ON FINITELY GENERATED LATTICES OF FINITE WIDTH

W. POGUNTKE AND B. SANDS

1. Introduction. The width of a lattice L is the maximum number of pairwise noncomparable elements in L.

It has been known for some time ([5]; see also [4]) that there is just one subdirectly irreducible lattice of width two, namely the five-element nonmodular lattice N_{5}. It follows that every lattice of width two is in the variety of $N_{\tilde{j}}$, and that every finitely generated lattice of width two is finite.

Beginning a study of lattices of width three, W. Poguntke [6] showed that there are infinitely many finite simple lattices of width three. Further studies on width three lattices were made in [3], where it was asked whether every finitely generated simple lattice of width three is finite. In this paper we will show that, in fact, more is true:

Theorem 1.1. Every finitely generated subdirectly irreducible lattice of width three is finite.

Although we will mainly be interested in lattices of width three, a preliminary theorem, in the next section, will concern lattices of arbitrary finite width.

For each integer $n \geqq 1$, subdirect products of lattices of width at most n form a variety $[\mathbf{1}, \mathbf{2}, \mathbf{8}, \mathbf{9}]$: in R. Wille's terminology, the variety of all lattices of primitive width at most n. The width of any subdirectly irreducible lattice in this variety does not exceed n. From these results (or alternatively, from Jónsson's Lemma) we obtain:

Corollary 1.2. The variety of lattices of primitive width at most three is generated by its finite members.

Whether the corollary holds for lattices of primitive width $n, n>3$, is not known. However, we now show by examples that Theorem 1.1 is best possible.

The lattice of Figure 1, which is taken from [3], is an example of an infinite, subdirectly irreducible (in fact simple) lattice of width three

[^0]

Figure 1. An infinite simple lattice of width three.
which is not finitely generated. On the other hand, Figure 2 illustrates a familiar finitely generated infinite lattice of width three which is not subdirectly irreducible; the structure of this lattice is of particular importance in both [3] and the present paper.

Finally we present the lattice L of Figure $3 . L$ is infinite and of width four, and is finitely generated (by a_{1}, e_{1}, u, and v). Moreover, L is simple. To see this, let θ be a nontrivial congruence on L, and let $x, y \in L$ be such that $x \neq y$ and $x \equiv y(\theta)$. Observe that we may assume $x, y \in L-$ $\{u, v, 0,1\}$; then, by chasing transposes up and down, we get that $e_{1} \equiv$ $d_{1}(\theta)$. Now,

$$
e_{1} / d_{1} \nearrow \nearrow^{1} / b_{1} \searrow^{v} / 0 \nearrow \nearrow^{1} / u \searrow^{a_{1}} / 0 \nearrow{ }^{1} / v,
$$

and so $0 \equiv v \equiv 1(\theta)$, as claimed.
This section concludes with a brief outline of the rest of the paper. In § 2 we define certain partially ordered sets called towers, and prove that a finitely generated lattice of width $n+1$ cannot contain a tower of width n, for $n \geqq 2$. This theorem for the case $n=2$ will be utilized in

Figure 2
§ 3 and § 4. There, we define a lattice called the herringbone, and show that it or its dual is a sublattice of every finitely generated infinite lattice of width three (in fact we prove a little more). Finally, in § 5 we argue essentially as in [3] to prove our main result.
2. Towers. For $n \in \omega$, a tower of width n is a partially ordered set

$$
\{a(i, j) \mid i \in \omega, 1 \leqq j \leqq n\}
$$

with the ordering: $a(i, j)<a(k, l)$ if and only if $i>k$ (Figure 4 illustrates a tower of width three). Observe that if a tower of width n is embedded in a lattice, then

$$
\bigvee_{j=1}^{n} a(i+1, j) \leqq \bigwedge_{j=1}^{n} a(i, j) \quad \text { for all } i .
$$

Let L be a lattice and let S be a nonempty subset of L. We shall say that S is removable if $L-S$ is a sublattice of L. It is clear that every set of generators of L must contain at least one element from every removable subset. This obvious, but key, concept will be needed both in this section and the next two.

We now proceed to the main theorem of this section.
Theorem 2.1. Let L be a finitely generated lattice of width $n+1, n \geqq 2$. Then L cannot contain a tower of width n as a subset.

Figure 3. An infinite four-generated simple lattice of width four.

Figure 4. A tower of width three.
Proof. Suppose L contains the tower $\{a(i, j)\}$ of width n. We may clearly assume that L is linearly indecomposable (for instance, by initially inducting on the number of generators of L). Thus for each i
there is an element, in fact a generator g_{i} of L, which is not comparable with $\bigwedge_{j=1}^{n} a(i, j)$. As L is finitely generated, some generator g of L must be chosen infinitely often as a g_{i}, and it follows that $g \| a(i, j)$ for all j and all but finitely many i. By relabeling (starting the tower further down) we may assume $g \| a(i, j)$ for all i and j.

Our plan is to define, for each $i \geqq 3$, a removable set R_{i}. Later we will show that the R_{i} 's are sufficiently disjoint to contradict the fact that L is finitely generated.

Fix i. For $j \in\{1, \ldots, n\}$, set

$$
J(i, j)=\vee\{a(i, k) \mid 1 \leqq k \leqq n, k \neq j\}
$$

Choose $s_{i} \in\{1, \ldots, n\}$ such that $a\left(i, s_{i}\right) \wedge g \leqq J\left(i, s_{i}\right)$. Such a choice is possible, since if $a(i, j) \wedge g \nexists J(i, j)$ for each j, it is easy to check that

$$
\{a(i, 1) \wedge g, \ldots, a(i, n) \wedge g, a(i+1,1), \ldots, a(i+1, n)\}
$$

is an antichain, which (for $n \geqq 2$) contradicts the assumption that L has width $n+1$.

Set

$$
T_{i}=\left\{x \in L \mid x \not \equiv a\left(i, t_{i}\right), x \wedge g \leqq J\left(i, s_{i}\right)\right\},
$$

where t_{i} is any fixed element of $\{1, \ldots, n\}$ other than s_{i}. From above, $a\left(i, s_{i}\right) \in T_{i}$; we now show T_{i} is removable. Let $x, y \in L$ be such that $x \vee y \in T_{i}$ but $x \notin T_{i}, y \notin T_{i}$. Then

$$
(x \vee y) \wedge g \leqq J\left(i, s_{i}\right)
$$

and it follows that $x \leqq a\left(i, t_{i}\right)$ and $y \leqq a\left(i, t_{i}\right)$. But then $x \vee y \leqq$ $a\left(i, t_{i}\right)$, a contradiction. If $x \wedge y \in T_{i}$ but $x, y \notin T_{i}$, then

$$
\begin{aligned}
& x \wedge y \neq a\left(i, t_{i}\right) \quad \text { and } \\
& x \wedge y \wedge g \leqq J\left(i, s_{i}\right),
\end{aligned}
$$

and we can deduce $x \neq a\left(i, t_{i}\right), y \neq a\left(i, t_{i}\right), x \wedge g \neq J\left(i, s_{i}\right)$, and $y \wedge g \neq J\left(i, s_{i}\right)$. Observe that

$$
x \wedge g \neq y \wedge g,
$$

for otherwise

$$
x \wedge g=x \wedge y \wedge g \leqq J\left(i, s_{i}\right)
$$

Also,

$$
x \wedge g \text { 丰 } a\left(i, s_{i}\right),
$$

for otherwise

$$
x \wedge g \leqq a\left(i, s_{i}\right) \wedge g \leqq J\left(i, s_{i}\right)
$$

It follows from these and similar considerations for y that

$$
\{x \wedge g, y \wedge g, a(i, 1), a(i, 2), \ldots, a(i, n)\}
$$

is an antichain, which is impossible. Thus T_{i} is removable.
Dually, setting

$$
M(i, j)=\wedge\{a(i, k) \mid 1 \leqq k \leqq n, k \neq j\}
$$

for each $j \in\{1, \ldots, n\}$, we can find $s_{i}{ }^{*} \in\{1, \ldots, n\}$ such that

$$
a\left(i, s_{i}{ }^{*}\right) \vee g \geqq M\left(i, s_{i}{ }^{*}\right) .
$$

We then obtain the removable set

$$
T_{i}^{*}=\left\{x \in L \mid x \not \equiv a\left(i, t_{i}^{*}\right), x \vee g \geqq M\left(i, s_{i}^{*}\right)\right\},
$$

where $t_{i}{ }^{*} \in\{1, \ldots, n\}, t_{i}{ }^{*} \neq s_{i}{ }^{*}$.
An observation: if our goal were merely to construct a removable subset R_{i} for each i, we would be done; just use the T_{i} 's, and ignore the $T_{i}{ }^{*}$'s. However, to achieve enough disjointness among the R_{i} 's we must proceed with somewhat more care. The definition of R_{i} requires three cases.

Case 1. If $a(i-2,1) \wedge g \neq a(i, 1)$ set $R_{i}=T_{i}$.
Case 2. If $a(i-2,1) \wedge g \leqq a(i, 1)$ and $a(i+2,1) \vee g \nexists a(i, 1)$ set $R_{i}=T_{i}{ }^{*}$.

Case 3. Assume $a(i-2,1) \wedge g \leqq a(i, 1) \leqq a(i+2,1) \vee g$. Let R_{i} be the set

$$
U_{i}=\{x \in L \mid x\|g, x\| a(i, 1)\} .
$$

Then U_{i} is nonempty, containing $a(i, 2)$ for example. We show that $L-U_{i}$ is closed under joins. Let $x \vee y \in U_{i}$ with $x, y \notin U_{i}$. It is easy to see that, without loss of generality, $x<g, y<a(i, 1), y \| g$, and $x \| a(i, 1)$. Now note that $x \vee y \neq a(i-1, j)$ for any j, for otherwise $x \vee y \geqq a(i, 1)$; also, $x \vee y \not a(i-1, j)$ for any j, for otherwise $x \leqq a(i-2,1) \wedge g \leqq a(i, 1)$. Hence

$$
\{g, a(i-1,1), a(i-1,2), \ldots, a(i-1, n), x \vee y\}
$$

is an $n+2$-element antichain, which is impossible. Thus $L-U_{i}$ is closed under joins. A dual argument shows that $L-U_{i}$ is closed under meets, and so U_{i} is removable.

Having defined R_{i} for all $i \geqq 3$, we now prove that each element of L lies in only finitely many of the R_{i}. This is an immediate consequence of the next two claims.

Claim 1. If $i_{1}<i_{2}<i_{3}$ then $U_{i_{1}} \cap U_{i_{2}} \cap U_{i_{3}}=\emptyset$.

Suppose $t \in U_{i_{1}} \cap U_{i_{2}} \cap U_{i_{3}}$. Since $\left\{g, a\left(i_{2}, 1\right), \ldots, a\left(i_{2}, n\right), t\right\}$ is not an antichain, t must be comparable with some $a\left(i_{2}, j\right)$. However, $t<a\left(i_{2}, j\right)$ implies $t<a\left(i_{1}, 1\right)$, and $t>a\left(i_{2}, j\right)$ implies $t>a\left(i_{3}, 1\right)$, both contradictions to the definition of U_{i}.

Claim 2. If $2<i_{1}<i_{2}<i_{3}<i_{4}<i_{5}<i_{6}$ and $a\left(i_{5}-2,1\right) \wedge g$ 本 $a\left(i_{5}, 1\right)$, then $\bigcap_{k=1}^{6} T_{i_{k}}=\emptyset$. A dual property holds for the $T_{i}{ }^{*}$'s.

Suppose $t \in \cap_{k=1}^{6} T_{i_{k}}$. Then in particular

$$
t \wedge g \leqq J\left(i_{2}, s_{i_{2}}\right)<a\left(i_{1}, t_{i_{1}}\right),
$$

implying $t \| g$. Also, $t \neq a\left(i_{2}, j\right)$ for any j, for otherwise $t \leqq a\left(i_{2}, j\right)<$ $a\left(i_{1}, t_{i_{1}}\right)$. Suppose $t>a\left(i_{2}, j\right)$ for some j. Then

$$
t>a\left(i_{3}, 1\right) \geqq a\left(i_{5}-2,1\right),
$$

so

$$
a\left(i_{5}-2,1\right) \wedge g \leqq t \wedge g \leqq J\left(i_{6}, s_{i_{6}}\right) \leqq a\left(i_{5}, 1\right)
$$

a contradiction. Thus $t \| a\left(i_{2}, j\right)$ for all j; but now

$$
\left\{a\left(i_{2}, 1\right), a\left(i_{2}, 2\right), \ldots, a\left(i_{2}, n\right), g, t\right\}
$$

is an antichain, which is impossible.
The proof of Theorem 2.1 may now be easily concluded. Since, say, R_{3} is nonempty and removable, there must be a generator g_{1} of L in R_{3}. Since g_{1} is in only finitely many of the R_{i} 's, we may choose an R_{i} which does not contain g_{1}. This R_{i} does contain a generator g_{2} however, which is guaranteed to be distinct from g_{1}. Continuing in this way, we produce an infinite list of generators of L. This contradiction shows that L cannot contain a tower of width n.

Remarks. Our theorem does not allow the case $n=1$; nevertheless it is amusing to note that when $n=1$ the statement of the theorem is equivalent to the fact (mentioned above) that every finitely generated lattice of width two is finite.

Secondly, it is possible for a tower of width n to be a subset of a finitely generated lattice of width $n+3$ (Figure 5 illustrates such an example for $n=5$). This result is sharpened even further in the case $n=2$; Figure 6 illustrates a finitely generated lattice of width four containing a tower of width two.

Problem. Can a finitely generated lattice of width $n+2$ contain a tower of width n, for $n>2$?
3. The herringbone as subset. We begin this section with a corollary of the last theorem.

Corollary 3.1. Let L be a finitely generated lattice of width three, and

Figure 5
let $a_{1}>a_{2}>a_{3}>\ldots$ be an infinite chain in L. Then there is $k<\omega$ such that $\left[a_{n}, a_{k}\right] \subseteq L$ is a chain for all $n \geqq k$.

The lattice illustrated in Figure 7 will be called the herringbone. Our goal for the next two sections is to prove that every finitely generated infinite lattice of width three contains the herringbone or its dual. In this section, we shall be content to prove the following.

Theorem 3.2. Let L be a finitely generated lattice of width three, and assume L contains an infinite descending chain. Then L contains a subset order-isomorphic to the herringbone.

Figure 6
Remark. The term "herringbone" has occasionally been used informally to denote the lattice of Figure 2. As well, in [3] the herringbone was defined as a certain partial lattice essentially based on Figure 2.

For $n \in \omega$, let B_{n} denote the partially ordered set of Figure 8 ; that is, B_{n} has underlying set $\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n}\right\}$, and the ordering: $b_{i}<a_{j}$ if and only if $i \leqq j$.

Lemma 3.3. Let L be a lattice of width n, and let B_{n} be a subset of L. Then $L=\left[b_{1}\right) \cup\left(a_{n}\right]$.

Proof. Suppose $x \in L$ with $x \not \equiv b_{1}$ and $x \neq a_{n}$. Since the set $\left\{a_{1}, a_{2}, \ldots, a_{n}, x\right\}$ cannot be an antichain, we must have $x<a_{i}$ for some i. Let i be minimal such that $x<a_{i}$ and consider the set

$$
\left\{a_{1}, \ldots, a_{i-1}, a_{i} \wedge a_{n}, b_{i+1}, \ldots, b_{n}, x\right\}
$$

From $a_{i} \wedge a_{n} \geqq b_{1} \vee b_{i}$ and the choice of i, this is an $n+1$-element antichain, which is impossible.

For the rest of this section, we assume that L is a finitely generated lattice of width three which contains an infinite descending chain.

Figure 7. The herringbone

Figure 8

Proposition 3.4. L does not contain an infinite chain $c_{1}>d_{1}>c_{2}>$ $d_{2}>c_{3}>d_{3}>\ldots$ such that each c_{i} is join-reducible and each d_{i} is meet-reducible.

Proof. Assume L contains such a chain. From Corollary 3.1, we may assume (by relabeling, if necessary) that $\left[c_{n}, c_{1}\right]$ is a chain for all $n<\omega$.

Let $i<\omega$, and let $x_{i}, y_{i} \in L$ be such that $x_{i} \| y_{i}$ and $x_{i} \vee y_{i}=c_{i}$. Since [c_{i+1}, c_{1}] is a chain, it follows without loss of generality that $x_{i} \vee d_{i} \geqq$ $y_{i} \vee d_{i}$, which implies $x_{i} \vee d_{i}=c_{i}$. Set $a_{i}=x_{i}$. Dually, for each $i<\omega$, we can find $b_{i}>d_{i}$ such that $b_{i} \wedge c_{i}=d_{i}$ (see Figure 9). Note that, for all i, j with $i \leqq j, a_{i} \| d_{j}$ and $d_{i} \| b_{j+1}$; also, $a_{i} \neq b_{i}$ for all i.

Figure 9
Because of the finite width of L, the set $\left\{a_{i} \mid i<\omega\right\}$ has to contain an infinite descending chain A; by relabeling the elements of the set $\cup_{a_{i} \in A}\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$, we see that we may assume $a_{1}>a_{2}>a_{3}>\ldots . \mathrm{A}$ further relabeling, and we may also assume $b_{1}>b_{2}>b_{3}>\ldots$.

For each $i<\omega$, let

$$
R_{i}=\left\{x \in L \mid x \not \equiv a_{2 i}, x \neq b_{2 i+1}\right\} .
$$

Since $d_{2 i} \in R_{i}$, we know $R_{i} \neq \emptyset$; also,

$$
L-R_{i}=\left[a_{2 i}\right) \cup\left(b_{2 i+1}\right]
$$

is a sublattice of L, so R_{i} is removable. We now claim that the R_{i} 's are pairwise disjoint, which will contradict the fact that L is finitely generated. Suppose $x \in R_{i} \cap R_{j}$ where $i<j$; then $x \neq a_{2 j}$ and $x \neq b_{2 i+1}$. But

$$
\left\{a_{2 j}, a_{2 i}, d_{2 j}, d_{2 i}, b_{2 j+1}, b_{2 i+1}\right\} \simeq B_{3}
$$

which from Lemma 3.3 implies that

$$
L=\left[a_{2 j}\right) \cup\left(b_{2 i+1}\right]
$$

Thus x cannot exist, and the proof is complete.
Corollary 3.5. For each infinite chain $c_{1}>c_{2}>c_{3}>\ldots$ in L, there is a $k<\omega$ such that for all $n>k$ either
(i) $\left[c_{n}, c_{k}\right]$ is a chain of join-reducible, meet-irreducible elements, or
(ii) $\left[c_{n}, c_{k}\right]$ is a chain of meet-reducible, join-irreducible elements.

Proof. The only observation we need make is that L can contain only finitely many doubly irreducible elements, since each one must be a generator. The result then follows from Corollary 3.1 and Proposition 3.4.

Lemma 3.6. L contains infinite chains $a_{0}>a_{1}>a_{2}>\ldots$ and $b_{1}>$ $b_{2}>b_{3}>\ldots$ such that
(i) $b_{i}<a_{j}$ for all $i>j, b_{i} \| a_{j}$ for all $i \leqq j$;
(ii) $a_{i} \wedge b_{i}=b_{i+1}$ for all i;
(iii) for each $n<\omega,\left[a_{n}, a_{0}\right]$ is a chain of meet-irreducible elements;
(iv) for each $n<\omega,\left[b_{n}, b_{1}\right]$ is a chain of join-irreducible elements.
(Note: (i) and (ii) say that $S=\left\{a_{0}, a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right\}$ is a meetsubsemilattice of L isomorphic to $2 \times \omega^{*}$.)

Proof. Let $c_{1}>c_{2}>c_{3}>\ldots$ be an infinite chain in L. Assume (i) of Corollary 3.5 holds (the proof is similar in the other case). By relabeling, we have that $\left[c_{n}, c_{1}\right]$ is a chain of join-reducible, meet-irreducible elements for each n. For each $i<\omega$, choose $x_{i}, y_{i} \in L$ such that $x_{i} \| y_{i}$ and $x_{i} \vee y_{i}=c_{i}$. Arguing as in the proof of Proposition 3.4, we may assume

$$
x_{i} \vee c_{i+1} \geqq y_{i} \vee c_{i+1}
$$

so that $x_{i} \vee c_{i+1}=c_{i}$. Observe that $x_{i} \| c_{j}$ for all $j>i$. By choosing an infinite chain from the x_{i} 's and relabeling them and the corresponding c_{i} 's, we have $x_{1}>x_{2}>x_{3}>\ldots$ Let $b_{i}=x_{i}$ and $a_{i-1}=c_{i}$ for each i; then (i) is established. Furthermore, it is easy to adjust the b_{i} 's so that (ii) holds. Finally, since each b_{n} is meet-reducible, Corollary 3.5 shows that both (iii) and (iv) must hold under a suitable relabeling.

The next lemma and its corollary are somewhat technical.
Lemma 3.7. Let $a_{0}, a_{i}, b_{i}(i=1,2, \ldots)$ be as in Lemma 3.6, and let $x, y \in L$ and $k<\omega$ be such that $x \| b_{i}$ for all $i \geqq k, y<b_{i}$ for all i, and $x \vee y \geqq b_{k}$. Further suppose that $x^{\prime}, y^{\prime} \in L$ and $l \geqq k$ are such that x^{\prime} 丰 $b_{k}, x^{\prime} \vee y^{\prime} \geqq b_{l}$, and $x^{\prime} \vee y^{\prime}$ 丰 a_{l}. Then $x^{\prime} \vee y^{\prime} \geqq b_{k}$.

Proof. Consider the set $\left\{x, a_{l}, b_{k}, x^{\prime} \vee y^{\prime}\right\}$. First, $x \nexists a_{l}$, since otherwise $x \geqq b_{l+1}$; also $x \neq a_{l}$, since otherwise $b_{k} \leqq x \vee y \leqq a_{l}$. Thus $\left\{x, a_{l}, b_{k}\right\}$ is an antichain. Now $x^{\prime} \vee y^{\prime} \neq x$ or a_{l}, since otherwise $b_{l} \leqq x$ or a_{l}; and since $x^{\prime} \neq b_{k}$ we have $x^{\prime} \vee y^{\prime} \neq b_{k}$. As L has width three, either $x^{\prime} \vee y^{\prime} \geqq b_{k}$ as claimed, or $x^{\prime} \vee y^{\prime} \geqq x$. But in the latter case $x^{\prime} \vee y^{\prime} \geqq x \vee b_{l} \geqq x \vee y \geqq b_{k}$ anyway.

Corollary 3.8. We may assume that if $x^{\prime}, y^{\prime} \in L$ and $l<\omega$ are such that $x^{\prime} \| b_{i}$ for all $i, y^{\prime}<b_{i}$ for all $i, x^{\prime} \vee y^{\prime} \geqq b_{l}$, and $x^{\prime} \vee y^{\prime} \nexists a_{l}$, then $x^{\prime} \vee y^{\prime} \geqq b_{1}$.

Proof．Let K be the set of all $k<\omega$ such that there exist $x, y \in L$ satisfying $x \| b_{i}$ for all $i \geqq k, y<b_{i}$ for all $i, x \vee y \geqq b_{k}$ ，and $x \vee y \nexists a_{k}$ ． If K is empty，the corollary is true vacuously．Otherwise set $k=\min K$ ． By Lemma 3．7，if there exist $x^{\prime}, y^{\prime} \in L$ and $l<\omega$ such that $x^{\prime} \| b_{i}$ for all $i \geqq k, y^{\prime}<b_{i}$ for all $i, x^{\prime} \vee y^{\prime} \geqq b_{l}$ ，and $x^{\prime} \vee y^{\prime} \neq a_{l}$ ，then $x^{\prime} \vee y^{\prime} \geqq$ b_{k} ．The corollary now follows by renumbering the a_{i}＇s and b_{i}＇s so that $k=1$ ．

Proof of Theorem 3．2．For each $i<\omega$ ，set

$$
W_{i}=\left\{x \in L \mid x \not \geqq b_{i}, x \geqq b_{j} \text { for some } j>i\right\} .
$$

Clearly $W_{i} \neq \emptyset$ ．It is also easy to see that $L-W_{i}$ is closed under taking meets．On the other hand，observe that if $x \in W_{i}$ ，then there is a $j_{0}>i$ with $x \notin W_{j}$ for any $j \geqq j_{0}$ ；since L is finitely generated，this implies that W_{i} cannot be removable for infinitely many i ．Thus，we might as well assume that，for every $i, L-W_{i}$ is not closed under taking joins；that is，for each i there are $x_{i}, y_{i} \in L-W_{i}$ with $x_{i} \vee y_{i} \in W_{i}$ ．This means that $x_{i}, y_{i} \not ⿻ b_{k}$ for any k ，and that $x_{i} \vee y_{i} \not ⿻ b_{i}$ but there exists an integer $j(i)>i$ such that $x_{i} \vee y_{i} \geqq b_{j(i)}$ ．

Observe that we cannot have both $x_{i} \leqq a_{j(i)}$ and $y_{i} \leqq a_{j(i)}$ ，for this would imply

$$
b_{j(i)} \leqq x_{i} \vee y_{i} \leqq a_{j(i)} .
$$

Thus we can assume that x_{i} 丰 $a_{j(i)}$ ，and it follows that $x_{i} \| a_{k}$ for all $k \geqq j(i)$ and $x_{i} \| b_{k}$ for all $k \geqq j(i)+1$ ．Moreover，if $x_{i} \leqq b_{1}$ then

$$
b_{j(i)+1}<x_{i} \vee b_{j(i)+1} \leqq b_{1},
$$

and $\left[b_{j(i)+1}, b_{1}\right]$ contains a join－reducible element，contradicting Lemma 3.6 （iv）；hence $x_{i} \| b_{k}$ for all k ．For each $k \geqq j(i)$ ，the set $\left\{x_{i}, y_{i}, a_{k}, b_{k}\right\}$ is not an antichain，from which we conclude that $y_{i}<a_{k}$ for all k ．

Claim．$x_{i} \vee y_{i} \geqq a_{j(i)+1}$ ．
To prove this，consider the set

$$
\left\{x_{i}, b_{i}, a_{j(i)+1}, b_{j(i)+1} \vee y_{i}\right\} .
$$

We already know that $\left\{x_{i}, b_{i}, a_{j(i)+1}\right\}$ is an antichain，so $b_{j(i)+1} \vee y_{i}$ must be comparable with one of these three elements．Obviously

$$
b_{j(i)+1} \vee y_{i} \text { 丰 } x_{i} \text { or } a_{j(i)+1} \text {; }
$$

also

$$
b_{j(i)+1} \vee y_{i} \leqq a_{j(i)},
$$

which implies that $b_{j(i)+1} \vee y_{i} \not x_{i}$ or b_{i} ．If $b_{j(i)+1} \vee y_{i} \geqq a_{j(i)+1}$ ，then

$$
x_{i} \vee y_{i} \geqq b_{j(i)} \vee y_{i} \geqq b_{j(i)+1} \vee y_{i} \geqq a_{j(i)+1}
$$

as claimed. Finally suppose $b_{j(i)+1} \vee y_{i} \leqq b_{i}$. Then $y_{i} \leqq b_{i}$, and from Lemma 3.6 (ii) it follows that $y_{i} \leqq b_{k}$ for all k. If $x_{i} \vee y_{i} \nexists a_{j(i)}$ then from Corollary 3.8 we would have $x_{i} \vee y_{i} \geqq b_{1} \geqq b_{i}$, a contradiction; hence

$$
x_{i} \vee y_{i} \geqq a_{j(i)}>a_{j(i)+1}
$$

and the claim is established.
So $x_{i} \vee y_{i} \geqq a_{j(i)+1}$, but since $x_{i} \vee y_{i} \nexists b_{i}$ we know that $x_{i} \vee y_{i} \nexists$ a_{i-1}. In fact, since

$$
a_{j(i)+1} \leqq\left(x_{i} \vee y_{i}\right) \wedge a_{i-1} \leqq a_{i-1}
$$

Lemma 3.6 (iii) implies that $x_{i} \vee y_{i} \leqq a_{i-1}$, and so $x_{i}<a_{i-1}$.
In summary, for each $i<\omega$ we have found an element $x_{i}<a_{i-1}$ and an integer $j(i)>i$ such that $x_{i} \| a_{k}$ for all $k \geqq j(i)$ and $x_{i} \| b_{k}$ for all k.

Now let $i_{1}=1$, and inductively let $i_{k}=j\left(i_{k-1}\right)+1$. It follows that, for each $k, x_{i_{k}}<a_{i_{k}-1}, x_{i_{k}} \| a_{l}$ for all $l \geqq i_{k+1}-1$, and $x_{i_{k}} \| b_{l}$ for all l. Furthermore, $x_{i_{j}}<x_{i_{k}}$ for $j>k$, since L has width three. Therefore, letting 0 be the least element of L, the set

$$
\{0\} \cup \bigcup_{k=1}^{\infty}\left\{x_{i_{2 k}}, a_{i_{k}-1}, b_{i_{2 k}-1}\right\}
$$

is easily seen to be order-isomorphic to the herringbone.
Note. It was proved recently in [7] that every finitely generated infinite lattice of finite width contains a subset isomorphic to the herringbone or its dual.

4. The herringbone as sublattice.

Theorem 4.1. Let L be a finitely generated lattice of width three, and suppose L contains an infinite descending chain. Then L contains a sublattice isomorphic to the herringbone.

Proof. From Theorem 3.2 we may suppose that L contains the herringbone

$$
\{z\} \cup \bigcup_{i=1}^{\infty}\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}
$$

illustrated in Figure 7 , as a subset. Let $A=\cup_{i=1}^{\infty}\left[a_{i}, a_{1}\right], B=$ $\cup_{i=1}^{\infty}\left[b_{i}, b_{1}\right]$, and $C=\bigcup_{i=1}^{\infty}\left[c_{i}, c_{1}\right]$. From Corollary 3.5 , we may assume that A and B are chains of join-irreducible elements, and that C is a chain of meet-irreducible elements.

Set $a_{i}{ }^{\prime}=a_{i}, b_{i}{ }^{\prime}=b_{i}, c_{i}{ }^{\prime}=a_{i} \vee d_{i}$, and $d_{i}{ }^{\prime}=b_{i} \vee c_{i+1}$ for each i; then, since C is a chain, $c_{i}{ }^{\prime}=a_{i}{ }^{\prime} \vee d_{j}{ }^{\prime}$ and $d_{i}{ }^{\prime}=b_{i}{ }^{\prime} \vee c_{j+1}{ }^{\prime}$ for all $j \geqq i$. For each $j \geqq i>1$, the set $\left\{a_{i}{ }^{\prime} \vee b_{j}{ }^{\prime}, a_{1}{ }^{\prime}, b_{1}{ }^{\prime}, d_{j}{ }^{\prime}\right\}$ is not an antichain,
which implies that $a_{i}{ }^{\prime} \vee b_{j}{ }^{\prime}>d_{j}{ }^{\prime}$. Hence

$$
a_{i}^{\prime} \vee b_{j}^{\prime} \geqq a_{i}^{\prime} \vee d_{j}^{\prime}=c_{i}^{\prime}
$$

and so $a_{i}{ }^{\prime} \vee b_{j}{ }^{\prime}=c_{i}{ }^{\prime}$. Similarly, for each $j \geqq i>1$ we get

$$
b_{i}^{\prime} \vee a_{j+1}^{\prime}=d_{i}{ }^{\prime} .
$$

Observe that these last two results can be written as the single equation

$$
a_{i}{ }^{\prime} \vee b_{j}{ }^{\prime}=c_{i}{ }^{\prime} \vee d_{j}{ }^{\prime}, \quad \text { for any } i, j>1
$$

(and so, by relabeling, for all i and j). Finally, from the set $\left\{a_{i}{ }^{\prime}, b_{i}{ }^{\prime}, c_{i+1}{ }^{\prime}, a_{1}{ }^{\prime} \wedge b_{1}{ }^{\prime}\right\}$ we infer that $a_{1}{ }^{\prime} \wedge b_{1}{ }^{\prime}<c_{i}{ }^{\prime}$ for all i; since A and B are chains, $a_{1}{ }^{\prime} \wedge c_{i+1}{ }^{\prime}<a_{i}{ }^{\prime}$ and $b_{1}{ }^{\prime} \wedge c_{i+1}{ }^{\prime}<b_{i}{ }^{\prime}$ for all i, and hence $a_{1}{ }^{\prime} \wedge b_{1}{ }^{\prime}<a_{i}{ }^{\prime}$ and $b_{i}{ }^{\prime}$ for all i. Setting $z^{\prime}=a_{1}{ }^{\prime} \wedge b_{1}{ }^{\prime}$, we have shown that

$$
\left\{z^{\prime}\right\} \cup \bigcup_{i=1}^{\infty}\left\{a_{i}^{\prime}, b_{i}^{\prime}, c_{i}^{\prime}, d_{i}^{\prime}\right\}
$$

is a join-subsemilattice of L order-isomorphic to the herringbone; further, $a_{1}{ }^{\prime} \wedge b_{1}{ }^{\prime}=z^{\prime}$ holds. Getting the rest of the meets to work out right will be more difficult.

An element $t \in C$ will be called a triple point if

$$
\left(a_{1}^{\prime} \wedge t\right) \vee c_{i}^{\prime}=t=\left(b_{1}^{\prime} \wedge t\right) \vee c_{i}^{\prime}
$$

where $i \geqq 1$ is such that $c_{i}{ }^{\prime}<t$. Notice that since C is a chain, this definition is not dependent on which $c_{i}{ }^{\prime}(<t)$ is chosen.

Let t be a triple point such that $c_{i}{ }^{\prime}<t \leqq c_{i-1}{ }^{\prime}$ for some $i>2$, and set

$$
S_{t}=\left\{x \in L \mid x \neq d_{i}{ }^{\prime}, x \vee c_{i}{ }^{\prime}<t\right\} .
$$

Then $c_{i}{ }^{\prime} \in S_{t}$ so S_{t} is nonempty. We claim that S_{t} is removable. It is easy to see that $L-S_{t}$ is closed under joins. Thus we suppose that $x, y \in L$ are such that $x, y \notin S_{i}$ but $x \wedge y \in S_{t}$. Then $x \wedge y \neq d_{i}{ }^{\prime},(x \wedge y) \vee$ $c_{i}{ }^{\prime}<t$, and it follows that $x \vee c_{i}{ }^{\prime} \nless t$ and $y \vee c_{i}{ }^{\prime} \nless t$. Since $x \wedge y<$ $t \leqq c_{i-1}{ }^{\prime}$, and C is a chain of meet-irreducibles, we see that $x \wedge y \| d_{j}{ }^{\prime}$ for all $j \geqq i$. From the set $\left\{x \wedge y, a_{i-2}{ }^{\prime}, b_{i-2}{ }^{\prime}, d_{i}{ }^{\prime}\right\}$ we get that $x \wedge y<$ $a_{i-2}{ }^{\prime}$ or $x \wedge y<b_{i-2}{ }^{\prime}$, and from the set $\left\{x \wedge y, a_{i+1}{ }^{\prime}, b_{i}{ }^{\prime}, d_{i+1}{ }^{\prime}\right\}$ we get that $x \wedge y>a_{i+1}{ }^{\prime}$ or $x \wedge y>b_{i}{ }^{\prime}$. Thus, either $a_{i+1}{ }^{\prime}<x \wedge y<a_{i-2}{ }^{\prime}$ or $b_{i}{ }^{\prime}<x \wedge y<b_{i-2}{ }^{\prime}$. Suppose the former. Since A is a chain, $a_{i-2}{ }^{\prime} \wedge$ $t=a_{1}{ }^{\prime} \wedge t$, and so $x \wedge y \leqq a_{1}{ }^{\prime} \wedge t$. Note that if $x \wedge y=a_{1}{ }^{\prime} \wedge t$, then

$$
(x \wedge y) \vee c_{i}^{\prime}=\left(a_{1}^{\prime} \wedge t\right) \vee c_{i}^{\prime}=t
$$

contradicting $x \wedge y \in S_{t}$; thus $x \wedge y<a_{1}{ }^{\prime} \wedge t$. Again since A is a chain, we may assume $x \| a_{1}{ }^{\prime} \wedge t$ and $x \| a_{1}{ }^{\prime}$. If $x>b_{1}{ }^{\prime}$ then

$$
x \geqq a_{i+1}^{\prime} \vee b_{1}^{\prime}=d_{1}^{\prime}>a_{1}^{\prime} \wedge t
$$

a contradiction; thus $x \| b_{1}{ }^{\prime}$. From $\left\{x, a_{1}{ }^{\prime}, b_{1}{ }^{\prime}, d_{i}{ }^{\prime}\right\}$ we get $x>d_{i}{ }^{\prime}$. Since C is a chain of meet-irreducibles, this implies that x is comparable to both t and $c_{i}{ }^{\prime}$. From $x \| a_{1}{ }^{\prime} \wedge t$ we know that $x<t$; but $x \vee c_{i}{ }^{\prime}$ equals x or $c_{i}{ }^{\prime}$, and thus $x \vee c_{i}{ }^{\prime}<t$, which is a contradiction. Similarly, $b_{i}{ }^{\prime}<x \wedge$ $y<b_{i-2}{ }^{\prime}$ is impossible, and S_{t} is removable.

If s and t are triple points such that

$$
c_{j+1}^{\prime}<s \leqq c_{j}^{\prime}<d_{i}^{\prime}<c_{i}^{\prime}<t \leqq c_{i-1}^{\prime},
$$

where $2<i<j$, then it is easy to see that $S_{t} \cap S_{s}=\emptyset$. Hence, since L is finitely generated, we may assume by relabeling that L contains no triple points.

Now set $a_{1}{ }^{\prime \prime}=a_{1}{ }^{\prime}, b_{1}{ }^{\prime \prime}=b_{1}{ }^{\prime}, c_{1}{ }^{\prime \prime}=c_{1}{ }^{\prime}$, and $d_{1}{ }^{\prime \prime}=d_{1}{ }^{\prime}$, and, for each $i>1$, recursively define:

$$
\begin{aligned}
a_{i}^{\prime \prime} & =a_{1}{ }^{\prime} \wedge d_{i-1}^{\prime \prime} \\
{c_{i}^{\prime \prime}}^{\prime \prime} & =a_{i}^{\prime \prime} \vee c_{i}^{\prime} \\
b_{i}^{\prime \prime} & =b_{1}^{\prime} \wedge c_{i}^{\prime \prime} \\
d_{i}^{\prime \prime} & =b_{i}^{\prime \prime} \vee d_{i}^{\prime} .
\end{aligned}
$$

We claim that

$$
\left\{z^{\prime}\right\} \cup \bigcup_{i=1}^{\infty}\left\{a_{i}^{\prime \prime}, b_{i}^{\prime \prime}, c_{i}^{\prime \prime}, d_{i}^{\prime \prime}\right\}
$$

is a sublattice of L isomorphic to the herringbone.
Evidently $a_{i}{ }^{\prime \prime} \leqq c_{i}{ }^{\prime \prime}$ and $b_{i}{ }^{\prime \prime} \leqq d_{i}{ }^{\prime \prime}$. Since $b_{i}{ }^{\prime \prime} \leqq c_{i}^{\prime \prime}$ and $d_{i}{ }^{\prime}<$ $c_{i}{ }^{\prime} \leqq c_{i}{ }^{\prime \prime}$, we have $d_{i}{ }^{\prime \prime} \leqq c_{i}{ }^{\prime \prime}$. Similarly, $c_{i}{ }^{\prime \prime} \leqq d_{i-1}{ }^{\prime \prime}$. Thus $d_{i}{ }^{\prime \prime} \leqq d_{i-1}{ }^{\prime \prime}$, which implies $a_{i+1}{ }^{\prime \prime} \leqq a_{i}{ }^{\prime \prime}$, and $c_{i+1}{ }^{\prime \prime} \leqq c_{i}{ }^{\prime \prime}$, which implies $b_{i+1}{ }^{\prime \prime} \leqq b_{i}{ }^{\prime \prime}$, for each i. Since $a_{i}{ }^{\prime}<d_{i-1}{ }^{\prime} \leqq d_{i-1}{ }^{\prime \prime}$ and $a_{i}{ }^{\prime} \leqq a_{1}{ }^{\prime}$, we have $a_{i}{ }^{\prime} \leqq$ $a_{i}{ }^{\prime \prime} \leqq a_{1}{ }^{\prime}$; thus $a_{i}{ }^{\prime \prime} \in A$ for each i, and similarly $b_{i}{ }^{\prime \prime} \in B$. Hence $a_{i}{ }^{\prime \prime} \| b_{j}{ }^{\prime \prime}$ for all i and j. Furthermore,

$$
\begin{aligned}
& z^{\prime}=a_{1}{ }^{\prime \prime} \wedge b_{1}^{\prime \prime}<a_{i}^{\prime \prime}, b_{i}^{\prime \prime} \quad \text { for each } i, \text { and } \\
& a_{i}^{\prime \prime} \vee b_{j}^{\prime \prime}=a_{i}^{\prime \prime} \vee b_{j}^{\prime \prime} \vee\left(a_{i}^{\prime} \vee b_{j}^{\prime}\right)=a_{i}^{\prime \prime} \vee b_{j}^{\prime \prime} \vee\left(c_{i}^{\prime} \vee d_{j}^{\prime}\right) \\
& =\left(a_{i}^{\prime \prime} \vee c_{i}^{\prime}\right) \vee\left(b_{j}^{\prime \prime} \vee d_{j}^{\prime}\right)=c_{i}^{\prime \prime} \vee d_{j}^{\prime \prime} \text { for each } i, j
\end{aligned}
$$

To complete the verification, we need only show that $c_{i}{ }^{\prime \prime}>d_{i}{ }^{\prime \prime}$ and $d_{i}{ }^{\prime \prime}>c_{i+1}{ }^{\prime \prime}$ for each i; for instance, $a_{i}{ }^{\prime \prime} \| d_{i}{ }^{\prime \prime}$ then follows from the fact that $c_{i}{ }^{\prime \prime}=a_{i}{ }^{\prime \prime} \vee b_{i}{ }^{\prime \prime}$, and similarly we conclude $b_{i}{ }^{\prime \prime} \| c_{i+1}{ }^{\prime \prime}$. Observe that

$$
c_{i}^{\prime \prime}=a_{i}^{\prime \prime} \vee c_{i+1}^{\prime}=\left(a_{1}^{\prime} \wedge c_{i}^{\prime \prime}\right) \vee c_{i+1^{\prime}}^{\prime},
$$

since C is a chain. But $c_{i}{ }^{\prime \prime}$ cannot be a triple point, and (noting $\left.c_{i+1}{ }^{\prime}<c_{i}{ }^{\prime} \leqq c_{i}{ }^{\prime \prime}\right)$ it follows that

$$
c_{i}^{\prime \prime}>\left(b_{1}^{\prime} \wedge c_{i}^{\prime \prime}\right) \vee c_{i+1}^{\prime}=b_{i}^{\prime \prime} \vee c_{i+1}^{\prime}=d_{i}^{\prime \prime}
$$

as desired. A similar argument establishes $d_{i}{ }^{\prime \prime}>c_{i+1}{ }^{\prime \prime}$, and we have our herringbone.

In [8] is exhibited a finitely generated infinite lattice of width four which does not contain a sublattice isomorphic to the herringbone or its dual.

The next result, stronger than Theorem 4.1, answers question 2 of [3] in the affirmative. It may also be of interest in that the lattices involved (see Figure 10) are all three-generated, whereas the herringbone is not even finitely generated.

Theorem 4.2. Let L be a finitely generated infinite lattice of width three, and suppose L contains an infinite descending chain. Then L contains one of the lattices of Figure 10 as a sublattice.

Proof. By the previous theorem, we may assume that L contains the herringbone illustrated in Figure 7 as a sublattice. As usual, we also assume that $A=\bigcup_{i=1}^{\infty}\left[a_{i}, a_{1}\right]$ and $B=\bigcup_{i=1}^{\infty}\left[b_{i}, b_{1}\right]$ are chains of joinirreducible elements, and that $C=\bigcup_{i=1}^{\infty}\left[c_{i}, c_{1}\right]$ is a chain of meetirreducible elements.

$$
w^{\prime}=\left(a_{1} \wedge w\right) \vee\left(b_{1} \wedge w\right)
$$

Figure 10

For each $n \geqq 1$, set

$$
C_{n}=\bigcup_{i=n}^{\infty}\left(\left[a_{i}, c_{n}\right] \cup\left[b_{i}, c_{n}\right]\right)-\left\{a_{n}, b_{n}, c_{n}\right\} .
$$

Observe that $C_{1} \supset C_{2} \supset C_{3} \supset \ldots$ and $\cap_{n=1}^{\infty} C_{n}=\emptyset$. Since L is finitely generated, it follows that there cannot be infinitely many n such that C_{n} is removable. Thus, by relabeling, we may assume that no C_{n} is removable.

However, $L-C_{n}$ is closed under meets. To see this, let $x, y \in L$ be such that $x, y \notin C_{n}$, and suppose $x \wedge y \in C_{n}$. Then $x \wedge y \notin\left\{a_{n}, b_{n}, c_{n}\right\}$ and there is $i \geqq n$ such that either $a_{i} \leqq x \wedge y<c_{n}$ or $b_{i} \leqq x \wedge y<c_{n}$. Note that, since L has width three, c_{n} covers a_{n} and d_{n} covers b_{n} (for $n>1$, and so, by relabeling, for all n); therefore $x \wedge y \nexists a_{n}$ and, since $x \wedge y>b_{n}$ would imply $x \wedge y \in C, x \wedge y \nexists b_{n}$ either. Now look at $\left\{x, a_{n}, b_{n}, c_{n+1}\right\}$. Since $x \notin C_{n}$ we know x is not less than any of the other three elements of this set, and therefore $x \geqq a_{n}, b_{n}$, or c_{n+1}. If $x \geqq c_{n+1}$ then $c_{n+1} \leqq x \wedge c_{n} \leqq c_{n}$, and so x and c_{n} are comparable; however, since $x \notin C_{n}, x<c_{n}$ is impossible, and of course $x \geqq c_{n}$ implies $x>a_{n}$. Hence $x \geqq a_{n}$ or b_{n}. Similarly, $y \geqq a_{n}$ or b_{n}. Suppose $b_{i} \leqq x \wedge y<c_{n}$. Then $x \geqq a_{n}$ implies $x \geqq a_{n} \vee b_{i}=c_{n}>b_{n}$, and similarly for y; thus in any case x and y are both above b_{n}, which means $x \wedge y \geqq b_{n}$, a contradiction. Hence we assume $a_{i} \leqq x \wedge y<c_{n}$. Then $x \geqq b_{n}$ implies $x \geqq a_{i} \vee b_{n}=$ d_{n}, and for the usual reasons x and c_{n} are comparable, in fact $x \geqq c_{n}>a_{n}$. This goes for y as well, so $x \wedge y \geqq a_{n}$, another contradiction. We conclude that $L-C_{n}$ is closed under meets.

Therefore there must exist $x, y \in L$ such that $x \vee y \in C_{n}$ while $\dot{x}, y \notin C_{n}$. This means that $a_{i} \leqq x \vee y<c_{n}$ or $b_{i} \leqq x \vee y<c_{n}$ for some $i \geqq n$. Also, $x \nexists a_{i}$ or b_{i} for any i unless $x=a_{n}$ or b_{n}, and similarly for y. It is obvious that $\{x, y\} \neq\left\{a_{n}, b_{n}\right\}$, so without loss of generality we assume $x \notin\left\{a_{n}, b_{n}\right\}$. For each $i \geqq n,\left\{x, a_{i}, b_{i}, c_{i+1}\right\}$ is not an antichain, and we infer that $x<c_{i}$ for all i. If $y \notin\left\{a_{n}, b_{n}\right\}$, then also $y<c_{i}$ and hence $x \vee y \leqq c_{i}$ for all i, which is impossible. If $y=a_{n}$ then obviously $x \| a_{i}$ for all i; but from $\left\{x \vee y, a_{1}, b_{1}, d_{n}\right\}$ we must have $x \vee y>d_{n}$ and hence $x \vee y \geqq a_{n} \vee d_{n}=c_{n}$, a contradiction. Therefore $y=b_{n}$, and $x \| b_{i}$ for all i.

By symmetric arguments, we may assume that for all n the set

$$
D_{n}=\bigcup_{i=n}^{\infty}\left(\left[b_{i}, d_{n}\right] \cup\left[a_{i+1}, d_{n}\right]\right)-\left\{b_{n}, a_{n+1}, d_{n}\right\}
$$

is not removable, and we can find an element $x^{\prime} \in L$ such that $x^{\prime}<d_{i}$ and $x^{\prime} \| a_{i}$ for all i. Let $w=x \vee x^{\prime} \vee z$; then $w<c_{i}$ and $w \| a_{i}, b_{i}$ for all i. Since c_{i} covers a_{i} and d_{i} covers b_{i}, we see that $w \vee a_{i}=c_{i}$ and $w \vee b_{i}=d_{i}$ for all i. Finally, the reader can check that the locations of $w \wedge a_{1}$ and $w \wedge b_{1}$ will determine one of the lattices of Figure 10, and the theorem is proved.

Figure 11 illustrates a finitely generated infinite lattice of width five which does not contain a sublattice isomorphic to a lattice of Figure 10, or to any other infinite three-generated lattice, for that matter (our thanks to R . Wille for this example).

Problem. Does every finitely generated infinite lattice contain an infinite sublattice generated by an antichain?
5. The proof of theorem 1.1. Let L be a finitely generated lattice of width three, and suppose L contains the herringbone of Figure 7 as a sublattice; in this section we shall show that L cannot be subdirectly irreducible, thus establishing Theorem 1.1. The argument is much the same as that in the earlier paper of H . Bauer and the first author [3].

Figure 11

For each $n \geqq 1$, define

$$
\begin{aligned}
A_{n} & =\bigcup_{i=n}^{\infty}\left[a_{i}, a_{n}\right] \\
B_{n} & =\bigcup_{i=n}^{\infty}\left[b_{i}, b_{n}\right] \\
C_{n} & =\bigcup_{i=n}^{\infty}\left[c_{i}, c_{n}\right] .
\end{aligned}
$$

It is immediate that for each n, A_{n}, B_{n}, and C_{n} are pairwise disjoint convex sublattices of L, and that as usual we may assume A_{n} and B_{n} are chains of join-irreducible elements and C_{n} is a chain of meet-irreducible elements. Thus, for every n we may define an equivalence relation θ_{n} on L having A_{n}, B_{n}, C_{n} as nontrivial equivalence classes, all other classes being singletons.

We claim that θ_{n} is a congruence relation on L for each n. Since all the equivalence classes are convex sublattices, it is enough to show that for every proper quotient x / y identified by θ_{n}, each transpose u / v of x / y is also identified by θ_{n}.

Let $\{x, y\} \subseteq B_{n}$; that is, $b_{k} \leqq y<x \leqq b_{n}$ for some $k \geqq n$. If $u / v \nearrow{ }^{x} / y$ then $u \vee y=x$ is join-reducible, which is a contradiction; hence we let $u / v \searrow x / y$, where $v \| x, v \vee x=u$, and $v \wedge x=y$. Since $v \| x$ and $v>b_{k}$, we see that $v \nexists b_{1}, v \neq c_{n}$, and $v \neq a_{1}$. Also, $v \neq b_{1}$, for otherwise $b_{k} \leqq u=v \vee x \leqq b_{1}$, and $v \nexists a_{1}$, for otherwise $v \geqq a_{1} \vee b_{k}=c_{1}>x$. From $\left\{a_{1}, c_{n}, b_{1}, v\right\}$ we know that $v<c_{n}$ must hold, and so $u=v \vee$ $x \leqq c_{n}$. Moreover, $v>b_{k}$ implies that $v \neq c_{k+1}$, and from $\left\{a_{1}, c_{k+1}, b_{1}, v\right\}$ we see that $v \geqq c_{k+1}$. Thus $\{v, u\} \subseteq C_{n}$, so ${ }^{u} / v$ is identified by θ_{n}. A similar argument handles the case $\{x, y\} \subseteq A_{n}$.

Finally let $\{x, y\} \subseteq C_{n}$, so that $c_{k} \leqq y<x \leqq c_{n}$ for some $k>n$. $u / v \searrow^{x} / y$ is impossible, so let ${ }^{u} / v \nearrow^{x} / y$, where $u \| y, u \vee y=x$, and $u \wedge y=v$. From $\left\{a_{1}, b_{1}, c_{k}, u\right\}$ it follows that $u \leqq a_{1}$ or $u \leqq b_{1}$, so $u \leqq a_{1} \wedge c_{n}=a_{n}$ or $u \leqq b_{n}$. From $\left\{a_{k}, b_{k}, c_{k+1}, u\right\}$ we have $u \geqq a_{k}$ or $u \geqq b_{k}$. Thus $\{u, v\} \subseteq A_{n}$ or B_{n}, which completes the proof of the claim.

Theorem 1.1 now follows from the observation that

$$
\bigcap_{n=1}^{\infty} A_{n}=\bigcap_{n=1}^{\infty} B_{n}=\bigcap_{n=1}^{\infty} C_{n}=\emptyset
$$

and thus

$$
\bigwedge_{n=1}^{\infty} \theta_{n}=\omega .
$$

Acknowledgement. We would like to thank A. Day for his suggestions made, and interest shown, during the research culminating in this paper.

References

1. K. A. Baker, Equational classes of modular lattices, Pacific J. Math. 28 (1969), 9-15.
2. -Equational axioms for classes of lattices, Bull. Amer. Math. Soc. 77 (1971), 97-102.
3. H. Bauer and W. Poguntke, Lattices of width three: an example and a theorem, in Contributions of general algebra, Proc. Klagenfurt Conf. (1978), 47-54.
4. R. McKenzie, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1-43.
5. O. T. Nelson, Subdirect decompositions of lattices of width two, Pacific J. Math. 24 (1968), 519-523.
6. W. Poguntke, On simple lattices of width three, to appear in Colloq. Math. Soc. Janos Bolyai.
7. I. Rival, W. Ruckelshausen and B. Sands, On the ubiquity of herringbones in finitely generated lattices, to appear in Proc. Amer. Math. Soc.
8. W. Ruckelshausen and B. Sands, On finitely generated lattices of width four, preprint.
9. R. Wille, Variety invariants for modular lattices, Can. J. Math. 21 (1969), 279-283.
10. -_ Primitive subsets of lattices, Algebra Universalis 2 (1972), 95-98.

Lakehead University, Thunder Bay, Ontario

[^0]: Received July 5, 1979 and in revised form November 20, 1979. The research of the first author was supported by the National Research Council of Canada, Grant A-81 90, while he was a visitor at Lakehead University.

