n, define R(n),
the kernel of n, by R(n) =[], p, where the product is over all the prime numbers that
divide n. For example, R(8) =2 and R(72) = 6. Considering the equation a + b = c,
the abc-conjecture states that for every € > 0,

¢ <¢ R(abe)'*€

for any relatively prime integers a, b, c.
Proor or THEOREM 6. As in the previous section, we consider the set
S ={(a,b,c,d):a’b® - *d® =1, *d < x).
Rearranging the equation,
Ad +1=a’b’.
3

Suppose that k is the greatest common divisor of ¢?d>, [ and a’b®. There are at
most d(l) possibilities for k. For each fixed k, let k= p{'py ... py" be its prime
factorization. Observe that if a®b? is divisible by k, then azb% [k=p{'p5* ... pira?b’
for some d’, b’ and ay, @y, ..., a, €{0, 1} where @; = 1 when the exponent of p; in
the prime factorization of a?b®/k is exactly one, and a; =0 otherwise. Similarly,
Ad k= pf‘pgz .. .p[f"c’zd’3 for some ¢’, d’ and B1,82,...,B8€{0, 1} where B; =1
when the exponent of p; in the prime factorization of ¢?d>/k is exactly one, and 8; = 0
otherwise. So we are reduced to counting the number of solutions in @', &', ¢’, d’ to

’ ! l o (0% ( 7 ’
]ﬁ'pgz ...pf’czd3+ % =p{' Py’ ...p;’a2b3.
By the abc-conjecture and the definition of R(n), for fixed k, a1, ..., @, B1, ..., B

7. 7. 7 /7. / ’ l , ’ / 1+6/2
?d?,a?b”? <. R (p/f‘pgz Pt 3)(%)(19(;‘[);2 L pd?h?)

< ll+e/2(a/bfczd/)1+5/2
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because R(mn) < R(m)R(n). Thus
a/2b/3c/2d13 <. lZ+e(alblcld1)2+e

which implies that b'd’” < (a’c’)¥/179 <« x¢/(1=9 < x?¢ for € < 1/2. Hence there are
OE,Z(xzf log x) choices for the pair (»’,d"). For each such pair of b’ and d’, the Pell
equation

ptiflpgz o p?rb/3ar2 _ p/flpgz o pérd/ficlz =1k

has at most O(d(//k) log x) solutions in (a’, ¢’) by [3, Hilfssatz 2]. Consequently,

taking into account all the possibilities for k, «1,...,a,, Bi,..., [, there can be
at most O (d(1)2"2d(1/k)x*¢ log® x) = O.;(x*¢) quadruples in . This completes the
proof of Theorem 6 as € can be arbitrarily small. O

4. Proof of Theorem 4

We will prove Theorem 4 for the case where [/ = 1 and indicate how to modify the
proof for general / at the end of this section. We need a result of Huxley [5] on rational
points close to a curve.

THEOREM 7. Suppose that f is defined on the interval [0, M] and is 21+ 2 times
continuously differentiable with

(r) Floks
ARG Vr=0,1,2,...,20+2.
r! M
Assume that A .
DrsFONN 2 (mrprmy ) Vo= 12004,
where
flkri=)
D n =d t(—) .
D= A T b
Let
r r A
R:{(m, —)IOSMSM, 1 SqSQ,(r,q): ]"f(m)—— 3_2}
q q q

LetT=Q*and A< 1/2,C>1,M>2, Q>2, T >4. Then
IR| <, (C1+2M1T)1/(2Z+1) 4 (C213+812+1 11+4A1+1 Tl)l/(2(l+1)2)M‘
In particular, when / = 2, the above theorem gives
IRl < (C*M?T)'° + (CT*A’ T M. 3)

Proor oF THEOREM 4. Recall from the previous section that we want to count the
number of quadruples of positive integers

S ={(a,b,c,d):a*b®-*d®=1,x/2 < 32d* < x}.
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Note that (a,c) =1 = (b, d) automatically. So we want |a’b® — ¢?d’|=1. Divide
everything by ¢?b*, and then

a & 1
S T
Upon factoring, we see that
a dP|a &7 1
T2 | P TC] T
Hence
a & 1 1 1

“4)

-_——— | {—_——— = —
c B2 T Epdalec  ach?
Suppose that | <R} <a<2R; and 1 <R <c <2R;. Define
232
fold) = =
where s
Med<m< (i)
2 R
since c’d® < x. Based on (4), we will apply Theorem 7 to count the set
M A
R,,Mz{(d,f): B d<MRy<c<2R, (a0 =1, |fd) - 4| < —}
’ cl 2 cl™ ¢

where A =4R,/R;b?. Now with [ =2, C =100, 1 = M>2/b32, the reader can check
that f is six times continuously differentiable and satisfies

fO®%x + M/2)|  A1007*!
0 < M2y forr=0,1,2,...,6and x € [0, M/2].
As for the determinant conditions in Theorem 7, let g(x) = c¢(x + M/2)* with a ¢ Z.
Then ©
&0 < @etor My
where (@) =a(a—1)...(a— k.+ 1)/k!. Thus
(3)
Dsateton = £ = cla+ My @,
V) g
_l 3! 20 |_ 2 2e-3) [(@)3  (@)2
D3,2(g(-x)) - g(4)()€) g(3)()€) =C ()C + M/z) (CZ)4 (0’)3 s
41 3!
P P ¢V
3! 2! 1!
(@)3 (@) (o)
4) 3) (2)
Daatgty= | £ £ = s M2V (@ (@,
ag > 2! @s (@) (@)
P Y P
5! 4! 3!
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In particular, if g(x) = f,(x + M/2), then

3 -1/16
D31 (fp(x + M/2)) = b+ M2’
~ _5/210
D3 (fp(x+ M/2)) = bt M/2)52
and 15
et
D33(fp(x + M/2)) = b+ M2

The determinant conditions can be easily seen to be true.
In our situation, T = A(2R,)?. To ensure that A < 1/2, note that

4R, 16R,R; 16R:R, 32R\R,
A= = < <
R QR )~ &b} x

as a®b’ > x/2. Hence to ensure that A < 1/2, we need the condition
RiR; < )C/64

To ensure that T = 4(M>/?/b*?)R? > 4, we require M > b/Rg/ 3. What happens
when M < b/R}>? From the definition of Ry,

1 a d A1 4 1 4
— << —

3/2
< t=< =+ —— <=+ —,
2R, T ¢ T b2 2 R% R\R)b? R% R;

&)

which is impossible when R, > 3. When R, < 3, at most a finite number of a/c satisfy
(5) and Ry < ¢ <2R,. Hence, when M < b/R;B,

|Rp.m| < M. 6)

Now by (3), when b/R;" < M < (x/R})'%,

M32 \1/5 M3/2 \2\1/18 MTIORS — pf1/6 R7/18
) o) " e ©

2
IRy M| < (M 5 D32 R; H3/10 + R}/Gbm :

Summing over all dyadic intervals over M for (6) and (7),

7/30 7/18
X X
Ry <

— + + R
Rézt/3 R;/15b3/10 R:/6R;/18bz/3
where

a x \173
Rb:{(d,—):lsds(i) Ry<c<2R. (a,c)=1,

<é}
2 )

fild) -2
C
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Now summing over b < ((x + 1) /R%)l/ 3, we see that the set of quadruples in S with the
extra conditions R} < a < 2R and R, < ¢ < 2R;, which we denote by S, &,, satisfies

2/3 x7/15 1/2

X
|SR1 Rzl < + + .
” 4/3 p4/3 1/15p7/15 7/18 7/18
Rl R2 R2 Rl Rl RZ

By symmetry, we also have

2/3 x7/15 1/2

X X

ISR, R, < + + .
; 473 oA/3 1715 57/15 7/18 7/18
R"R, R/""R, R/"R,

Therefore, since min(a, b) < Vab,

2/3 x7/15 1/2

X
IS R, 7 < + + . (8)
’ 4/3 p4/3 4/15 p4/15 7/18 57/18
Rl RZ Rl R2 Rl R2

We now finish the proof of Theorem 4. By the result of Bennett [1], the equation
a*b® — c*d® = 1 has at most one solution for each pair of a and ¢. Hence

ISR, R, | < RiR;. 9)
When R R, > x/64,
2
(614) (bd)® < (R\R)*(bd)’ < a®b’Pd® < x(x + 1) <2x°
which implies that bd <2'3/3. So there are at most finitely many Pell equations

a*b’ — c*d® = 1, each having O(log x) solutions in a and c. Together with (8) and (9),
this gives, by summing over R; = 2/ and R, = 2/,

Sl D) Saal+ D Saalt D) Sxal

i,j i.j Lj
2i+i<x7/19 X9 <0i*i<x /64 20> x/64
< Z 20 4 Z X + it + X +1lo
— — — X
4 - 24G+)/3 T DA+)/15 T 2T(i+))/18 g
i,j L]
2[+jsx7/l9 x7/19<2[+j<x/64

< x"""% Jog x.

Finally summing over dyadic intervals x/2%0 < 2dP < x/2!, where i=0,1,2,...,
gives Theorem 4.

For general /, one notes that the solutions to a’h® — c?d® =1 may not satisfy
(a, ¢) = 1. But they can be divided into classes of solutions to a’?b* — ¢’>d® = I/ f* with
(@', ¢’) = 1 according to different divisors f> of I. For each such modified equation the
above proof works, except that the implicit constants may depend on /. One should
also replace the use of Bennett’s result with Bombieri and Schmidt’s result on the Thue
equation. O
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