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X-ray energy dispersive spectroscopy (EDS) for materials characterization is one of most widespread             
analytical methods. When EDS is applied in rastering spatial patterns, the aggregate spectra yield              
hyperspectral images (HSI) that provide a quick and precise interpretation of the elemental spatial              
distribution of nanomaterials. However the long dwell time required for acquisition of each spectrum              
makes the experiments highly resource-intensive. We discuss here a Deep Learning approach that uses              
neural networks to deconvolute overlapping spectra having a weak signal-to-noise ratio, thereby making             
more precise and definite interpretation possible with shorter imaging times and electron doses. 

When the sample probe acquires a single spot, the emitted x-ray photons are observed and binned in an                  
energy spectrum. Depending on spot size and beam energy, the detected x-rays may come from               
electron-sample interaction of multiple elements on the surface and at depth. In such a case, peak                
overlap can occur and limit our ability to separate and quantify the individual elemental abundance.               
Straightforward spectral interpretation such as measuring peak-heights, integrating under peaks, and           
even computing ratios of observed peak integrals are inadequate for resolution of complicated             
materials. More sophisticated multivariate statistical solutions such as principal components analysis           
(PCA) [1] take advantage of x-ray counts in all recorded bins in order to find a linear combination of                   
bins that produce the best discrimination between competing materials. Such approaches improve            
chemical resolution but are still insufficient for many complicated materials: they may require reference              
spectra (linear least-square fitting), show unreal spectral response (PCA) or fail with low signal-to-noise              
ratio (non-negative matrix factorization). 

Deep Learning, the application of deep neural networks, presents advantages over multivariate statistical             
techniques and other machine learning approaches because their implicit mathematical models permit            
extensive nonlinearity; they exhibit great potential to learn from examples, and there are many successes               
where they are capable of correctly labeling input signals. Here, we used neural networks to identify the                 
elements abundance in a HSI by training a neural network with Monte-Carlo simulated training set. 
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The first stage of a Deep Learning solution is the training of the neural network where many example                  
cases are evaluated and used to update the mathematical model. The second stage is inference whereby                
the model is presented with an unknown test and asked to make a prediction (in this case, to identify the                    
compounds responsible for the observed spectrum). Once a model is trained over a representative set of                
known examples, it may be used countless times for the prediction on unknowns. 

We implemented our Deep Learning solution as an extension to Dragonfly, a software platform for               
image analysis that is free for non-commercial use. Dragonfly has previously been shown useful for the                
inspection and analysis of HSI and other high-dimensional signals [2]. Our extension permits the user to                
pair HSI with their corresponding chemical maps. These pairings constitute the examples used for              
training data. Users can prepare these training data experimentally by analyzing samples where the              
chemical composition is already known with high spatial accuracy. Or they may create training data by                
simulation of x-ray spectra from first principles, using tools such as MC X-ray [3] 

The trained models show high predictive power. Figure 1 shows the simulated chemical map along with                
the interpreted map as predicted by the trained 1-dimensional convolutional neural network. The model              
was trained with simulated EDS spectra representing various concentrations of Al, Ti, V and Fe. 

Being able to interpret noiser, lower dwell-time EDS experiments is important for high-throughput             
chemical mapping. Our solution here, offered as a Dragonfly extension, makes it easy for users to train                 
new models, and it is highly portable since users can share their trained models in the Infinite Toolbox                  
online repository. 
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Figure 1. Schematic of mapping of spectrum to 1D convolutional neural network. 
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