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Numerous studies have indicated that turbulence typically initiates along the boundary
layer of the stationary disk within a rotor–stator cavity. To describe the transition process
to turbulence on the stationary side of a closed rotor–stator cavity, a comprehensive
approach combining global linear stability analysis with direct numerical simulation was
adopted in the present study. The proposed model aligns with that of Yim et al. (J. Fluid
Mech., vol. 848, 2018, pp. 631–647), who investigated the stability characteristics of the
rotating-disk boundary layer in a rotor–stator cavity. In order to achieve a stable inflow
for the stationary-disk boundary layer, we rotate the shroud together with the rotating
disk. Through careful global stability analysis, the predominant spiral mode exhibiting the
highest instability in the boundary layer of the stationary disk was discerned, corroborating
observations from simulations. Initially, the spiral mode undergoes linear amplification,
reaches a state of linear saturation and enters the nonlinear regime. Following nonlinear
saturation in the flow field, a circular wave mode arises due to the influence of mean flow
distortion. As the Reynolds number attained a sufficiently high level, the interplay between
the downstream-propagating circular mode and spiral mode amplified disturbances in the
boundary layer of the stationary disk, ultimately leading to the development of localised
turbulence at the mid-radius of the rotor–stator cavity. Notably, the present study is
the first to elucidate the coexistence of laminar–transitional–turbulent flow states in the
stationary-disk boundary layer through direct numerical simulations.
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1. Introduction

In response to the imperative for fundamental investigation into the characteristics
of rotating flows and the optimisation of intricate technical or engineering systems,
researchers have directed significant attention toward the study of such flows. In
engineering applications, fluids often flow within rotating cavities, which serve as
approximate simulations of components found in more intricate equipment. A typical
geometric feature is a cavity formed between two disks. A wide range of configurations can
be set up using disks with various fluids, physical properties, shapes, properties, rotation
speeds and related boundary conditions (Owen & Rogers 1989). The most common
configuration is a closed rotor–stator cavity, characterised by a stationary-disk boundary
layer (referred to as the Bödewadt boundary layer for an infinitely large stationary disk)
and a rotating-disk boundary layer (referred to as the von Kármán boundary layer for an
infinitely large rotating disk), alongside a coexisting laminar–transitional–turbulent region
in the boundary layer. Thus, such problems have also been demonstrated to be an effective
way to investigate the instability of rotating flows and the turbulent characteristics with
wall constraints and rotation (Saric, Reed & White 2003; Launder, Poncet & Serre 2010;
Martinand, Serre & Viaud 2023; Alfredsson, Kato & Lingwood 2024).

In this type of flow, turbulence initially develops within the stationary-disk boundary
layer, as was predicted from the stability analysis (Serre, Tuliszka-Sznitko & Bontoux
2004) and as confirmed through numerical simulations (Séverac et al. 2007; Severac
& Serre 2007; Makino, Inagaki & Nakagawa 2015; Gao & Chew 2021), as well as
experimental observations (Schouveiler et al. 1999; Schouveiler, Le Gal & Chauve 2001;
Cros et al. 2005; Poncet, Chauve & Schiestel 2005). The rotating-disk boundary layer on
the rotating-disk side was found to remain relatively stable and only becomes unstable at
higher Reynolds numbers before transitioning to turbulence.

In terms of the behaviours of instability, the characteristics on both disks are consistent.
Gregory, Stuart & Walker (1955) were the first to observe cross-flow instability with the
spiral wave shape, attributed to inflection points in the radial velocity. Subsequently, Tatro
& Mollo-Christensen (1967) and Faller & Kaylor (1967) reported instability with circular
wave shapes associated with the interaction of viscous forces and the Coriolis force,
naming them type I and type II instabilities, respectively. Once initiated by perturbations,
spiral waves persist and can be described by three crucial parameters: the azimuthal
wavenumber m, the radial wavenumber α and the temporal frequency ω (Lingwood 1996;
Serre, Del Arco & Bontoux 2001; Serre et al. 2004; Queguineur, Gicquel & Staffelbach
2020). In contrast to spiral waves, capturing circular waves presents greater challenges.
This difficulty arises because circular waves manifest at lower Reynolds numbers and have
a tendency to dissipate rapidly in the absence of noise, which provides perturbation energy
(Lopez et al. 2009; Poncet, Serre & Le Gal 2009).

The occurrence of instability does not necessarily imply that the boundary layer on the
disk will develop into turbulence. Lingwood (1995, 1997) discovered a type III instability
mode that rotates relative to the rotating disk. This instability mode combines with the
type I instability when Rδ ≥ 507 (Rδ = r

√
Ω/ν, where r refers to the local radial position,

Ω represents the angular velocity of the disk and ν denotes kinematic viscosity) to form
a type I absolute instability regime, inducing nonlinear effects that mark the onset of
turbulent transition. However, type III instability has only been predicted through stability
analysis in a rotating disk and has never been experimentally reported.

The existing research on the transition to turbulence in rotating flows is primarily
based on single rotating disks (Lingwood 1996; Pier 2003, 2007; Imayama, Alfredsson
& Lingwood 2014; Appelquist et al. 2016b, 2018; Lee et al. 2018; Thomas, Stephen &
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Davies 2020), with only a limited amount of research focused on rotor–stator (Makino
et al. 2015; Yim et al. 2018) and rotor–rotor (Viaud, Serre & Chomaz 2008, 2011) cavities.
Two principal routes to turbulence have been proposed based on the nature of the dominant
transition mechanisms, termed convective or absolute instability. While both pathways
necessitate the existence of an absolutely unstable region with adequate radial extent, the
former relies on external forcing whereas the latter is self-sustaining.

In the convective scenario, several sustained external perturbations are amplified
through convection within the radial range of 284 < Rδ

∼= 507. When the perturbation,
such as spiral waves, reaches nonlinear energy saturation before attaining its maximum
radius, its convective instability transitions to an absolutely unstable state relative to
secondary instabilities. This transition heralds the onset of localised turbulence (Pier
2007). Several researchers have specifically investigated this scenario and have found
that the amplitude of forced perturbations, as well as the roughness on the rotating
disk in experiments, can affect the critical Reynolds number at which turbulence occurs
(Appelquist et al. 2016a; Imayama, Alfredsson & Lingwood 2016; Thomas & Davies 2018;
Thomas et al. 2020). Additionally, when the radius of spiral waves extends sufficiently to
be influenced by secondary global instabilities, local turbulence may promptly occur at the
local or slightly downstream position (Appelquist et al. 2018).

The absolute scenario occurs when the region of absolute instability extends adequately
before reaching the outer edge, and it entails the presence of spiral waves associated with
relative disc motion (travelling mode) without any external perturbation. Depending on
the flow conditions, this can be categorised into subcritical and supercritical scenarios.
The supercritical scenario is driven by linear global instability, where infinitesimal initial
perturbations can trigger linear global modes with steep fronts (Imayama, Alfredsson &
Lingwood 2013; Imayama et al. 2014; Yim et al. 2018). The local absolute instability
propels these modes at the radial edge of the disk. In contrast, the subcritical scenario is
propelled by nonlinear global instability (Pier 2003). In this case, the flow responds to
strong impulse perturbations through steep global modes located at the upstream limit of
the absolutely unstable zone, leading to local turbulence (Viaud et al. 2008, 2011; Yim
et al. 2018).

In comparison with a single rotating disk, a rotor–stator cavity exhibits radial variations
in flow velocity within the core region. Additionally, the boundaries of the boundary layer,
including the casing and the shaft, serve as significant sources of disturbance. Significantly,
in studies exploring the rotating-disk boundary layer within the cavity, such as Yim et al.
(2018), who investigated the stability of the rotating-disk boundary layer using direct
numerical simulation, it was observed that the stationary-disk boundary layer had already
transitioned to turbulence. There was no evidence to suggest that the intense turbulence
within the stationary-disk boundary layer would not impact the transition to turbulence
within the rotating-disk boundary layer (Martinand et al. 2023). This inevitably led to
consideration of the transition process in the stationary-disk boundary layer. While the
destabilisation behaviours of the rotating- and stationary-disk boundary layers may appear
analogous, it is noteworthy that the laminar–transition–turbulence coexistence within
the stationary-disk boundary layer has not been documented, thus leaving the route to
turbulence unclear.

As such, in the present study, the aim was to capture the coexistence of
laminar–transition–turbulence on the stationary-disk boundary layer. Based on this,
the aim was to identify a possible route leading to turbulence on the stationary-disk
boundary layer. Reviewing existing articles on the presence of turbulence in the
stationary-disk boundary layer in a rotor–stator cavity, the experimental results devoted
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to the stationary-disk boundary layer are few because there are more technical difficulties
in studying it than the boundary layer of the rotor. Numerical simulations conducted by
Serre et al. (2001) presented a range of disturbances. However, as time progressed, these
disturbances either settled down or persisted in the form of spiral waves. The experiments
conducted by Cros et al. (2005) identify the occurrence of nonlinear interactions between
circular and spiral modes, which result in the eventual transition to turbulence at moderate
Reynolds numbers. However, they did not elucidate the sources of the disturbances on
the stationary-disk boundary layer, nor did they provide a detailed account of how these
disturbances evolve into turbulence. Further, this conclusion contradicts the findings
of Lopez et al. (2009), who proposed minimal interaction between spiral and circular
waves in their study. To address the described challenges, global stability analysis was
employed in the present study (Barkley, Blackburn & Sherwin 2008). Initially, the unstable
mode corresponding to a specific Reynolds number and azimuthal wavenumber was
obtained. Subsequently, through a combination with direct numerical simulation (DNS),
it became possible to capture the linear growth process of the perturbation eigenmode,
nonlinear saturation and the emergence of localised turbulence. To accurately capture
the development of the unstable characteristic mode at a specific azimuthal wavenumber
(the current study focuses on m = 32), DNS is performed in a sector with an angle
of 2π/32. This approach solely considers the azimuthal wavenumber m = 32 and its
harmonics, discussing the nonlinear interactions between these specific modes. Although
many previous studies by Appelquist et al. (2016a), Appelquist et al. (2018) and Lee et al.
(2018) have employed sectors of sizes 2π/32 and 2π/68 rad to investigate the transition
pathways on the boundary layer, providing evidence on the use of sectors in DNS, it is
important to note that the transition mechanism obtained under such a sector can only
represent a possible mechanism of the rotor–stator cavity. While the nonlinear interactions
among all modes may be also significant, such considerations lie beyond the scope of our
current study.

The rest of the present paper is organised as follows. In § 2, the method and set-up of
the simulations used in the present study are discussed. Results from global linear stability
analysis and DNS are presented in § 3, and a discussion of these results is also included.
Finally, § 4 provides a summary and conclusions

2. Method

In the present study, the Semtex code was utilised, a high-order numerical tool that
combines Fourier and spectral element methods. This code, referenced in works by
Barkley et al. (2008) and Blackburn et al. (2019), implements a spatial discretisation
technique that merges continuous-Galerkin nodal spectral elements with Fourier
expansions. Specifically, it applies Fourier expansions along the azimuthal direction and
spectral elements within the meridional (r, z) semiplane. For time integration, the code
utilises a semi-implicit strategy employing a time-splitting scheme, ensuring that all
simulations maintain second-order accuracy in time.

2.1. Governing equations
Under the assumption of a Newtonian fluid and incompressible flow, the governing
equations for the primary variables (velocity and pressure) can be formulated as the
incompressible Navier–Stokes equations

∂u
∂t

+ N(u) = − 1
ρ

∇p + ν∇2u, (2.1)
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together with the continuity equation

∇ · u = 0, (2.2)

where u = u(r, θ, z, t) is the velocity field, N(u) represents nonlinear advection terms, p
is the pressure, ρ is the density and ν is the kinematic viscosity of the fluid. The variables
r, θ, z and t represent, the radial, azimuthal, axial and time coordinates, respectively, and
u, v and w are the velocity components in the radial, azimuthal and axial directions. Here,
we consider the nonlinear term in skew-symmetric form N(u) = (u · ∇u + ∇ · uu)/2.

If the velocity field exhibited a periodicity of Lθ (in rad) in the azimuthal
direction, a azimuthal wavenumber of fundamental component β = 2π/Lθ was adopted.
Consequently, it could be effectively decomposed into a set of two-dimensional complex
Fourier modes, denoted as

ûk(r, z, t) = 1
Lθ

∫ Lθ

0
u(r, z, θ, t) e−iβkθ dθ, (2.3)

where k represents an integer wavenumber, and i is the unit imaginary number. In physical
space, the azimuthal wavenumber m is represented as βk. The velocity field has the
associated Fourier series reconstruction

u(r, θ, z, t) =
∞∑

k=−∞
ûk(r, z, t) eiβkθ . (2.4)

Thus, the cylindrical components of the transformed momentum equations (2.1) can be
written

∂tûk + N̂(u)rk = − 1
ρ

∂rp̂k + ν

(
∇2

rz − k2 + 1
r2

)
ûk − ν

2ik
r2 v̂k, (2.5)

∂tv̂k + N̂(u)θk = − ik
ρr

p̂k + ν

(
∇2

rz − k2 + 1
r2

)
v̂k + ν

2ik
r2 ûk, (2.6)

∂tŵk + N̂(u)zk = − 1
ρ

∂zp̂k + ν

(
∇2

rz − k2

r2

)
ŵk, (2.7)

where N̂(u)rk, N̂(u)θk and N̂(u)zk represent mode-k components of the transformed
nonlinear terms. Here, ∇2

rz is related to the Laplacian function of the mode k under Fourier
decomposition

∇rz = ∂2
z + 1

r
∂r(r∂r). (2.8)

To decouple the linear terms, a change of variables can be introduced as ũk = ûk + iv̂k
and ṽk = ûk − iv̂k (Lopez, Marques & Shen 2002), following the approach described by
Orszag (1974) in the context of Fourier decompositions. This change of variables yields
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the following expressions for the equations:

∂tũk + Ñ(u)rk = − 1
ρ

(
∂r − k

r

)
p̂k + ν

(
∇2

rz − (k + 1)2

r2

)
ũk, (2.9)

∂tṽk + Ñ(u)θk = − 1
ρ

(
∂r + k

r

)
p̂k + ν

(
∇2

rz − (k − 1)2

r2

)
ṽk, (2.10)

∂tŵk + N̂(u)zk = − 1
ρ

∂zp̂k + ν

(
∇2

rz − k2

r2

)
ŵk, (2.11)

where Ñ(u)rk = N̂(u)rk + iN̂(u)θk and Ñ(u)θk = N̂(u)rk − iN̂(u)θk.
When analysing the global linear stability of a flow in terms of its normal modes, the

pressure was considered as the solution of a Poisson equation with the divergence of
the advection terms as the forcing. In this context, the Navier–Stokes equations can be
represented symbolically as follows:

∂u
∂t

= −(I − ∇∇−2∇ · )N(u) + ν∇2u = A(u) + L(u). (2.12)

The nonlinear operator A(u) includes contributions from advection and pressure terms,
while the linear operator L(u) corresponds to viscous diffusion. It is worth noting
that, while opting for a skew-symmetric form of the nonlinear term in DNS, it is
susceptible to numerical instability in global linear stability analysis (Wilhelm & Kleiser
2001). Consequently, in global linear stability analysis, the nonlinear term N(u) is
modelled in a convective form u · ∇u (Barkley et al. 2008). The velocity u can be
decomposed into a base flow U and a perturbation flow u′. In this decomposition,
the original nonlinear advection terms are replaced with their linearised equivalent
NU (u′) = U · ∇u′ + u′ · ∇U . The linearised equivalent of (2.12) for an infinitesimal
perturbation u′ can be written as

∂tu′ = AU (u′) + L(u′), (2.13)

where AU (u′) represents the linearisation (Jacobian) of A(u′) about the base flow U .
Under the assumption of normal modes, u′(t) ≡ ũeλt, (2.13) can be transformed into an

eigenproblem

λũ = (AU (u′) + L(u′))ũ, (2.14)

where λ is the eigenvalue and ũ is its eigenfunction, both typically appearing in
complex-conjugate pairs. For a finite time increment τ , this can be expressed as follows:

u′(t0 + τ) = exp[(AU (u′) + L(u′))τ ]u′(t0). (2.15)

The aim is to extract the eigenpairs (Γ, ũ) of the operator (AU (u′) + L(u′))τ . This is
crucial because the numerical method employed generally identifies dominant eigenvalues,
which are those with the largest magnitude. However, for steady flow, the primary focus
was on the values of λ with the largest real part, indicating the most unstable behaviour.
There is a direct correspondence between the dominant values of Γ and the most unstable
values of λ through the relation Γ = eλt. Note that, in carrying out the time interval,
τ = nt, n is a larger finite integer (Tuckerman & Barkley 2000).
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Figure 1. A sketch of the computational domain for rotor–stator cavity flow. Here, Ω is the angular velocity,
2H is the distance between stator and rotor and R represents the radius of the shroud. The rotor rotates along
with the shroud.

2.2. Simulation set-up
In the present investigation, the adopted geometric configuration is akin to prior studies
conducted by Lopez et al. (2009), Peres, Poncet & Serre (2012) and Yim et al. (2018).
The configuration comprises two vertical disks with a radius of R, enclosed by a shroud
represented by a vertical cylinder of width 2H. The rotor and the cylinder rotate at an
angular velocity of Ω while the stator remains stationary. A schematic diagram of the
flow system is presented in figure 1. The cavity aspect ratio, defined as the ratio of R to H,
is fixed at 10.26. The characteristic Reynolds number is defined as Re = ΩR2/ν.

The spectral element mesh has 800 elements, and tensor products of sixth-order
Gauss–Lobatto–Legendre Lagrange shape functions are used within each element,
providing a total of 28800 independent mesh points in the discretisation of the meridional
(r, z) semiplane. In the azimuthal direction of the three-dimensional DNS, we have
chosen the fundamental wavenumber β = 32, which corresponds to a sector of an angle
of 2π/32 rad. Therefore, the relationship between the azimuthal wavenumber m in the
physical space and the Fourier mode k in the direct numerical simulation can be expressed
as m = βk = 32k . After verification, it was determined that using 48 Fourier planes
provided sufficient accuracy for the current problem. Therefore, 48 Fourier planes were
chosen for DNS, corresponding to a total of 24 Fourier modes.

No-slip boundary conditions are enforced at the stator and rotor interfaces: u = w = 0,
while the azimuthal velocity v = 0 on the stationary disk and v = Ωr on the rotating disk
and rotating shroud. The rotation induced by the rotating shroud ensures a stable inflow
within the stationary-disk boundary layer, effectively mitigating additional disturbances
and thereby enhancing the accuracy of the results in the global linear stability analysis.
At the junction of the rotating shroud with the stator, the azimuthal velocity profile is
regularised using

v = Ωr(1 − e−z/(H+1)/0.006), (2.16)

where the value 0.006 was shown to accurately model the velocity profiles observed in
experiments (Serre et al. 2001). On the cylinder axis (r = 0), boundary conditions are
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wavenumber dependent

k = 0, ∂rŵ0 = ũ†
0 = ṽ0 = ∂rp̂0 = 0

k = 1, ŵ†
1 = ũ†

1 = ∂rṽ1 = p̂†
1 = 0

k > 1, ŵ†
k = ũ†

k = ṽ
†
k = p̂†

k = 0

⎫⎪⎪⎬
⎪⎪⎭ , at r = 0. (2.17)

Here, the superscript † indicates the essential pole boundary conditions, and the remaining
terms are derived from parity requirements. For specific details, please refer to Lopez
et al. (2002) and Blackburn & Sherwin (2004). For the global linear stability analysis, the
boundary perturbation velocity u′ was set to zero, while a high-order Neumann boundary
condition was applied to the perturbation pressure (Karniadakis, Israeli & Orszag 1991).

The two-dimensional (2-D) DNS provided the base flow on the meridional (r, z)
semiplane at the specific Reynolds number for stability analysis. Due to the fact that the
Fourier mode k = 0 in 2-D simulations is not affected by any k /= 0 modes, this implies
that referring to the results of 2-D DNS as the base flow is more appropriate. Sipp &
Lebedev (2007) specifically emphasised that the base flow and mean flow can lead to
different stability analysis results. After comparing the results of global linear stability
analysis, a sixth-order polynomial distribution was ultimately adopted, and the time
interval τ = 2/Ω was divided into 2000 time steps t. The initial velocity distribution
for the 3-D DNS were obtained by linearly superimposing the most unstable mode k = 32
obtained from stability analysis with the base flow. For all DNS, the time step satisfied
t = 2π/(6280Ω).

3. Results

3.1. Base flow characteristics
The main characteristics of the steady base flow are indicated in figure 2, in which
dimensionless radial, azimuthal and axial velocity profiles for the flow at Re = 1.2 × 105

are presented. Unless otherwise specified, all meridional (r, z) semiplane plots in the
present paper depict the left side representing the stator and the right side representing
the rotor. As depicted in figure 2(a), most of the cavity exhibited axial flow directed
from the stator towards the rotor. However, at the outermost radial position, the presence
of the shroud induced a redirection of the flow, causing it to move from the rotor
towards the stator, effectively simulating an inflow originating from the stator. The entire
cavity encompassed three distinct boundary layers: the stationary-disk boundary layer, the
rotating-disk boundary layer and the boundary layer at the shroud. Figure 2(a) provides a
clear visualisation of the extent of these boundary layers on both the stator and rotor sides.
An inviscid core within the cavity separated these two boundary layers, while the boundary
layer at the shroud exhibited characteristics resembling a Stewartson boundary layer
(Poncet et al. 2009). In figure 2(b), the non-dimensionalised azimuthal velocity component
v/(Ωr) increases with the radial position. Particularly near the shroud, the azimuthal
velocity was nearly two orders of magnitude greater than the radial and axial velocities.
This characteristic permitted a reasonable approximation of the flow as an axisymmetric
flow with a dominant velocity component of (0, v(r), 0). Moreover, the azimuthal velocity
exhibited a positive gradient for the radial position (i.e. d(vr)/dr > 0). Applying the
Rayleigh stability criterion, this flow configuration could be considered stable against
inviscid, axisymmetric disturbances (Sipp & Jacquin 2000). The stationary-disk boundary
layer at the shroud is deemed stable. Additionally, it is apparent from figure 2(c) that
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Figure 2. Two-dimensional DNS at Re = 1.2 × 105. (a) Contour plots of dimensionless radial velocity
u/(ΩR) and vector field, (b) contour plots of dimensionless azimuthal velocity v/(Ωr) and (c) axial velocity
w/(ΩR) on the meridional (r, z) semiplane.

the axial velocity component w/(ΩR) demonstrated a considerably lower magnitude,
approximately two orders of magnitude lower than the other two velocity components, and
it tended toward zero. Therefore, this observation prompted us to utilise the axial velocity
as a representative parameter to characterise the perturbation in the subsequent analysis.

Figures 3(a) and 3(b) display the axial distribution of the radial velocity u/(Ωr)
at the radius r/H = 5.13 in the stationary-disk boundary layer and the rotating-disk
boundary layer, respectively. Unlike the radial velocity on the rotating-disk boundary
layer, which decreased almost monotonically from its maximum value within the
rotating-disk boundary layer, the stationary-disk boundary layer exhibited multiple
inflection points, which inevitably rendered the stationary-disk boundary layer more prone
to the development of inviscid cross-flow instability (Schwiderski & Lugt 1964).

3.2. Global linear stability analysis
Figure 4(a) illustrates the variation of the linear growth rate. This contour plot was
composed of 452 data points, representing the growth rates λr of the most unstable mode
for various azimuthal wavenumbers m at Reynolds numbers ranging from 0.6 × 105 to
1.5 × 105.

Figure 4(a) is a contour plot interpolated from the linear growth rates λr derived
from global linear stability analysis across 452 sets of (Re, m), with the Reynolds
number ranging from 0.6 × 105 to 1.5 × 105. Arrows on the plot indicate the direction
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Figure 3. Two-dimensional DNS at Re = 1.2 × 105. Profiles of the radial velocity u/(Ωr) at r/H = 5.13 in
the (a) stationary-disk boundary layer, and (b) rotating-disk boundary layer.
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Figure 4. Results of global linear stability analysis. (a) The variation of the linear growth rate of the most
unstable mode λr with azimuthal wavenumber m for different Reynolds numbers Re. The solid lines from
left to right represent λr = (0.2, 0.4, 0.6, 0.8, 1.0). The dashed represents the azimuthal wavenumber m
corresponding to the Reynolds number Re with the maximum growth rate. (b) The growth rate λr at different
Reynolds numbers Re for m = 32. (c) The visual representation of the most unstable mode of the base flow at
Re = 1.2 × 105 and m = 32, the arrows indicate the direction of fluid rotation. The colour is consistent with
figure 2(c), where the axial perturbation velocity w′ ranges from negative (blue) to positive (red).

of increasing λr. Owing to the global linear stability analysis being conducted in the
Krylov subspace (Barkley et al. 2008), for a given Reynolds number Re and azimuthal
wavenumber m, multiple eigenmodes with a positive linear growth rate (λr > 0) may
exist. Here, we consider only the eigenmode with the largest λr. As the Reynolds number
increased, the maximum linear growth rate occurred at larger azimuthal wavenumbers.
As depicted by the dashed line in figure 4(a), it represents the azimuthal wavenumber
m at which the growth rate λr reached the maximum for each Reynolds number. When
Re = 0.6 × 105, the azimuthal wavenumber m = 32 exhibited the highest growth rate.
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According to Lopez et al. (2009), m = 32 corresponds to the azimuthal wavenumber
at the critical Reynolds number. Therefore, m = 32 was selected for the global stability
analysis across the Reynolds number range from 0.51 × 105 to 0.6 × 105, and the results
are shown in figure 4(b). This result is mainly consistent with Lopez et al.’s (2009)
findings. In his model with a geometric parameter of R/H = 10, a critical Reynolds
number of Rec = 51735 was obtained when the azimuthal wavenumber m = 32. Using
cubic spline interpolation, the critical Reynolds number for the linearised perturbation
growth at m = 32 was obtained as Rec = 51748 in the present study. Figure 4(c) presents
the 3-D structure of the perturbation eigenmode when m = 32 and Re = 1.2 × 105. From
left to right, the images represent the axial perturbation velocity w′ near the stationary-disk
side at z/H = −0.98 and on the meridional (r, z) semiplane. The perturbation eigenmode
mainly occupies the radial position of 4 < r/H < 8, with an average radial wavelength
of 13δ, where δ = √

ν/Ω . This radial wavelength is shorter than those obtained through
linear stability analysis by Serre et al. (2004) and Lingwood (1997). This is due to the
higher Reynolds number, which leads to a smaller radial wavelength of the spiral waves.
A similar phenomenon was observed in the study by Yim et al. (2018), where the radial
wavelength of the spiral waves in the rotating-disk boundary layer decreased from 25.5δ

at Re = 1.76 × 105 to 15.6δ at Re = 2.9 × 105.
In previous research (Serre et al. 2004), spiral waves were precisely defined via local

stability analysis, and diverse characteristic parameters, such as the radial wavelength and
frequency of spiral waves, were scrutinised. However, due to notable disparities in the base
flow, reflecting stability characteristics at various radial positions, particularly at mid to
high radii, establishing a suitable reference base flow to establish a meaningful correlation
between the outcomes of the current global stability analysis and the analysis of local
stability poses a significant challenge. As such, the present study does not incorporate a
comparison with existing results from local stability analysis.

3.3. Direct numerical simulation
Global linear stability analysis provides the perturbation eigenmode that exhibits linear
growth characteristics. However, understanding the nonlinear behaviour following linear
growth and predicting the occurrence of local turbulence necessitates the adoption of DNS.
By adding a small perturbation eigenmode to the base flow as the initial conditions, 3-D
DNS could be initiated to explore the evolution of nonlinear behaviour. In the present
study, the initial perturbation eigenmode energy was set to be 10−10 of the base flow.

Here, for all DNS in the present study, the spiral eigenmode with azimuthal wavenumber
m = 32 was also selected without losing generality. As an important prerequisite, the
present study concentrates on a fundamental instability mechanism related to eigenmodes.
It is the primary instability spiral mode that distorts the base flow and admits transition. In
this viewpoint, the chosen spiral mode is just a representative to illustrate this mechanism.
The choice of the azimuthal wavenumber m at a given Re was relatively non-decisive.
In addition, it is convenient to compare with other works and validate our observations
and analysis, we chose m = 32, which is commonly used in the existing literature and
represents the most unstable azimuthal wavenumber at the current critical Reynolds
number Rec.

Figure 5 displays the results of DNS at Re = 1.2 × 105. The solid lines are the
dimensionless amount of flow kinetic energy contained in each Fourier mode k

Ek = 1
2Aū2

kH

∫
A

ûkû∗
kr dA, (3.1)
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Figure 5. Growth to saturation at Re = 1.2 × 105, represented by kinetic energies in Fourier modes. The
dotted line indicates the exponential growth rate for azimuthal wavenumber m = 32 (k = 1 in the DNS).

where A is the area of the 2-D meridional (r, z) semiplane, ūk = ΩH and û∗
k denotes the

complex conjugate of the velocity data in the kth Fourier mode. The azimuthal wavenumber
m corresponding to these Fourier modes is given by m = 32k. The dotted line in figure 5
indicates the exponential growth for azimuthal wavenumber m = 32 (k = 1 in the DNS),
as predicted from the global linear stability analysis, and closely aligns with the DNS
results.

The final simulation results of Re = 1.2 × 105 ultimately reached a relatively stable
state. However, in addition to this, the simulations of Re = 1.5 × 105 exhibited localised
turbulence after sufficient development.

3.4. Discussion

3.4.1. Linear growth and nonlinear saturation
In figure 5, it is evident that all modes displayed a distinct phase characterised by
linear energy amplification within a specific temporal window. Subsequently, this phase
of linear global instability underwent a transition into nonlinear energy amplification
at approximately Ωt = 8 rad, ultimately culminating in saturation around Ωt = 15 rad.
When Ωt = 45 rad, in addition to the spiral waves resulting from inviscid instability,
circular waves were also generated within the boundary layer due to the combined
effects of viscosity and the Coriolis force. Existing literature substantiates that these
circular waves propagate radially inward and lack the self-sustaining characteristics
observed in spiral modes (Schouveiler et al. 1999, 2001; Lopez et al. 2009). Figure 6
displays instantaneous axial velocity w/ΩR contour plots corresponding to linear growth
(Ωt = 8 rad), nonlinear saturation (Ωt = 15 rad) and the coexistence of circular waves
and spiral waves (Ωt = 45 rad), respectively. In comparison with the perturbation
eigenmode in figure 4(b), during the linear growth phase, the spiral waves exhibited
minimal positional migration. The increase in perturbation velocity of the spiral waves
reflects the linear growth of their energy. Since the inflow on the stationary-disk boundary
layer was highly stable, with no disturbances present, perturbations at the high radial
positions of the stationary-disk boundary layer originated from the nonlinear growth of
spiral waves. That is, when nonlinear energy growth occurred, spiral waves simultaneously
transmitted perturbation energy upstream (towards a higher radius) and downstream.
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(b)(a)

Figure 6. The visual representation of DNS at Re = 1.2 × 105. (a) Meridional (r, z) semiplane. (b) Plane at
z/H = −0.98. Here, Ωt = 8 rad (left), Ωt = 15 rad (middle) and Ωt = 45 rad (right). The colour is consistent
with figure 2(c), where the dimensionless axial velocity w/(ΩR) ranges from -0.005 (blue) to 0.005 (red).

Finally, circular waves appeared at smaller radial positions and occupied all the lower
radial positions. As a result, nearly the entire boundary layer became perturbed.

Owing to the radial constraints in the cavity, the spiral waves could not propagate
endlessly upstream. Nonetheless, the upstream region corresponded to an area with
higher local Reynolds numbers, making disturbances in its vicinity the most energetic
throughout the boundary layer. This observation was clearly reflected in the vibrant
colours observed in the upstream sector of figure 6. In previous investigations of the
rotating-disk boundary layer, it has been noted that, when the radial extent is sufficiently
large, whether due to convective instability or local absolute instability, spiral waves tend
to induce localised turbulence downstream in the high-radius region. However, for the
stationary-disk boundary layer, it is not yet clear whether it is due to further development
of the spiral waves in the radial range, leading to localised turbulence in the boundary
layer. This aspect will be further discussed later on.

The radial space–time plot in figure 7(a) illustrates the temporal evolution of the flow
field at the position where z/H = −0.98, θ = 0. Apart from linear growth and nonlinear
saturation phenomena, circular waves developed when Ωt = 25 rad. Under the current
Reynolds number, circular waves emerged from the mid-radius position and propagated
downstream. During the time interval depicted in the figure, the initial radial position of
the circular waves gradually decreased. The green dashed line and arrow in the figure
emphasise this phenomenon, indicating that the circular waves would diminish over time.
Notably, the phase velocities of different circular waves propagating downstream were
inconsistent, which could result in the merging of circular waves. The green circle in the
figure highlights this phenomenon. Results not presented here indicate that, even after
undergoing 20 rotations of the rotating disk, circular waves persist and gradually dissipate.
Compared with the results of Lopez et al. (2009), the current decay rate was very slow. In
their study, they proposed that sudden changes in Re led to the appearance of circular
waves, largely attributed to changes in the mean flow. In the present research, it was
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Figure 7. (a) Space–time plot showing w/ΩR at z/H = −0.98, θ = 0 for Re = 1.2 × 105. (b) Space–time plot
showing w/ΩR at z/H = −0.98, θ = 0 for Re = 1.5 × 105. The colour is consistent with figure 2(c), where
the dimensionless axial velocity w/(ΩR) ranges from -0.005 (blue) to 0.005 (red).

observed that the saturation of spiral waves also led to variations in the mean flow. This
correlation provided a possible explanation for the occurrence of circular waves in the
present investigation. In a study by Lopez et al. (2009), with Re = 0.5 × 105, the mean
flow quickly stabilised, resulting in the rapid decay of circular waves within a short period
of time. Contrastingly, in the present study, the mean flow continued to evolve after the
saturation of spiral waves, which explains why the present circular waves persisted for a
much longer duration compared with those in the study conducted by Lopez et al. (2009).

3.4.2. The interference between spiral waves and circular waves and the generation of
local turbulence

When conducting DNS at a higher Reynolds number, specifically Re = 1.5 × 105, the
observed linear growth patterns and subsequent nonlinear energy saturation closely
resembled those observed at Re = 1.2 × 105. Nonetheless, owing to the elevated local
Reynolds numbers associated with the high-radius region, the boundary layer manifests
more complex disturbance behaviour following the nonlinear energy saturation.

The radial space–time plot depicted in figure 7(b) reveals that the earliest formation of
circular wave structures occurred at Ωt = 15 rad. Additionally, multiple circular waves
were observed between r/H = 4 and r/H = 6, denoted by the numbers 1, 2 and 3 in
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figure 7(b). These three circular waves exhibited similarities in terms of temporal and
spatial scales. Their main characteristics in the space–time diagram are solid green lines.
The only distinction is that wave 3 emerges at a higher radial position, resulting in
its interaction and interference with the pre-existing spiral waves in terms of spatial
localisation. As a result, this interference manifests as discontinuous structures during
the initial phase of wave 3, as shown by the green dashed line in the space–time diagram.
Subsequently, circular waves 4 and 5, appearing at higher radial positions, exhibited a
more complex flow dynamics than the preceding waves. Initially, they interacted with the
spiral waves, giving rise to disturbances with larger temporal and spatial scales. As they
merged with other circular waves during downstream propagation, they swiftly induced
high-frequency, small-scale perturbations in the flow field. Figure 7(a) also shows this
merging phenomenon. However, specific small-scale vortices are not observed due to
the absence of spiral waves at their intersection locations. Continuity was restored when
the high-frequency, small-scale perturbations reached extremely low radial positions.
Green dotted lines correspondingly illustrate the characteristics of these high-frequency,
small-scale structures in the space–time diagram. While these circular waves interacted to
different extents with the spiral waves, causing further disturbances in the boundary layer,
their frequencies of occurrence and the radial range they affected were relatively small. As
a result, the boundary layer could still revert to a relatively stable state.

As circular waves originating from higher radial positions propagated downstream,
they interfered with the spiral waves throughout the entire boundary layer. Waves 6
and 7 emerged from the highest radial position of the spiral waves, and their initial
interference with the spiral waves did not result in strong disturbances. During the
downstream convective process, when they merged with other circular wave disturbances,
they exhibited high-frequency small-scale perturbations similar to waves 4 and 5.

The present evidence suggests that, at Re = 1.5 × 105, besides the development of
nonlinear saturated spiral waves, the interaction between circular waves and spiral waves
led to additional disturbances in the boundary layer and the formation of small-scale
perturbation structures. Starting from Ωt = 40 rad, the growing frequency of circular
waves exacerbated small-scale disturbances across the entire boundary layer. Therefore,
this led to the consistent occurrence of localised turbulence, indicated by high-frequency
small-scale disturbances, at the mid-radius position of the cavity.

The entire transition process was analysed from the perspective of a space–time
diagram. The overall changes in the mean flow field and perturbation flow field resulting
from the mutual interference of circular waves and spiral waves could be characterised
by the energy of different modes Ek. Figure 8(a) shows the time-dependent changes in
modal energy between mode k = 1 and mode k = 5 after the nonlinear saturation of
spiral waves. Figure 8(b) provides a magnified depiction of the alterations in the area
of mode k = 0, representing the mean flow, both before and after the nonlinear saturation
of the spiral waves. As the energy of the spiral waves linearly increased, the energy of
the mean flow slowly rose. Nevertheless, with the onset of nonlinear effects, the energy
of the mean flow underwent a rapid decline. This decline could be ascribed to two
factors: the corrections made to the mean flow and the energy provided to the perturbation
field. As the simulation progressed towards its conclusion, the energy of the mean flow
continued to decline, while the energy of the perturbation field steadily rose. As such, the
turbulence intensity in the boundary layer was expected to escalate further. In the range
of 10 rad < Ωt < 40 rad, the energy of mode k = 1, 2, 3, 4, 5 exhibited relatively calm
fluctuations. Each consecutive increase in mode energy corresponded to the generation of
circular waves at higher radial positions, which then convected and disturbed the original
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Figure 8. (a) Kinetic energies between Fourier modes k = 1 and k = 5 at Re = 1.5 × 105. (b) Kinetic
energies in Fourier mode k = 0 at Re = 1.5 × 105. (c) Local magnification of the Fourier mode k = 1.

boundary layer downstream. Specifically, the mode energy for k = 1, 2, 3, 4, 5 reached its
peak within the ranges of 22.5 < Ωt < 27.5 rad and 32.5 < Ωt < 37.5 rad, as indicated
by the green shading in the figure, corresponding to the abundant radial small-scale
disturbances within these two time intervals in the space–time plot of figure 7(b). Beyond
Ωt > 40 rad, new circular waves continuously emerge at higher radial positions, causing
an escalating presence of small-scale disturbances within the boundary layer. These
disturbances became increasingly fragmented over time. As a result, the energy of larger
Fourier modes continued to rise, rather than decreasing after reaching a peak, as observed
in the previous time interval. Additionally, the energy of Fourier mode k = 1 in figure 8(c)
exhibited sustained fluctuations compared with the preceding period.

From the described analysis, it can be inferred that, when Ωt > 40 rad, higher radii
consistently generated circular waves. These circular waves gradually created small-scale
perturbation structures as they interacted with spiral waves during the downstream
convective process, eventually resulting in localised turbulence at intermediate radii.
However, at lower radii with lower Reynolds numbers and in the absence of spiral waves,
the perturbations were solely caused by circular waves and did not give rise to localised
turbulence.

To illustrate the location where localised turbulence occurred, figures 9(a) and
9(b), respectively, depict the non-dimensional axial velocity w/(ΩR) contour plots at
Ωt = 50 rad for the mean flow k = 0, mode k = 1 and mode k = 2 at the meridional (r, z)
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(b)(a)

Figure 9. The visual representation of DNS at Re = 1.5 × 105: (a) meridional (r, z) semiplane at k = 0, 1, 2;
(b) plane at z/H = −0.98 at k = 0, 1, 2. The colour is consistent with figure 2(c), where the dimensionless
axial velocity w/(ΩR) ranges from −0.005 (blue) to 0.005 (red).

semiplane and plane at the z/H = −0.98, respectively. The mean flow contour plot reveals
the presence of circular waves convecting downstream throughout the entire boundary
layer. These circular waves interacted with the spiral waves in the boundary layer, leading
to the generation of localised turbulence. Due to the strong perturbations already present
in the current flow field, the k = 1 mode only exhibited recognisable complete spiral
waves at higher radii, while the spiral waves structure essentially disappears in the
mid–lower-radius region. The perturbations of the mode k = 2 mainly existed at the
intermediate radius position, the radial location where localised turbulence was generated.
As the Fourier mode varied (from 0 to 1 to 2), shown in figure 9(a), the radial scale
depicted became smaller. Meanwhile, in figure 9(b), the azimuthal scale also became
smaller. This phenomenon reinforces the previously mentioned correspondence between
the radial small scale and the azimuthal small scale.

According to Jeong & Hussain (1995), the λ2 criterion can serve as a robust indicator for
discerning vortex structures in the stationary-disk boundary layer. The contour plot shown
in figure 10 illustrates the isosurface at λ2 = −0.001. When computing λ2, the velocity
and spatial scales were appropriately non-dimensionalised by ΩH and H, respectively.
The colour represents the axial velocity w/ΩR on the vortex structures. Figures 10(a) and
10(b) each display the 3-D vortex structures from distinct viewpoints. The majority of
the boundary was populated by chaotic vortex structures. The spiral wave structure in the
higher-radius region interacted with the circular wave structure, convecting downstream
and creating large-scale vortices accompanied by small-scale vortices, ultimately leading
to the formation of localised turbulence. In these regions, the vortex structures exhibited
uniformity in both radial and azimuthal scales. However, in the lower-radius region, where
spiral waves were absent, only the circular wave structure existed.
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(b)

(a)

Figure 10. Vortical flow structures visualised by the iso-surface λ2 = −0.001 coloured by w/(ΩR) at
Ωt = 50 rad for Re = 1.5 × 105. The colour is consistent with figure 2(c), where the dimensionless axial
velocity w/(ΩR) ranges from −0.005 (blue) to 0.005 (red).

3.5. Turbulence transition pathway on the stationary-disk boundary layer
Based on the dynamic process of DNS, the pathway leading to the occurrence of
localised turbulence in the boundary layer on the stationary-disk boundary layer could
be summarised as follows.

After the linear energy growth of the perturbation eigenmode, nonlinear energy
amplification caused the spiral waves to propagate upstream towards the high-radius region
on the stationary-disk boundary layer. Subsequently, the spiral waves at the high-radius
location on the stationary-disk boundary layer underwent nonlinear saturation. Following
nonlinear saturation, the mean flow underwent significant changes owing to the influence
of spiral waves, thereby inducing the appearance of circular waves. As an increasing
number of circular waves propagated downstream from the higher-radius position of the
boundary layer, they interact with the fully developed spiral waves, causing the formation
of vertical structures that exist simultaneously at large and small scales, ultimately
resulting in localised turbulence. At lower radial positions, the flow became relatively
stable again due to the presence of only circular waves in the boundary layer.

Along the flow direction, from high to low radius, the process of laminar–transition–
turbulent flow in the stationary-disk boundary layer can be qualitatively divided into four
regions:

(i) In the outermost region, at a high radial distance from the centre, the boundary layer
exhibits spiral waves indicative of type I instability.

(ii) Moving inward, an initial interaction between circular and spiral waves is observed.
This interaction leads to mutual disturbances, which amplify the instability
structures initially induced by the spiral waves.

(iii) Nearing the centre, the merging of larger-scale disturbances gives rise to localised
turbulence. This turbulence is interspersed with high-frequency, small-scale
perturbations and is typically found at mid-radii.
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(iv) In the innermost region, at the lowest radial distance, the boundary layer is
characterised by circular waves associated with type II instability.

4. Summary and conclusions

In the present study, the enigma surrounding the transition to turbulence in the
stationary-disk boundary layer was addressed. The proposed approach seamlessly
integrates global linear stability analysis and DNS to offer a fresh perspective on
the matter. Notably, the current study’s azimuthal wavenumber restriction, which only
considers m = 32 and its harmonics, means that all other wavenumbers are excluded
from the analysis. This limitation precludes the investigation of nonlinear interactions
among all different azimuthal wavenumbers, which may play a significant role in the
transition process. As a result, this study provides a possible transition mechanism of
the stationary-disk boundary layer, considering only the nonlinear interactions of the
azimuthal wavenumber m = 32 and its harmonics. In future research, it is necessary
to employ a full cavity model or experimental approaches to investigate the transition
mechanism of the boundary layer under fully nonlinear interactions. The principal
conclusions of the present study are as follows:

(i) Based on 452 data points spanning Reynolds numbers from 0.6 × 105 to 1.5 × 105,
a contour plot was constructed to illustrate the relationship between the azimuthal
wavenumber m and the growth rate λr of the perturbation eigenmode. Further,
the critical Reynolds number (Rec) at which global linear instability exists was
determined to be Rec = 51748 when m = 32.

(ii) For lower Reynolds numbers, Re = 1.2 × 105, the DNS results reveal that the energy
of the spiral mode initially increased linearly. With the emergence of nonlinear
effects, the disturbance of the spiral waves propagated upstream to higher radial
positions. Subsequently, circular waves of type II instability, generated due to mean
flow distortion, occupied the entire lower-radius position. For higher Reynolds
numbers, Re = 1.5 × 105, the linear and nonlinear processes were consistent with
Re = 1.2 × 105. However, in this scenario, circular waves originate from higher
radial positions and interfere with the spiral waves during their downstream
development. This interference exacerbates the instability of the boundary layer,
leading to the generation of localised turbulence

(iii) Combining the 2-D base flow with the perturbation eigenmode at a specific
azimuthal wavenumber, the initial flow for the 3-D DNS was derived. This approach
facilitated the capture of the spiral instability of the flow without introducing
additional perturbations. Subsequently, the interaction between type I and type II
instabilities within the stationary-disk boundary layer triggered the emergence of
localised turbulence in the rotor–stator cavity.

When investigating the transition to turbulence on the rotating-disk boundary layer,
the flow generally underwent a process from low Reynolds numbers upstream to high
Reynolds numbers downstream. As the disturbances developed and the local Reynolds
numbers increased, whether due to convective instability or absolute instability, localised
turbulence naturally appeared at a specific critical location. Further downstream, the
development of turbulence became more vigorous. Therefore, research on the turbulence
route on the stationary-disk boundary layer should not solely focus on the idea that
turbulence appears first at high radii (Reynolds numbers). This approach can be
misleading, as when turbulence appears at high radii, the mid- to low-radius regions of the
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entire boundary layer may already be chaotic with localised turbulence. This could explain
why there is limited research on the study of turbulence pathways on the stationary-disk
boundary layer.

However, the present study can serve as an initial exploration of the transition
mechanism on the stationary-disk boundary layer. In future research, more rigorous
discussions and analyses are required. Firstly, it is crucial to establish an appropriate
reference base flow that can connect the present study with local stability analysis.
Secondly, investigating whether the transition mechanism aligns with the findings of
the current study in the presence of pulsatile or sustained disturbances would further
enhance the credibility of the study. Finally, although there are challenges in obtaining
the perturbation eigenmode from the present global linear stability analysis, using other
methods, experiments or DNS can be employed to introduce circumferentially uniformly
distributed roughness on the disk. This approach would force the generation of a specific
azimuthal wavenumber for comparative analysis with the current study.
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