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THE CARATHEODORY METRIC AND
ITS MAJORANT METRICS

JACOB BURBEA

1. Introduction. One of the main purposes of the present paper is to
provide a proof for the following statement:

THEOREM A. Let M be a complex manifold of a complex dimension n. Let ¢
be a fixed point in M such that there exists a square integrable holomorphic
n-form a(z) on M with «(¢) # 0. Then C({ : v) < S({ : v) for each holomorphic
tangent vector v € G" Here C = Cy and S = S, are the Carathéodory and the
Bergman (differential) metrics on M respectively. Moreover, if for some v,

C({t:9)>0,then C(¢:v) < S(:v).

When M is a bounded domain in C”, part of this theorem is already men-
tioned in the Fundamental Theorem I of Look [7] and was again amplified
by Hahn [4]. Theorem A is obtained as a special case of Theorem 5. The
method of proof used in this paper is that of the method of minimum integral
(cf. Bergman [1, p. 26]) applied to the Bergman kernel function of M. Since
this method could be well applied on any Hilbert space of holomorphic func-
tions which possesses a reproducing kernel, we obtain a more general assertion
(Theorem 1).

As in the Bergman case the reproducing kernel induces a Kihlerian metric
on M. We compare the sectional Riemannian curvature of this metric with the
Carathéodory metric (Theorems 2,6). As a corollary of this theorem we will
establish an estimate for the curvature of the Bergman metric which is a
slight improvement on a result of Fuks [3] (see Theorem 3). We also study a
function that generalizes the Bergman metric (Theorem 4).

Specifying our results for # = 1, we obtain relationships between the
analytic capacity and curvatures of certain conformal invariant metrics. The
most important relationship is the one showing that the curvature of the
analytic capacity metric is always < —4. This fact was first proved by Suita
[9] and generalized in [2].

2. Kernel functions and metrics. In this section we assume that M is
a domain in C* The case when M is a complex manifold is postponed to the
next section. We assume that on M we have a Hilbert space H,(M) of all
holomorphic functions f in M normed by ||f||2 = [ |f(2)|*duy (z). Here duy is
a positive measure on M or on any other set determining the holomorphic
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functions in M, for example the “Silov boundary” of M. We also assume that
point evaluations are bounded linear functionals on H,(M). Therefore, H,(M)
possesses a reproducing kernel K(z, {) = K, (z, {) and convergence in the
norm implies uniform convergence on compacta of M. K(z, Z) is real analytic
and non negative. Let.# = {{ € M: there exists f € Ho(M) with f(¢) # 0}.
Then.# is open in M and clearly . # = {¢ € M: K(¢, {) > 0}.

Let v € C* — {0} and z € C". The following vector fields (in the direction
of v) are defined for any C”-function at z;

a," = 0,0,"Y, 9, = an vj—a—, m=0,1,....
=1 0z

Thus 98,°(2) = f(z) for each f. Likewise we can define d,” where
3, = 25-17,;0/0%,.

Let H(M : A) be the family of holomorphic functions from M into the unit
disc Ain C. For fixed ¢ € M we write He (M : A) = {f € H(M : A): f({) = 0}.
The Carathéodory metric (cf. Reiffen [8]) is given by

C(t:v) = Cult o) = sup {[3,f(0)]: f € H(M: A)}.
Evidently
C(s 2 v) = sup {[8.f(5)]: f € He (M : A)}.

By a normal family argument there exists an F € H{(M : A) such that
3,F(t) = C(¢ :v). Here F(z) = F(z;¢,v)and C({ : v) = 0. The Carathéodory
metric is a function defined on the complex tangent space of M at ¢. In fact,
if ¢: M — M* is a holomorphic mapping then

Corr(8(5): ¢x(v)) = Car(§ 2 0),

where [¢+(v)]; = 9.6,(¢),j = 1,...,n,and ¢() = (¢1(¢), ..., ¢a({)). Con-
sequently, if ¢: M — M* is a biholomorphic mapping of M onto M* then

Cor(9(0): d4(®)) = Cu(¢:0). Let & = {(f, v) € M X (C" — {0}): there
exists f € H(M : A) with 9,f(¢) # 0}. Again, .9/ is open in M X (C* — {0})
and for (¢, v) € &7, 8,F(¢) = C(¢:v) > 0 where F is as before. Clearly,
o = M X (C* — {0}) whenever M is bounded.

Let ¢ € # and (¢, v) € &/. Consider the sets

An(t ) = {f € Ho(M): 9,5f(§) = pmi B = 0,1,...,m};
m=20,1,....

These sets are convex and closed subsets of H,(M) and they are not empty;
for, the function

2.1)  en() = e el C=CE¢:v),K=K(¢, ),

belongs to 4,,(¢ : v) for everym = 0, 1, .. .. Let y,, be the unique solution of
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the minimum problem

(22) M= Mu( ) = min {|[f|]: f € 4, (52 0)}
Then (cf. [1, p. 26])

2.3) M = Tnei/Tm,

where

Jn = JTn(§:0) = WK, 3,K,...,3,"K], K =K(,{),

is the (m 4+ 1) order Wronskian with respect to the vector field 9, evaluated
at ¢. Here J_; = 1 and Jy = K(¢,{). Thus

K d,K
3,K 9,0,K
Therefore, K=2J,(¢ : v) is exactly the Bergman metric S2({ : v) when du, is

the usual volume element of M.
Using (2.3) we find that J,, = (ITf2 )=t > 0. Let

Ji(¢ :0) = = K26,,5,,10gK.

m -2
(24) R :v) = (H k!) K ™1, 0), mz1,
k=1

and we retain the alternative symbol S%(¢ : v) for Ry (¢ : v).

THEOREM 1. Let ¢ € .M C M. Then

(1) [Cu (¢ s v)]™m+D < R, (¢ :v) for eachv € C* — {0}.

(i) If also (¢, v) € &7 and duy acts on M, then [Cy (¢ : 9)]""D < R, (¢ : v).

Proof. (i) We can assume that (¢, v) € 7. By (2.1) and (2.2) we have
“‘Pk”2 = M. But

_IFRC DI 1
||§01c||2 = (k!)2C2kK2 = (k!)chkK

and so

2% 1
[C(E )] ém, k=1

Upon multiplying these inequalities by running from k = 1 through & = m
the assertion follows.

(ii) If duy acts on M, then |[[F*K( , D2 < K(, {) for B = 1. Indeed, if
equality holds then [ |K (z, §)|2(1 — |F(2)|**)dpn(2) = 0. Thus |F(z)| = 1 on
M which is a contradiction.

Remarks. (1) For m = 1 we have Ci?(¢ :9) £ Ri(f:v) = S2(f : v). A
special case of this result when M is bounded was proved by Look [7], using a

different method. See also [4].
(ii) We actually proved a little more. Let

A
Vm = vm(§ 10) = Wm—)\m
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and

ﬂm=#m(§‘:v) =Eg%}7)-'

Then p1 = v1 = 1 and u,, = v, = 1, m > 1, where we have strict inequalities

in the inequalities when du,, acts on M. This again implies Theorem 1.
Assume now that S,2(¢:2) > 0 (this, of course, occurs, according to
Theorem 1, if { € .4 and (¢, v) € .27). Then, using the summation convention,

2

SMZ(g_ 0) = Ty, Ty =7 logk,

and so S;2(¢ : v) is a Kihler metric. Let 77 be the elements of the inverse
matrix of the matrix (7 ;). The sectional Riemannian curvature at { € M in
a two-dimensional holomorphic direction is given by
R = Ry(§:v) = Sy (5 : 0)Rawpmd @ 050,
where
_ 0Ty | e dTedly
Here, again, we used the summation convention. Then (cf. Fuks [3])
(2.5) wtl= (2 - R)KSY

where

RE ipm =

po=p( ) = min {[|fl[%f € A(t: )},
A o) = {f € Ho(M): f(§) = 8f/3¢1 = ... = 8f/d¢n = 0,
3., (¢) = 1}.
Clearly, if M is bounded and p, (M) < o then R < 2 at each point and every
direction. We have
THEOREM 2. Let ¢ € M C M and (¢, v) € . Then
(i) 4C* = (2 — R)SY, C = Cy (¢ : v), and hence R < 2.
(i1) If dpyr acts on M then 4C* < (2 — R)S™.
Proof. Exactly as in Theorem 1. ¢, of (2.1) belongs to A({:v). Thus
[le2||? = u. But |j¢s]|2 £ 1/4C*K and the assertion follows from (2.5).

If M is a bounded domain and S is the Bergman metric (i.e., duy is the
usual volume element of M) we have the following improvement on Fuks’
result [3].

THEOREM 3. Let M be a bounded domain in C*. The Riemannian curvature of
the Bergman metric on M satisfies

d 4(n+1) N
Rue 9) <2 = ot (2™, rearnc - o

where dy (¢) = dist (¢, dM) and pyy is the radius of the smallest ball containing M.
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Proof. Let ¢ be fixed in M and let ¢ € C" be the center of the smallest ball
containing M. Then B C M C A where B = B({;dy (7)) and 4 = B(¢; pa).
Here B(zo; 7) = {z € C" ||z — z|| <7}, r > 0, with [|z]| = (3, 2)'/? and
(z, w) = Y= 2@, for 2= (31, ..., 5,), w= (w, ..., w,) in G In the
Bergman metric case we have A\ ;® < N\, <\ 7 =10,1,.... Here \; =
N, (¢ @ v). Therefore,

) >\0(M) )\O(A)
(2.6) Su (¢ :0) = ;\_IZM) = SB ¢ :0) o @) -

Clearly, Cy(f:v) 2 C4(¢ : v). For the unit ball @ = B(0; 1) we have [§]

— |s[Olel[* + [ o) "
@ = [l

Also, the Bergman kernel for Q is

CQ2(Z :v) =

Ko(z,2) = —:L;;' a- HZHZ)—(nH)

and therefore
2.7)  S2(z:9) = (n + 1)Co2(z : v).

w = r~1(z — 29) maps B(z¢; r) biholomorphically onto € and so

C%i(zo;r) (z: v) = Co?(w; v*) = r=2Cgo%(w; v).
Consequently
2.8)  p|* ___ﬂﬂi < Crioin(ae:v) £ ¥ 11— el
HZ"ZUH o (r HZ"ZOH)
Similarly
!
(29)  Kp@in(z:2) = ‘:%;', ot — |z — 20| ",

By (2.5) - (2.9) and using the fact that K = 1/A\; we have

4(n+1) 4
(2.10) Syt :v) £ (n+ 1)° (d m) |;|)3’Mil—.
Likewise
(2.11) Cu'(c :v) 2 ””'14.

The theorem now follows from Theorem 2 (ii) and (2.10) - (2.11).

Before we turn to the case where M is a complex manifold we make the
following observation. Let ¢: M — M* be a biholomorphic mapping of M on
M* with the non-vanishing Jacobian J, = 9w/dz, w = ¢(z). Assume that there
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is an a > 0 such that [J,(z)]* is holomorphic in M and that u,«(¢(N)) =
fN |Js(2)|2dpy (z) for each Borel subset N of M. Then, f— (fop)Js* is an
isometry of Hy(M*) onto Hy(M). Therefore

(212) Ky (3, 2) = Ky«(o(2), o) ()|, = € M.

THEOREM 4. Let the assumptions of formula (2.12) prevail. Then (see formula

(2.4))
R, (z;0) = Ry (¢(2); ¢ @), m =1,2,....
That is, the non-negative function R, (z;v) 1s btholomorphic invariant.

Proof. We have 7,0 (z;v) = W, [Ky, 3,Ky, ..., 3,"Kyl, Ky = Ky (3, 2).
Using (2.12) and standard properties of Wronskians we obtain, writing
Kuyx = Kyx(w, @), w = ¢(2) and J = J4(3),

Tn M (z0) = WAT T K, T8, (TKas), - oy T3, (TKa)]
= (J)" VWL TKare, 3,(TKoare), - oy 3, (T K yps)]

1
= (J")’”“Wzl:j“KM*, 2 (;)&jf"évl_’f(m, e

=0
;0 (’;’) a,,fj“a,,"‘*fK‘,,*]
TSI WK sy 3K pes, -« oy 3" K o]

= Ilea(m+1)Ww[KlM*y 51)"‘I<]£z["‘, “ ey 6v*mKM*],

where w = ¢(z) and v* = ¢4 (v). Consequently,
Tn0(z 1) = 1,0 (6(2); 6 (0)) |y 2) 2.

The theorem now follows from this, (2.12) and (2.4).

Remarks. Some comments about the nature of the function R, (z, v) are in
order. Clearly, Ro(z; v) = 1. For m = 1, however, let the assumptions of
formula (2.12) prevail. Then, a close examination of the definition of &, (z : v)
via (2.2) - (2.4) and Theorem 4 shows that, for each 2 € M, R,(z; ) is a
function which is defined on the complex tangent space of M at z. Form = 1,
Ri(z:v) = S%*(z:v) is a complex tensor field of M which is covariant of
degree 2. It behaves exactly as the Bergman metric and induces a Rieman-

nian structure on M which is Kihlerian.

3. Extension to manifolds. We now assume that M is a complex n-dimen-
sional manifold. For sake of simplicity we consider only the Bergman kernel
case. The extension of the Bergman kernel function theory to complex mani-
folds is by now standard (cf. [5 and 6]). However, here we take a slightly
different course.
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Let Fo(M) be the space of holomorphic n-forms & on M normed by ||a||? =
"2 fMa A & Here, o = adzi A ... A dz, in a local coordinate neighborhood
Uof z € M. Since |a(2)|? is plurisubharmonic in U, we have, for each compact
subset 4 of U

B |a®l = Nullell, t€4CU,

where N4 is a positive constant depending only on A. Therefore, Fo(M) is a
separable Hilbert space with the scalar product

G2 @e = [ «ng
M
Letv € C* — {0}. Forafixed { € U C M we let
(3.3) DMa=0,"a(), m=01,....

We write I; = D ; and thus La = a(f). According to (3.1) each Dy; is a
bounded linear functional on F.(3/) and therefore there exists a unique #; in
Fy(M) such that

B4) La=a() = (0,7)

for every e € Fo(M). We write2# ( ,{) = # ¢ and so

3.5) A(z,§) = k(z,O)dzr A ... A dz,

in a local neighborhood V of 2 € M. Let n € V C M. According to (3.4)

(36) k(g‘, ';’) = (%m%{) = (%h'){')) = k(m g:)

and especially (¢, §) 2 0.4, =24 ( , {) is called the Bergman n-form at
¢ € M and in terms of a local coordinate system z of M it is given by (3.5)
with a locally defined Bergman kernel function k(z, ¢), (3, ¢) € V X U.
Clearly, k(z, {) is holomorphic in ¥V X U, where U is the complex conjugate
neighborhood of U.

We should emphasize again that the Bergman zn-form is not a globally
defined form. On the other hand one can also define, although not essential
for our present purposes, the Bergman 2zn-form (cf. Kobayashi [5])

K(Z,E) =%(Z,§:)d§:1 VARIPIAN dg_‘n

which is invariant under the group of holomorphic transformations of M.
K( , {) does not belong to Fy(M). However, it reproduces F3(M) in the
following sense; for fixed { € M and each a € Fo(M)

alf) =i fMa AK(C D).

This immediately follows from (3.2) and (3.4) - (3.5). Of course, K(z, {) can
be expressed in the usual way in terms of an orthonormal basis for Fy(}) and
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it is a holomorphic 2n-form on M X M. We also note that the latter 2z form
differs from our z-form by only a constant in a given coordinate neighborhood.

LemmAa 1. The Riesz representer of DYy in Fo(M) 1s 3,"4( , ), where,
i a local neighborhood V of 2 € M, 3,"# (2, §) = 3,"k(z, {)dz1 A ... A dz,.
Moreover, (D'y s, D% ;) = 8,53,k (¢, §) and so || Dy || = 9,78,k (¢, §).

Proof. This follows from (3.1) - (3.6).

The Carathéodory metric on the manifold M is defined exactly as before.
The same applies for the set &/ namely, .o/ = {(¢, v) € M X (C" — {0}):
there exists f € H(M : A) with 9,f(¢) # 0}. Itisopenin M X (CG" — {0}) and
for (¢, v) € &, 3,F(¢) = C(t:v) > 0 with F € He(M: A). Let A, =
{¢ € M: there exists a ¢ Fo(M) with a(¢) # 0}. Again.#; is open in M and
¢ € M, implies, using (3.6), that (¢, &) > 0.

We are now in a position to formulate minimum problems which are similar
to the ones stated previously. Let

An(@:v) = {a € Fo(M):D)ra = 6 j =0,1,...,m}, m=20,1,....

As before, 4,,(¢ : v) is a closed convex subset of Fo(M). Moreover, Ao(f : v) #
Pif f €M and 4, (¢ :v) # 0, m = 1, if also (¢, v) € 7. Indeed, the n-form

_ P _ :
Pm = M'ka(g', f) ) C - CM(g‘ .U),
isin A, (¢t : v) for cach m = 0, 1, . ... Let ¥, be the unique solution to the

minimum problem
A = A (§:9) = min {||a]|2:a € 4, :v)}.
By Lemma 1,
M = Tn—1/Tmy
where
T = JTn(f 1 v) = Welk, 3.k, ..., 8,"k], k=EFk(7{).

Here again, J_; = 1, J, = k(¢, {) and J,, = (IT70 3 )~
The function

m —2
Rp(t :0) = (H j!) FOULG ), k= k(D)
=1

is independent of a choice of a coordinate system and exactly as in Theorem 4
is invariant under the holomorphic transformations of M. Concerning the
nature of R,,({ : v) see the remarks at the end of the previous section. Especial-
ly, Ri(f : v) = S2(¢ : v) is the Bergman metric given by

2

2 . — 5 e —
(3.7) S (g‘ .ZJ) = Tifl)ﬂ}j, T“ ag‘iag—_]

log k(5 ).
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THEOREM 5. Let ¢ € My C M. Then
(i) [Car (¢ : v)]™m+D < R, (¢ 2 v) for each v € C* — {0},
(ii) If also (¢, v) € o, then [Cy({ : 0)]""HD < R, (¢ 2 v).

Proof. Exactly as in Theorem 1. We only have to prove (ii). We have
lles* = N;. But
|| FOO|[* 1

||S"JH = (]‘)ZCZ]k(fy f)z < Z]')')Cz]k(fy E)

because F is not constant on A/. The proof now proceeds as in Theorem 1.

The remarks following Theorem 1 also apply here. Moreover, for { € #,
and (¢, v) € %7 the Bergman metric is strictly positive by Theorem 5 (ii).
Therefore, we can define the sectional Riemannian curvature R = R, (¢ : v)
as before where now the T';5are given in (3.7). Here

“_1:: (2—R)ks4; k=k(§‘,§-‘),S=S(§‘.v),
with g = u(¢ :9) = min {||a||2: « € 4A({ : )} and

A(f:'l}) = {a € Fz(]‘/f) l(Ol = Dej';.a = 0, j = 1, R (5
Di_;a = 1}
Here, e, stands for the unit vector (0,...,0,1,0,...,0) € C". Exactly as

in Theorem 2 we have:

THEOREM 6. Let ¢ € M, C M and (¢, v) € . Then 4C* < (2 — R)SY,
C=Cyt:v),S =S(:9), and in particular R(¢ : v) < 2.

We conclude this section by remarking that the same results, in view of
Theorem 4, could be obtained if we introduce the ‘“‘volume element” v, =
"R edzy A ... Adz, AdE A ... A dz, kB = k(z, %), a an integer = 2. One
then speaks about automorphic forms of weight o instead of holomorphic
forms. We shall not pursue this topic further.

4. Plane domains. If M is a plane domain having non constant bounded
analytic functions then the Carathéodory metric becomes C(¢)|d¢|. Here
C) = Cyu() =sup {f'©)]: f € H(M: A)} is the analytic capacity of M
at ¢. There exists a unique F € H¢(M : A), called the Ahlfors function, with
F'(¢) = C() > 0. According to Theorem 1, for { € 4,

m -2
@41 CcE)"" = (H k!) K"V J.(), mz1,
k=1

with J,,(¢) = det ||K||;1=0™ and K = K(¢, ). Here Kz = 37+*K/(9¢79¢F).
If duy acts on M we have a strict inequality in (4.1). This is the case if for
example K is the Bergman kernel.

If one assumes that M is bounded by a finite number of analytic curves then
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C) = 27K (¢, §) (cf. [1, p. 118] where K(, §) is the Szegt kenrel for M.
Hence

m -2
42) "< (H k!) det ||CilTrmo, m = 1,
k=1

where C;z = 87t*C/(9¢79¢%), C = C(¢). Equality holds, at one point { € M
and any m = 1, if and only if M is simply connected [2].

In the general case one uses a canonical exhaustion process (cf. [9]) to
show that C({) is real analytic and that (4.2) still holds. Especially, form = 1,
we have that C? £ } A log C, (A is the Laplacian), or that the curvature of
C(¢)|d¢| is always = —4. This last result is due to Suita [9] and is generalized
in [2].
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