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AN INCLUSION THEOREM FOR BOHR-HARDY 
SUMMABILITY FACTORS 

B. THORPE 

1. Let A denote a sequence to sequence transformation given by the normal 
matrix A = (ank)(n, k = 0, 1, 2, . . .), i.e., a lower triangular matrix with 
a>nn 7e 0 for all n. For B = (bnk) we write B => A if every B limitable sequence is 
A limitable to the same limit, and say that B is equivalent to A if B =» A and 
A =» J5. If JB is normal, then it is well known that the inverse of B exists (we 
denote it by B~l) and that B => 4̂ if and only if T7 = ^4^_ 1 is a regular trans­
formation, i.e., transforms every convergent sequence into a sequence con­
verging to the same limit. We say that a series ]£ anf is summable A if its 
sequence of partial sums is A -limitable. A sequence {en} is a Bohr-Hardy 
summability factor for A, written en G (A; A), if, for every series £ an 

summable Ay ]£ an.£n is summable A (see [1; 4] in which Hardy and Bohr 
independently obtained sufficient conditions for en Ç ((C, &); (C, &)), & a 
positive integer. For non-integral k and necessity of the conditions, see [2] and 
the other references given there). Jurkat and Peyerimhoff obtained results of a 
more general character, corresponding to the range 0 ^ k :g 1, by using normal 
matrices satisfying a mean value condition. 

Definition [9]. A normal matrix A = (ank) satisfies the mean value condition 
MK(A) if 

m M 

2^f ankSk ûKsup 2s anksk 
fc=0 ntkm k=0 

for m ^ n and K independent of m, n and {sn}. 

The following result has been proved by Jurkat and Peyerimhoff (see [6] 
where also earlier references are given). 

THEOREM 1. Suppose that A = (ank) is a normal, regular sequence to sequence 
matrix. A necessary condition for en £ {A ; A ) is that 

oo 

(2) en = a + ^ <*kâkn, 
k=n 

where ^ \ak\ < co, a is a constant, and 

k 

0<kn — 2s akv 
v=n 

"Ewithout limits denotes]^00. 
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If A satisfies the mean value condition MK(A), then (2) is also sufficient for 
en 6 (A; A). 

It is clear that if (2) holds then 
oo 

(3) en ~ €n+i = Aen = ^2 akakn. 
k=n 

Conversely, if J^ ak is an arbitrary absolutely convergent series and (3) 
holds, then if A satisfies the conditions of Theorem 1, (2) must hold with 
a = lim^^^ en. For, if (3) holds and the series in (2) converges, it follows that 
(2) holds with some a. Since A is regular, dkn is bounded so (2) converges and 
because J^k=n \ak\ tends to 0 as n —> oo, it is clear that a = limns>co en. 

The relationship between (2) and (3) was investigated in [7; 8], and we shall 
apply Theorem 1 with (2) replaced by (3). 

For the proof of Theorem 4 we shall need the following result of Hahn [3], 

THEOREM 2. In order that the series to sequence transformation, 

oo 

™n = 2 ynkdk, 

should transform every absolutely convergent series into a convergent sequence it is 
necessary and sufficient that 

(i) for each fixed k, ynk —> yk say, as n —> oo , and 
(ii) |T».*| < M all n, k. 

If these conditions are satisfied, then wn —> ^ ykak as n —» GO . 

2. The object of this note is to obtain necessary and sufficient conditions on 
the matrices A, B such that every Bohr-Hardy factor for A is a Bohr-Hardy 
factor for B. 

The proof of this result makes use of an observation made in [10] which we 
state as 

THEOREM 3. Suppose that F = (fnk) is an arbitrary matrix transformation such 
that 

(4) X fn& = 1 for all n. 
k=0 

(i) If F — (fnk) is regular as a sequence to sequence transformation, then the 
transpose matrix F' = (fnk) = (fkn) is absolutely regular as a series to series 
transformation, i.e., takes absolutely convergent series into absolutely convergent 
series preserving their sums. 

(ii) Conversely, if Ff is absolutely regular as a series to series transformation, 
F is regular as a sequence to sequence transformation if and only if 

fnk~*0 as n —» oo for each fixed k. 
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This is used with F = AB~l in the "only if" part of Theorem 4, where it is 
shown that, under the hypotheses on A and B, fnk ~> 0 as n —> oo and so 
Theorem 3(ii) applies. It is worth pointing out that if (4) holds, F' is absolutely 
regular if and only if F' is absolutely conservative (i.e., preserves absolute 
convergence) and a necessary and sufficient condition for this is 

oo oo 

(5) E 1/-I = E \U = o(i), 
n=0 71=0 

by Knopp and Lorentz's Theorem [5]. 

LEMMA. Suppose that A — (ank) satisfies the conditions of Theorem 1 {including 
the mean value condition) and that (3) holds for some {an) with £) \an\ < °° • 
Then 

oo 

(6) On = S ^m_1A€„ 

where A~l — {anlT
l) and A is perfect.^ 

Proof. Take a fixed N > n. Then 
2V N oo 

oo iV 

k=N+l v=*n 

v=n v=n k=-v 

iV A: 

(7) = ]C «* S Qk^nT1 + 
k=n v=n 

oo iV 

k=N+l v=n 

Since 4̂ satisfies MK{A), 

N 

/ J ak va vn ^ K max 
n<n<N 

and hence the second term in (7) is 0(1) as iV —> oo, because £ a* is absolutely 
convergent, and so (6) must hold. 

In particular if Aen = 0 for all n in (3), where ]T W < °° » then (6) shows 
that an = 0 for all n, and so 4̂ is perfect. (This case is just [9, Lemma 11.4.) 

THEOREM 4. Let A,Bbe normal, regular sequence to sequence matrices satisfying 
the mean value conditions MK(A) and ML(B) respectively. Then 

ene (A;A)=*en£ (B;B) 

for every en € (A; A) if and only if B ==> A. 

Proof. If we suppose that B => A, then it follows from the results of Jurkat 
and Peyerimhoff that if (2) holds, then 3 {fe} with £ |ftt| < oo such that 

oo 

en = a + 2 #Ân> 

f A regular, normal matrix A = (anv) is called perfect if X)ÏL, ctnan, = 0 for p — 0 , 1 , 2 , . . . , and 
H |«n| < «> implies that a» = 0 for all n (see [9]). 
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where hkn — ^T*v=mbkv. (See, for example, [8, (14)].) But now using Theorem 1 
(the necessity part for A and the sufficiency part for B) we see that 
en 6 (A ; A) =* en € (B; B) and so this half of the result is proved. Although 
Jurkat and Peyerimhoff did not state this result explicitly in [8], it is implicit 
in their paper. 

Any regular normal matrix A is equivalent to a regular normal matrix A* 
with row sums equal to 1; for only a finite number of rows of A can have row 
sums equal to 0, so we can replace these by rows with row sums equal to 1 and 
diagonal terms ^ 0 without altering the summability properties of A, and in the 
remaining rows define 

# ®"nk 
(* nJc — v-^w 

It follows from [9, Theorem 11.18] that if we replace A by such a regular 
normal matrix then this matrix will also satisfy a mean value condition. Also, 
the class of en G (A ; A ) is not altered by this change (although the {an} 's in (3) 
may change). Thus, we can assume throughout the rest of the proof that both A 
and B have row sums 1. Because A and B are normal, B => A if and only if 
F = AB-1 is regular where J5"1 = (6»*-1), BB~l = B~lB = J, F = (fniA). 
Hence, 

n n 

Jnn — 2-J anlfikn & n d 2-J Vnkbkn = 5 W M , 

where 5WM is the Kronecker delta. Since A, B have row sums equal to 1, it 
follows that for all n, (4) must hold. 

Now suppose that en G (A;A)=>en Ç ( JB;J3) . By Theorem 1, and the 
remarks after it, if en £ (A; A), (3) holds and by the Lemma, (6) holds. 
Analogous equations to (3) and (6) hold for J5, namely, en 6 (B; B) if and only 
if àen = £*L» 0Arc where £ |ftt| < °° . If this holds then 

oo 

Replacing Ae„ by (3) in this equation, we see that 

(8) Pn = X) ^ " H Z) a*a*p J • 

Since X ak is an arbitrary absolutely convergent series, for 

en Ç (A;A)=>en e (B;B) 

it is necessary that (8) should transform every absolutely convergent series into 
an absolutely convergent series, i.e., (8) has to be absolutely conservative as an 
iterated series to series transformation. In fact, (8) is absolutely conservative 
if and only if 

oo 

(9) A. = E /*»«* 
k=n 
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is an absolutely conservative series to series matrix transformation. To prove 
this, take the outer sum in (8) from v = n to N say, so 

N / oo \ N oo N 

(10) ]£) & m _ 1 ( X ) « f ca f cJ = X «*/ftn + S a * S ttkvbvn1, 
v=n \k=v / k=n k=N+l v=n 

and since A satisfies MK (A ), 

I N I 

= X max |/Mn | . 
w<M<iV 

If we assume that (9) is absolutely conservative, it follows from Theorem 2 
that fkn is bounded, so the second term on the right in (10) is o(l) as N —> oo. 
Hence (8) and (9) are identical in this case and thus (8) is absolutely conserva­
tive. 

Conversely, if (8) is absolutely conservative as an iterated transformation, &n 

(in (8)) must exist for every fixed n, so (8) can be written as 

(11) ft» = Mm ]C Tar,*<**, 

where yNiJc = fnk (k g N) 

N 

= Z) ^^m"1 (k > N). 

Thus we require that (11) should transform every absolutely convergent 
series to a convergent sequence. By Theorem 2, since 

7Nk ->/*» as N -» oo , & fixed, 
(11) becomes 

oo oo 

Ai = S 7*a* = ]C /*»«*, 
fc=0 fc=n 

i.e., (11) becomes (9), so (9) is absolutely conservative if and only if (8) is 
absolutely conservative as claimed. 

Using this, en 6 (A ; A ) => ew 6 (B\B) implies that (5) holds and so 
^ ' = Cfw*') = (fkn) is an absolutely regular series to series transformation. 

By Theorem 3(h), we have only to prove that/wfc —> 0 as n —» oo for fixed & 
to deduce that i7 = (/Wfc) is a regular sequence to sequence transformation. 

Since (5) holds, F takes bounded sequences (and hence null sequences) to 
bounded sequences and because A, B and F are row finite, 

(12) Ax = CF5)x = F(Bx), 

for any sequence x. Thus JBX = o(l) => Ax = 0(1) . By the Lemma, B 
is perfect, so we can now appeal to [9, Theorem 11.8] to conclude that 

/ J &n vO v 
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658 B.THORPE 

Bx = 0(1) => Ax = ^ ( l ) . Since B is normal, it follows from (12) (with the aid 
of (5)) that F is regular for null sequences and hence fnk —> 0 as n —» 00. 

Thus ew G (^4;^4)=>€n € (B;B) implies that F is regular (sequence to 
sequence) and hence B => A. 

Acknowledgement. In conclusion, I should like to thank Professor B. Kuttner 
for his help in writing this paper and Professor L. S. Bosanquet for his com­
ments. 
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