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Abstract

In this paper, we investigate computable lower bounds for the best strongly ergodic
rate of convergence of the transient probability distribution to the stationary distribution
for stochastically monotone continuous-time Markov chains and reversible continuous-
time Markov chains, using a drift function and the expectation of the first hitting time
on some state. We apply these results to birth–death processes, branching processes and
population processes.
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1. Introduction

As a type of traditional ergodicity, strong ergodicity has been studied extensively for
many years. The earliest example may be dated back to as early as the 1930s [8]
for discrete-time Markov chains. Later, the work was extended to continuous-time
Markov processes, and criteria involving drift functions and first hitting time moments
were obtained; for a detailed description of these results, see, for example, [1, 9]
and [12]. For strongly ergodic discrete-time Markov chains, the best (largest) strongly
ergodic rate of convergence was obtained in [11] by using spectral conditions. There
are also other studies on the estimate of the strongly ergodic rate for continuous-time
Markov processes, for example, [7] for finite Markov chains by Nash inequality and
[16, 17] for Markov processes by the coupling method.
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Throughout this paper, we denote by R (R+) the real (nonnegative) number set, Z+
the nonnegative integer set and N the positive integer set. Let8t be a right continuous
and time-homogeneous Markov process on a Polish space E , endowed with the Borel
field B(E). Denote by P t (x, ·) the transition function of 8t . Suppose that the process
8t is ergodic, that is, there exists the unique probability distribution π such that

‖P t (x, ·)− π‖→ 0, t→∞,

where ‖µ‖ denotes the usual total variation norm for a signed measure µ, that is,
‖µ‖ = sup|g|≤1 |µ(g)|.

The process 8t is called strongly ergodic if there exists constants γ ≥ 0 and λ≥ 0
such that

sup
x∈E
‖P t (x, ·)− π‖ ≤ γ e−λt (1.1)

for all t ≥ 0. For an infinite E , without loss of generality, we can require γ ≥ 2 since
supx∈E ‖P

t (x, ·)− π‖ = 2 when t = 0. Following Mao [17], define

α(γ )= sup
{
λ > 0

∣∣∣∣ sup
x∈E
‖P t (x, ·)− π‖ ≤ γ e−λt , ∀t ≥ 0

}
(1.2)

and α = α(∞)= limγ→∞ α(γ ) to be the largest (best) strongly ergodic rate
of convergence.

REMARK 1.1. It follows from the definition that α(γ ) is increasing in γ , and reaches
its maximal value at a finite value of γ .

For any set A ∈ B(X), let τA be the first hitting time on A, that is,

τA = inf{t ≥ 0 | X t ∈ A}.

We write τx = τ{x}. In [17], a lower bound estimate that α ≥ 1/(supx∈E Ex [τ0]) was
obtained for both one-dimensional diffusion processes and birth–death processes by
constructing reflection coupling and classical coupling, respectively. Moreover, an
upper bound for a general Markov process was also given in [17] as follows.

PROPOSITION 1.2. If 8t is strongly ergodic, then for any closed A ⊂ E with
π(A) > 0,

α(γ )≤

[
2

π(A)
log

γ

π(A)

]
1

supx∈E Ex [τA]
.

REMARK 1.3. However, we note that the upper bound depends on γ and becomes
unbounded as γ goes to infinity. This will not be very helpful in bounding the best
strongly ergodic rate.

In this paper, we extend the work in [17] and previous literature results to
two classes of important continuous-time Markov chains: stochastically monotone
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continuous-time Markov chains (for example, [14]) and reversible continuous-time
Markov chains (for example, [4, 5]), by investigating lower bounds on α in terms of
drift functions and first hitting time moments.

For the remainder of this paper, let 8t be a continuous-time Markov chain on a
countable state space E . Denote by Q = (qi j ) the q-matrix (transition rate matrix) and
P t (i, j) the transition function. We assume that Q is totally stable, irreducible and
regular. We write qi =−qi i =

∑
k 6=i qik for any i ∈ E .

2. Stochastically monotone Markov chains

In the section, we refine computable lower bounds for strongly ergodic rates
of convergence for stochastically monotone continuous-time Markov chains, using
simple drift functions.

We first provide two equivalent drift conditions that will be used frequently later.
(DC1) is in general favorable over (DC2) since it does not involve the parameter λ.
Let k0 be an arbitrary state in E .

(DC1) Drift Condition 1. There exists a bounded nonnegative solution y of the system
∑
j∈E

qi j y j ≤−1, i 6= k0,

yi = 0, i = k0.

(2.1)

(DC2) Drift Condition 2. For some λ > 0, there exists a bounded solution V ≥ 1 of
the system 

∑
j∈E

qi j V j ≤−λVi , i 6= k0,

Vi = 1, i = k0.

(2.2)

The equivalence is obvious: if (DC1) holds, then (DC2) holds for V = y + 1
and any λ≤ 1/(supi∈E yi + 1); conversely, if (DC2) holds, then (DC1) holds for
y = λ(V − 1). Note that (DC1) is a well-known sufficient and necessary condition
for strong ergodicity (see, for example, [1, Proposition 3.3 in Section 6.3]). We also
note that if (DC2) holds, then λ < qi is satisfied automatically for any i 6= k0 because
0<

∑
j 6=i qi j V j ≤ (qi − λ)Vi .

The following proposition is essentially the same as [19, Theorem 1] (see also
[1, Lemma 1.5 in Section 6.1]) with some minor variations.

PROPOSITION 2.1.

(i) The sequence {Ei [τk0], i ∈ E} is the minimal nonnegative solution of (2.1) and
satisfies the system with equality.

(ii) For some λ such that 0< λ < qi for any i 6= k0, the sequence {Ei [e
λτk0 ], i ∈ E}

is the minimal nonnegative solution of (2.2) and satisfies the system with equality.
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PROOF. (i) The first assertion is the same as that in [1, Lemma 1.5 in Section 6.1].
(ii) From [1, Lemma 1.5 in Section 6.1], we see that the sequence{

Ei [e
λτk0 ] − 1
λ

, i ∈ E

}
is the minimal nonnegative solution of the following system

∑
j∈E

qi j x j ≤−λxi − 1, i 6= k0,

xi = 0, i = k0.

(2.3)

Let Vi = λxi + 1, then (2.3) becomes (2.2), and (ii) follows. 2

We now review the definitions of stochastic monotonicity. The chain 8t is said
to be stochastically monotone if

∑
j≥k P t (i, j) is an increasing function of i for any

fixed k ∈ Z+ and t ∈R+. It follows from [20, Theorem 3.1] that 8t is stochastically
monotone if and only if Q is (stochastically) monotone, that is,∑

j≥k

qi j ≤
∑
j≥k

qi+1, j

for all i, k ∈ Z+ such that k 6= i + 1.
We let E = Z+ in this and the following section. We apply a result in [14] to

derive the following lemma. In [14], a stochastically ordered continuous-time Markov
process was considered and explicit exponential rates of convergence were found using
the coupling method. Note that stochastic monotonicity is equivalent to stochastic
ordering for continuous-time Markov chains.

LEMMA 2.2. Assume that Q is monotone. If supi∈E Ei [eλτ0]<∞ for some λ > 0,
then

sup
i∈E
‖P t (x, ·)− π(·)‖ ≤ 4 sup

i∈E
Ei [e

βτ0]e−βt (2.4)

for any 0< β ≤ λ and t ≥ 0. Furthermore, if V satisfies (DC2) for some λ > 0, then

sup
i∈E

Ei [e
λτ0] ≤ sup

i∈E
Vi <∞.

PROOF. Since Q is monotone, the chain 8t is stochastically monotone (equivalently,
stochastically ordered). If supi∈E Ei [eλτ0]<∞, then it follows from [14,
Theorem 2.1] that

‖P t (i, ·)− π(·)‖ ≤ Mi e
−λt ,

where Mi ≤ 2(Ei [eλτ0] + Eπ [eλτ0]). With the fact that

Eπ [e
βτ0] =

∑
j∈E

E j [e
βτ0]π( j)≤ sup

i∈E
Ei [e

βτ0] ≤ sup
i∈E

Ei [e
λτ0]

for any β ≤ λ, we obtain (2.4) immediately. The second assertion follows from
Proposition 2.1 directly. 2
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ASSUMPTION 2.3. There exists a positive integer N satisfying qn0 = 0 for n ≥ N .

Many important classes of q-matrices satisfy this assumption, for example, the
birth–death q-matrix and the branching q-matrix that is studied in Section 3.

For a monotone matrix, the following lemma reveals the relationship between
(DC1) and (DC2) in more detail.

LEMMA 2.4. Assume that Q is monotone. If (DC1) holds for an increasing function
y, then (DC2) holds for any λ < 1/(supi∈E yi ) and the function V defined by

V0 = 1, Vi = cyi , i ≥ 1, (2.5)

where

c =max
{

sup
i∈E

qi0

1− λyi
,

1
y1

}
.

Furthermore, if Q satisfies Assumption 2.3 and y is finally strictly increasing (that is,
there exists some M ∈N such that yi+1 > yi for i ≥ M), then (DC2) holds also for
λ= 1/(supi∈E yi ).

PROOF. Since Q is monotone, it implies that qi0 is decreasing for i ≥ 1. By
Proposition 2.1(i), we see

y1 ≥ E1[τ0] ≥
1
q1
> 0.

With the assumption that y is increasing, we know that

c ≤max
{

q10

1− λsupi∈E yi
,

1
y1

}
<∞

for any λ < 1/(supi∈E yi ).
Let V0 = 1 and Vi = cyi , i ≥ 1, then Vi ≥ 1 for all i ≥ 0. Now, we check that V

satisfies (DC2). For i ≥ 1, since c ≥ (qi0)/(1− λyi ), qi0 − c ≤−λcyi =−λVi . By
this inequality, (DC1) implies that∑

j∈E

qi j V j = qi0 +
∑
j≥1

qi j cy j ≤ qi0 − c ≤−λVi , i ≥ 1.

Finally, if Assumption 2.3 holds for Q and y is finally strictly increasing, then

c =max
{

max
1≤i≤N

qi0

1− λyi
,

1
y1

}
<∞

even for λ= 1/(supi∈E yi ), and therefore the conclusion holds. 2

Based on Lemmas 2.2, 2.4 and the drift condition (DC1), we obtain the following
result, which will be applied to stochastically monotone Markov chains.
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THEOREM 2.5. Let Q be a monotone q-matrix. If (DC1) holds for an increasing
function y, then (1.1) holds for any λ < 1/(supi∈E yi ) and the constant γ =
4 supi∈E Vi , where V is given by (2.5). Furthermore, if Q satisfies Assumption 2.3
and y is finally strictly increasing, then (1.1) holds also for λ= 1/(supi∈E yi ).

COROLLARY 2.6. Assume that Q is monotone. If supi∈E Ei [τ0]<∞, then

α ≥
1

supi∈E Ei [τ0]
.

PROOF. Let yi = Ei [τ0], i ≥ 0. Since the chain 8t is stochastically monotone,
yi = Ei [τ0] is increasing of i for i ≥ 0. By Proposition 2.1(i), we know that y satisfies
(DC1) with equality. Hence, the assertion follows from Theorem 2.5. 2

3. Applications: stochastically monotone Markov chains

3.1. Birth–death processes Let 8t be a birth–death process with q-matrix Q given
by

qi,i+1 = bi , i ∈ Z+; qi,i−1 = ai , i ∈N; qi j = 0, |i − j | ≥ 2,

where ai > 0 for i ∈N and bi > 0 for i ∈ Z+. It is well-known that Q is regular if and
only if Q is conservative and

Rb :=

∞∑
n=1

(
1
bn
+

an

bnbn−1
+ · · · +

an · · · a2

bn · · · b1

)
=∞.

Define the potential coefficients µi , i ≥ 0, by

µ0 = 1, µi =
b0b1 · · · bi−1

a1a2 · · · ai
, i ≥ 1.

Assume that 8t is ergodic, that is,

∞∑
n=0

1
µnbn

n∑
k=0

µk =∞ and µ=

∞∑
n=0

µn <∞.

Then, the invariant probability measure π exists satisfying πi = (µi/µ), i ∈ Z+.
Define

A =
∞∑

i=0

1
µi bi

∞∑
j=i+1

µ j , and S =
∞∑

n=1

(
1

an+1
+

n∑
k=1

bk · · · bn

ak · · · an+1

)
. (3.1)

It is easy to see that A = S + (1/a1). It was proved in [21] that the birth–death process
is strongly ergodic if and only if S <∞. This result can be also proved differently, for
example, using an analytic method in [22] or using the coupling method in [16]. The
strongly ergodic rate for this process was also considered in [17].
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THEOREM 3.1. Assume that the birth–death process 8t is strongly ergodic.
Then (1.1) holds for any λ≤ 1/A and γ = 4cA with c =max{1/y1, a1/(1− λy1)},
where y1 is given by (3.2).

PROOF. It is easy to check that Q is monotone, so is 8t . From [22], we know that the
function y can be defined by

y0 = 0, yi =

i−1∑
k=0

(
1

ak+1
+

∞∑
j=k+1

bk+1 · · · b j

ak+1 · · · a j+1

)
, i ≥ 1, (3.2)

satisfying (DC1) with equality. Obviously, yi is strictly increasing, Q satisfies
Assumption 2.3 and supi∈E yi = A. Therefore, from Theorem 2.5 we have
the assertion. 2

REMARK 3.2. Theorem 3.1 is an improvement of the result in [17], which shows that
α assumes the value (1/A) when γ = 4Ac. 2

3.2. Generalized Markov branching processes In this section, we consider a
generalized Markov branching process with q-matrix Q given by

qi j =



qi j , j > i = 0,

−

∞∑
k=1

q0k, j = i = 0,

ri p j−i+1, j ≥ i − 1≥ 0, j 6= i,
−ri (1− p1), j = i ≥ 1,
0, otherwise

(3.3)

where ri ≥ 0. For s ≥ 0, define P(s)=
∑
∞

i=0 pi si
− s. The ordinary ergodicity and

exponential ergodicity of this class of branching process were investigated in [6], and
the strong ergodicity was considered in [22]. However, estimating the convergence
rate, as presented here, was not considered in [22]. From [6], we know that if
M1 :=

∑
∞

k=1 kpk ≤ 1, then Q is regular, and the unique Q-process is denoted by 8t .

ASSUMPTION 3.3. The sequence ri is increasing and
∑

j≥k q0 j ≤ r1
∑

j≥k p j for
any integer k ≥ 2.

By the definition of the monotonicity of q-matrix, we know that Q is monotone if
Q satisfies Assumption 3.3. Many branching processes satisfy this assumption, for
example, q0 j = p j and ri = iθ , θ > 0.

THEOREM 3.4. Assume that Q satisfies Assumption 3.3. If

M1 < 1 and
∞∑

i=1

(1/ri ) <∞,
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then (1.1) holds for any

λ≤
p0 − 0∑
∞

i=1(1/ri )
and γ = 4c

1
p0 − 0

∞∑
i=1

1
ri

with

0 =

∞∑
k=1

kpk+1 and c =max
{

1
y1
,

r1 p0

1− λy1

}
,

where y1 is given by (3.4).

PROOF. Using the results in [20] under the Assumption 3.3 and M1 < 1, we obtain
that the branching process 8t is stochastically monotone. Let 0 =

∑
∞

k=1 kpk+1, then
0 = M1 − 1+ p0. Hence, M1 < 1 if and only if 0 < p0. Construct a function y
as follows:

y0 = 0, yn =
1

p0 − 0

n∑
i=1

1
ri
, n ≥ 1. (3.4)

Since ri is increasing, yi − yi−1 is decreasing for i ≥ 1. For i ≥ 1,∑
j∈E

qi j y j + 1 =
∑
j∈E

qi j (y j − yi )+ 1

≤ ri p0(yi−1 − yi )+

∞∑
k=1

kpk+1ri (yi+1 − yi )+ 1

= ri p0(yi−1 − yi )+ ri0(yi+1 − yi )+ 1

≤ 0.

Thus we have checked that y satisfies (DC1). Obviously, Q satisfies Assumption 3.3
and y is strictly increasing, so the assertion follows from Theorem 2.5. 2

REMARK 3.5. In (3.3), let ri = iθ , θ > 0. From [3, Lemma 2.2], we know that

Ei [τ0] =
1

0(θ)

∫ 1

0

1− x i

P(x)
(− ln x)θ−1 dx

for any i ≥ 1, where 0(θ) is the gamma function. Then 8t is strongly ergodic if and
only if

D := sup
i∈E

Ei [τ0] =
1

0(θ)

∫ 1

0

dx

P(x)(− ln x)1−θ
<∞.

Suppose that D <∞ and that
∑

j≥k q0 j ≤ r1
∑

j≥k p j for any k ∈N with k ≥ 2.
Then it follows from Theorem 2.5 that (1.1) holds for any

λ≤
1
D

and γ =max
{

r1 p0

1− λy1
,

1
y1

}
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with

y1 =
1

0(θ)

∫ 1

0

1− x

P(x)
(− ln x)θ−1 dx . 2

4. Reversible Markov chains

The lower bound for the best rate α is investigated for the reversible Markov chains
in this section. We do so by virtue of their skeleton chains. This idea is often used to
extend the discrete-time results to their continuous-time counterparts. We first review
the definition of the reversibility.

Suppose that the continuous-time chain 8t is ergodic with invariant probability
measure (πi ). We say that the Markov chain 8t is reversible if πi P t (i, j)=
π j P t ( j, i) for all i, j ∈ E and all t ≥ 0. By [1, Propositions 1.2 and 1.6 in Section 7.1],
we know that the process is reversible if and only if Q is symmetric (that is, πi qi j
= π j q j i ).

We call an ergodic discrete-time Markov chain reversible if πi P(i, j)= π j P( j, i)
for all i, j ∈ E , equivalently (see, for example, [2])∑

i∈E

P f (i)g(i)π(i)=
∑
i∈E

f (i)Pg(i)π(i)

for all f, g ∈ L2(π). The chain 8n is called positive (for example, refer to [2])
if
∑

i∈E P f (i) f (i)π(i)≥ 0 for all f ∈ L2(π). In [2], the explicit geometric
rates of convergence were obtained for a positive, reversible and geometrically
ergodic discrete-time Markov chain on a general state space, which are stated in
Proposition 4.3. It was pointed out in [2] that any skeleton chain 8nh of the reversible
continuous-time chain 8t is positive. Hence, if 8t is reversible, then any skeleton
chain of 8t is positive and reversible.

For the skeleton chain 8nh , define τi (h)= h inf{n ≥ 1 |8nh = i} to be the first
hitting time on i and Ph(i, j)= P[8h = j |80 = i] to be the transition probability. In
order to adopt the idea of skeleton chains, we need the following lemma.

LEMMA 4.1. If supi∈E Ei [erτ j ]<∞ for some j ∈ E and r > 0, then there exists
some h0 > 0 such that supi∈E Ei [erτ j (h)]<∞ for all h with 0< h ≤ h0.

PROOF. Suppose that 80 = i . Let Dk be the kth sojourn time in j and Wk be the
length of the interval between the kth exit from j and the next visit to j for the chain
8t . Note that the Dk are independent, and the Wk too. Also, the Dk are independent
of the Wk . Moreover, Dk are identically exponentially distributed with the parameter
q j > 0.

Define

N =min{n ≥ 1 | the skeleton chain 8nh is in state j during the intervalDn}.
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Since τ j (h)≤
∑N−1

k=1 (Dk +Wk)+ h + τ j ,

Ei [e
rτ j (h)] ≤ erh Ei [e

rτ j ]

∞∑
n=1

Ei

[
exp

[
r

n−1∑
k=1

(Dk +Wk)

]
I{N }

]

≤ erh Ei [e
rτ j ]

∞∑
n=1

E j

[
exp

[
r

n−1∑
k=1

(Dk +Wk)

]
I
∩

n−1
k=1{Dk≤h}

]

≤ erh Ei [e
rτ j ]

∞∑
n=1

E j

[
exp

[
r

(
(n − 1)h +

n−1∑
k=1

Wk

)]
I
∩

n−1
k=1{Dk≤h}

]

=

∞∑
n=1

enrh Ei [e
rτ j ]E j

[
exp

[
r

n−1∑
k=1

Wk

]
(1− e−q j h)n−1

= Ei [e
rτ j ]

∞∑
n=1

enrh(E j [e
r W1])n−1(1− e−q j h)n−1. (4.1)

Note that

E j [e
r W1] =

∑
k 6= j

q jk

q j
Ek[e

rτ j ]<∞,

we have

lim
h→0

erh E j [e
r W1](1− e−q j h)= 0.

Thus, we can choose suitable h0 such that
∞∑

n=1

enrh(E j [e
W1])n−1(1− e−q j h)n−1 <∞ (4.2)

for all h with 0< h ≤ h0. Taking the supremum over i on both sides of (4.1), we have
supi∈E Ei [erτ j (h)]<∞ for all h with 0< h ≤ h0. 2

REMARK 4.2. Note that we can choose small enough h such that supi∈E Ei [erτ j (h)]
sufficiently close to the value of Ei [erτ j ]. 2

The following proposition is a specific form of Theorem 1.3 in Baxendal [2], which
is used in the proof to Lemma 4.4.

PROPOSITION 4.3 (Baxendal [2]). Let 8n be an irreducible, reversible and positive
Markov chain on a countable state space E. Suppose that its transition probability
matrix P = (P(i, j)) satisfies the following conditions:

(i) P(k0, k0)= β > 0;
(ii) there exists a finite function Ṽ ≥ 1, and constants λ < 1 and K <∞ satisfying∑

j∈E

P(i, j)Ṽ j ≤

{
λṼi , i 6= k0,

K , i = k0.
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Then whenever λ < ρ < 1,

‖Pn(i, ·)− π‖Ṽ ≤ MṼ (i)ρn

for all i ∈ E and a positive constant M that depends only on β, λ, K and ρ, where
‖µ‖Ṽ = sup

| f |≤Ṽ |µ( f )| is a stronger norm than the usual total variation norm.

LEMMA 4.4. Let 8t be a reversible Markov chain. If supi∈E Ei [e
rτk0 ]<∞ for some

r > 0, then (1.1) holds for any λ < r with the constant γ well-defined in the proof to
the lemma.

PROOF. Since supi∈E Ei [e
rτk0 ]<∞, it follows from Lemma 4.1 that there

exists some h0 > 0 such that supi∈E Ei [e
rτk0 (h)]<∞ for any h-skeleton chain

with 0< h ≤ h0. For any fixed h with 0< h ≤ h0, let Ṽk0 = 1 and
Ṽi = Ei [e

rτk0 (h)] for i 6= k0, then by a similar argument as that in [15, proof of
Theorem 5.1],

∑
j∈E

Ph(i, j)Ṽ j =

{
e−rh Ṽi , i 6= k0,

e−rh Ek0[e
rτk0 (h)], i = k0.

For the continuous-time Markov chain 8t ,

Ph(k0, k0)≥ e−qk0h > 0.

Since the skeleton chain 8nh is reversible and positive, by Proposition 4.3

‖Pnh(i, ·)− π‖Ṽ ≤ MṼiρ
nh

for any ρ with e−r < ρ < 1 and M depending only on r, qk0, ρ, h and Ek0[e
rτk0 (h)].

Hence, for any t ∈R+ with t = nh + s for some n ∈ Z+ and s ∈ [0, h],

‖P t (i, ·)− π‖ ≤ ‖Pnh(i, ·)− π‖‖Ps
‖

≤ ‖Pnh(i, ·)− π‖Ṽ

≤ MṼiρ
nh+sρ−s

≤ MṼiρ
−hρt .

Note that the value of h can be chosen small enough so that ρh is very close to 1. Thus,

sup
i∈E
‖P t (i, ·)− π‖ ≤ M sup

i∈E
Ṽiρ
−hρt ,

which completes the proof. 2

Based on the above results, we can refine the lower bound for the reversible
Markov chains.
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THEOREM 4.5. Let 8t be a reversible Markov chain. If supi∈E Ei [τk0]<∞ then the
best rate α ≥ 1/(supi∈E Ei [τk0]). Furthermore, if (DC1) holds for a function y, then
α ≥ 1/(supi∈E yi ).

PROOF. For a recurrent continuous-time Markov chain, by [10, Theorem 9.3.4]

Ei [(τk0)
n
] ≤ n!(Ei [τk0])

n

for any n ∈ Z+. If supi∈E Ei [τk0]<∞, then

Ei [e
rτk0 ] =

∞∑
n=0

rn(Ei [(τk0)
n
])

n!
≤

∞∑
n=0

(
r sup

i∈E
Ei [τk0]

)n
=

1
1− r supi∈E Ei [τk0]

<∞

for any r < 1/(supi∈E Ei [τk0]). From Lemma 4.4 we know that (1.1) holds for any
λ < 1/(supi∈E Ei [τk0]), which follows α ≥ 1/(supi∈E Ei [τk0]).

Furthermore, if (DC1) holds, which implies from Proposition 2.1 that

sup
i∈E

Ei [τk0] ≤ sup
i∈E

yi <∞,

then we have α ≥ 1/(supi∈E yi ) from the first part of the assertion. 2

5. Examples: reversible Markov chains

5.1. Generalized birth–death processes Let 8t be a generalized birth–death
process with q-matrix Q = (qi j ) specified by

qi j =



h j , i = 0,
d j , j = 0, i ≥ 1,
bi , j = i + 1, i ≥ 1,
ai , j = i − 1, i ≥ 2,
−(b1 + d1), j = i = 1,
−(ai + bi + di ), j = i ≥ 2,
0, otherwise.

(5.1)

Note that Q is conservative if and only if h0 =−
∑
∞

i=1 hi . It is known that Q is
regular if and only if

R :=
∞∑

n=1

[
1+ dn

bn
+

an(1+ dn−1)

bnbn−1
+ · · · +

an · · · a2(1+ d3)

bn · · · b2
+

an · · · a2(1+ d1)

bn · · · b2b1

]
= ∞.

Denote by Q̂ the birth–death q-matrix obtained by deleting all elements in the first
row and in the first column, and all di from the principal diagonal elements. The
coefficients µ̂i are defined by

µ̂1 = 1, µ̂i =
b1b2 · · · bi−1

a2a3 · · · ai
, i ≥ 2.
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It is known that Q̂ is symmetric if and only if µ̂ :=
∑
∞

i=1 µ̂i <∞. For any positive
real number µ̂0, let µ0 = µ̂0, µi = µ̂i for i ≥ 1 and µ=

∑
∞

i=0 µi . If µ̂ <∞, then Q
is symmetric with (πi ), where πi = µi/µ for i ≥ 0, as its symmetrizing measure if and
only if hiπ0 = diπi , i ≥ 1.

Following the same notation as that in [22], define

q(0)1 = d1, q(k)n = dn, k = 0, 1, . . . , n − 2, q(n−1)
n = dn + an, n ≥ 2,

F (0)0 = 1, F (0)n =
1
bn

n−1∑
k=0

q(k)n F (0)k , n ≥ 1,

c0 = 0, cn =
1+

∑n−1
k=0 q(k)n ck

qn,n+1
, n ≥ 1.

We then have the following bounds for the best rate α.

THEOREM 5.1. The Q-process 8t is strongly ergodic if and only if

D := sup
k∈Z+

k∑
n=0

(F (0)n c − cn) <∞, (5.2)

where

c = sup
k∈Z+

[ ∑k
n=0 cn∑k

n=0 F (0)n

]
.

Furthermore, if 8t is reversible, then the best rate α ≥ (1/D).

PROOF. Note that the only difference between Q and a single-birth q-matrix (5.1) is
in the first row. Therefore, for any state i 6= 0, the expectation Ei [τ0] can be calculated
according to the formula for the single-birth process, which is given, based on the [22,
proof of Lemma 2.1], by

Ek[τ0] =

k∑
n=0

(F (0)n c − cn).

It follows from Proposition 2.1 and (DC1) that8t is strongly ergodic if and only if D =
supk∈E Ek[τ0]<∞. The last assertion follows immediately from Theorem 4.1. 2

Condition (5.2) looks complicated. In the following, we provide a simpler sufficient
condition for strong ergodicity by comparing it with a birth–death process.

THEOREM 5.2. Let S and A be given by (3.1). If S <∞, then 8t is strongly ergodic.
Furthermore, if 8t is reversible, then the best rate α ≥ 1/A.

PROOF. If S <∞, then a bounded increasing solution to the equation in (DC1) for Q̂
can be constructed as in (3.2). Obviously, for i ≥ 1

∞∑
j=0

qi j y j =−di yi + [bi yi+1 − (ai + bi )yi + ai yi−1] ≤ −1.
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Thus, (yi ) is also a solution to the equation in (DC1) for Q. Hence, 8t is strongly
ergodic. The last assertion follows immediately from Theorem 4.5. 2

5.2. Open Markov population processes Let B = Z+ and denote by Bm the set of
all m-dimensional vectors i = (i1, i2, . . . , im) whose components ik ∈ B, 1≤ k ≤ m,
are nonnegative integers. Here i is viewed as the population vector of a system
consisting m colonies with ik as the population of the kth colony. Given integers p
and q , with 1≤ p 6= q ≤ m, define the operators T+p , T−p and Tpq on Bm by

T+p (i1, i2, . . . , im)= (i1, i2, . . . , i p + 1, . . . , im),

and provided i p ≥ 1,

T−p (i1, i2, . . . , id)= (i1, i2, . . . , i p − 1, . . . , im)

and

Tpq(i1, i2, . . . , i p, . . . , iq , . . . , id)= (i1, i2, . . . , i p − 1, . . . , iq + 1, . . . , im).

DEFINITION 5.3. A continuous-time Markov chain8t with the state space E a subset
of Bm is called a Markov population process if its q-matrix Q is given by

qi j =



αp(i) if j = T+p (i) for some p,
βp(i) if j = T−p (i) for some p,
γpq(i) if j = Tpq(i) for some p 6= q,
−

∑
i 6= j

qi j if j = i(to keep Q conservative),

0 otherwise,

(5.3)

where the functions αp(i), βp(i) and γpq(i) are nonnegative with the latter two
vanishing for i p = 0. The Markov population process is called open if there exists
a vector I = (I1, I2, . . . , Im) where some or all of the components may be infinite,
such that

E = {i ∈ Bm
| i1 ≤ I1, i2 ≤ I2, . . . , im ≤ Im}.

For any n ≥ 0, denote by En the level subset {i ∈ E | i1 + i2 + · · · + im} of E . Here
{En, n ∈ Z+} is a partition of the space E such that E0 = {0} = {(0, 0, . . . , 0)} and∑
∞

n=0 En = E . Define

bn =max
{ m∑

p=1

αp(i) | i ∈ En

}
and an =min

{ d∑
p=1

βp(i) | i ∈ En

}
.

Consider a birth–death process with birth coefficients bn and death coefficients
an . Define Rb, A and S as in Section 3.1. The population process was studied by
comparing it with the birth–death process (for example, [18]). By [1, Proposition 3.1
in Section 9.3], we know that if Rb =∞, then Q is regular and 8t is unique. In [13],
it was shown that under some conditions on Q, the chain 8t is reversible.
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THEOREM 5.4. If S <∞, then the Q-process8t is strongly ergodic. Moreover, if8t
is reversible, then α ≥ 1/A.

PROOF. Since S <+∞, the Qb-process is strongly ergodic. As {yn, n ∈ Z+} defined
by (3.2) is a bounded nonnegative and increasing solution to the following equation:

bn(yn+1 − yn)= an(yn − yn−1)− 1, n ≥ 1.

Then for i ∈ En, n ≥ 1,

m∑
p=1

αp(i)(yn+1 − yn)≤

m∑
p=1

βp(i)(yn − yn−1)− 1, (5.4)

which, by letting z i = yn , leads to

m∑
p=1

αp(i)zT+p (i)
+

m∑
p=1

βp(i)zT−p (i)
+

m∑
p=1

m∑
q=1

γpq(i)zTpq (i) + 1

≤

( m∑
p=1

αp(i)+
m∑

p=1

βp(i)+
m∑

p=1

m∑
q=1

γpq(i)
)

z i ,

or ∑
j∈Bm

qi j z j ≤−1, i 6= 0. (5.5)

Thus, we have checked that z with z0 = 0 is a solution to (DC1). Since

sup
i∈E

z i = sup
n∈Z+

yn = A <∞.

Here 8t is strongly ergodic. The last assertion follows from Theorem 4.5. 2
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