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Collisionless shocks are frequently analysed using the magnetohydrodynamics (MHD)
formalism, even though MHD assumes a small mean free path. Yet, isotropy of pressure,
the fruit of binary collisions and assumed in MHD, may not apply in collisionless shocks.
This is especially true within a magnetized plasma, where the field can stabilize an
anisotropy. In a previous article (Bret & Narayan, J. Plasma Phys., vol. 88, no. 6, 2022b, p.
905880615), a model was presented capable of dealing with the anisotropies that may arise
at the front crossing. It was solved for any orientation of the field with respect to the shock
front. Yet, for some values of the upstream parameters, several downstream solutions were
found. Here, we complete the work started in Bret & Narayan (J. Plasma Phys., vol. 88,
no. 6, 2022b, p. 905880615) by showing how to pick the physical solution out of the ones
offered by the algebra. This is achieved by 2 means: (i) selecting the solution that has the
downstream field obliquity closest to the upstream one. This criterion is exemplified on
the parallel case and backed up by particle-in-cell simulations. (ii) Filtering out solutions
which do not satisfy a criteria already invoked to trim multiple solutions in MHD: the
evolutionarity criterion, that we assume valid in the collisionless case. The end result is
a model in which a given upstream configuration results in a unique, or no downstream
configuration (as in MHD). The largest departure from MHD is found for the case of a
parallel shock.
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1. Introduction

Shock waves are fundamental processes in fluids. They have been the subject of
numerous studies for nearly two centuries (Salas 2007). When the frequency of collisions
between particles is high, the thickness of the shock front is of the order of a few mean
free paths, since binary collisions are ultimately the only microscopic mechanism capable
of transferring some of the kinetic energy of the upstream medium into heat in the
downstream (Zel’dovich & Raizer 2002).
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However, in situ observations of the bow shock of the Earth’s magnetosphere in the solar
wind have shown that its front is approximately a hundred kilometres thick, while the mean
free path at the same location is of the order of the Sun–Earth distance (Bale, Mozer &
Horbury 2003; Schwartz et al. 2011). Such a shock cannot be mediated by collisions. It is
mediated by collective plasma electromagnetic effects (Sagdeev 1966). This type of shock
is known as a ‘collisionless shock’.

Strictly speaking, collisionless shocks should be studied at the kinetic level, using the
Vlasov equation, since the absence of collisions can even make it difficult to define
a local velocity, as is the case, for example, in counter streaming systems. Due to
the complexity involved in solving the Vlasov equation, collisionless shocks, and in
particular the density, temperature or velocity jumps they present, are often interpreted
via magnetohydrodynamics (MHD).

Yet MHD relies on hydrodynamics and as such entails the same hypothesis of small
mean free path (Gurnett & Bhattacharjee 2005; Goedbloed, Keppens & Poedts 2010;
Thorne & Blandford 2017). This hypothesis of small mean free path has 2 consequences
that are important for the calculation of the density jump around a shock. The first
consequence is that pressure is isotropic, both before and after the shock. In fact, even
if a fluid is subjected to pressure anisotropy during its transport from the upstream to the
downstream, binary collisions will restore isotropy on a time scale of the order of the
collision frequency, well below the macroscopic times involved. The second consequence
is that all of the upstream fluid passes into the downstream, along with the matter and
momentum it carries.

It turns out that, in a collisionless shock, these 2 consequences can be invalidated (Bret
2020). The first, because in the absence of collisions, a plasma can maintain a stable
anisotropy in the presence of an ambient magnetic field (Hasegawa 1975; Gary 1993).
The second consequence, because due to the large mean free path, plasma particles can
bounce off the shock front or even travel upstream from the downstream, as is the case
with accelerated particles (Drury 1983; Blandford & Eichler 1987).

This article proposes a remedy to the first consequence: How to correct the MHD jump
equations so that they can account for an anisotropy in the plasma?

Notably, in the absence of an ambient magnetic field, the Weibel instability ensures
isotropy of a collisionless plasma (Weibel 1959; Silva, Afeyan & Silva 2021). Therefore,
the MHD jump equations only need to account for anisotropies if a magnetic field is
present.

Several authors have derived the MHD jump equations for the non-isotropic case
(Hudson 1970; Karimabadi, Krauss-Varban & Omidi 1995; Erkaev, Vogl & Biernat 2000;
Gerbig & Schlickeiser 2011). But in all of these works, while the anisotropy of the
upstream is considered a free parameter, so is that of the downstream. These equations are
therefore unable, on their own, to derive the density jump of a shock whose downstream is
not isotropic, because they lack precisely one parameter: the anisotropy of the downstream.

In a recent series of papers, we developed a model that precisely fills this gap. It was
first applied to the case of a parallel shock (Bret & Narayan 2018), i.e. a shock moving
parallel to the ambient magnetic field. The assumptions made and the results obtained
were confirmed by numerical simulations (Haggerty, Bret & Caprioli 2022).

The model was then applied to the case of a perpendicular shock (Bret & Narayan 2019),
and finally to the cases of a switch-on and of an oblique shock (Bret & Narayan 2022a,b).
The latter case, that of an oblique shock, is analytically much more complicated than the
parallel and perpendicular cases, due to the complexity of the MHD jump equations for an
oblique field and anisotropic temperatures.
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FIGURE 1. System under scrutiny. It is identical to that of Paper 1. Although the conservation
equations used are valid for any upstream temperatures, we here, as in Paper 1, only treat the
strong sonic case T⊥1 = T‖1 = 0. We work in the frame of reference where v1 is normal to the
front.

In Bret & Narayan (2022b), hereafter referred to as Paper 1, the algebra of these
equations was solved, but the solutions were left unfiltered. As a result, several coexisted
for some combinations of the upstream parameters.

Here, Paper 1 is completed by filtering the algebraic solutions so that, for a given
combination of upstream variables, there is no more than 1 solution for the downstream.

2. Method

The system under scrutiny is represented in figure 1. It is identical to that of Paper 1.
Although the conservation equations we shall use are valid for any upstream temperatures,
we here, as in Paper I, only treat the strong sonic case T⊥1 = T‖1 = 0.

2.1. Summary of previous works
As previously said, the basic caveat of MHD is that, if a collisionlessly stable anisotropy
develops at the front crossing, MHD itself cannot derive it. The jump of quantities like the
density is therefore under-determined.

For completeness, we now briefly recall the results obtained in previous works.
In Bret & Narayan (2018) we presented a model capable of solving this issue for a

parallel shock. We reasoned that, as it crosses the front, the plasma is compressed in
the direction parallel to the motion. As a consequence, its parallel temperature increases
while its perpendicular temperature remains constant. The 3 MHD conservation equations
(matter, momentum, energy1 ) are therefore completed by

T⊥2 = T⊥1, (2.1)

allowing us to derive the 4 downstream unknowns (n2, v2, T⊥2, T‖2), in terms of the
upstream variables. Note that, here, the perpendicular direction is common to the flow
and the field.

1For a parallel shock, the MHD conservation equations are identical to the fluid ones (Kulsrud 2005). With
anisotropic temperature, they are obtained setting θ1 = θ2 = ξ2 = 0 in ((B1)–(B6)) of Appendix B.
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Now, the state of the downstream resulting from the conservation of T⊥ may be stable,
or not. If it is stable, then this is the end state of the downstream. If it is unstable, the
plasma migrates to the instability threshold.2 Imposing marginal stability then provides
again a fourth equation allowing us to fully determine the properties of the downstream.

Bret & Narayan (2018), as well as every subsequent works of ours on the same model,
is limited to pair plasmas. The reason for this is that the equality of the mass of the
species allows us to consider only one parallel and one perpendicular temperature. In
an electron/ion plasma where electrons and ions are heated differently in the shock, a
4 temperature model would be required (Guo, Sironi & Narayan 2017, 2018). Yet, since
the model eventually relies on macroscopic physics, it should also apply to electron/ion
plasmas, as preliminary particle-in-cell (PIC) simulations seem to indicate (Shalaby 2024).

The model predicted, for a strong sonic parallel shock, a density jump going from 4
to 2 in the high field regime, a prediction successfully confirmed by PIC simulations in
Haggerty et al. (2022). Such a result stands in contrast with MHD, where the density jump
should always be 4, regardless of the field strength.3

The perpendicular case was treated in Bret & Narayan (2019). There, the direction
perpendicular to the flow is eventually parallel to the field, so that the counterpart of (2.1)
is

T‖2 = T‖1. (2.2)

The switch-on shocks, where the field is oblique in the downstream only, was treated in
Bret & Narayan (2022a). The model has also been solved for a parallel or a perpendicular
shock, with an anisotropic upstream (Bret 2023a,b).

Finally, the general case where the field may be oblique in both the upstream and the
downstream was treated in Bret & Narayan (2022b), namely, Paper 1.

In Bret & Narayan (2022a,b), the closure of the MHD jump equations was achieved
through an ansatz interpolating between (2.1) and (2.2). In the limit of a cold upstream
with T1 = 0, which is the regime treated in Paper 1 and hereafter, the ansatz reads

T‖2 = Te cos2 θ2,

T⊥2 = 1
2

Te sin2 θ2,

⎫⎬
⎭ (2.3)

where Te is a parameter determined when solving the equations and θ2 is the angle of the
downstream field with the shock normal (see figure 1). Equations (2.3) correctly reduce to
(2.1) and (2.2) in their respective limits since θ2 = 0 for the parallel case, while θ2 = π/2
for the perpendicular one. Such a scheme guarantees that both perpendicular temperatures
are equal, as required by the Vlasov equation (Landau & Lifshitz 1981, § 27). Also, the
total thermal energy in the 3 directions sums up to kBTe, where kB is the Boltzmann
constant.

In summary, and since the 2 instabilities involved are the firehose and the mirror
instabilities (see § 4), our model can be stated as follow:

• As the plasma goes through the shock front, its temperature normal to the flow
is conserved for the parallel and perpendicular cases. This translates directly to
(2.1) and (2.2), respectively. For the oblique case with cold upstream T1 = 0, (2.3)
interpolate between these 2 extremes.

• The resulting state of the plasma in the downstream is called ‘stage 1’.

2The nature of this instability will be specified shortly.
3The jump of a strong fluid shock with adiabatic index γ = 5/3 is 4. And for the parallel case, the MHD and fluid

conservation equations are identical (Kulsrud 2005).
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• If the downstream field is strong enough to stabilize stage 1, then this is the end state
of the downstream.

• If the downstream field is too weak to stabilize stage 1, then
• If stage 1 is firehose unstable, it migrates to the firehose instability threshold.

This is ‘stage 2 – firehose’.
• If stage 1 is mirror unstable, it migrates to the mirror instability threshold. This

is ‘stage 2 – mirror’.

2.2. Present work
Paper 1 has 3 kinds of limitations:

(a) It is restricted to strong sonic shocks, namely T1 = 0, and to non-relativistic pair
plasmas. These restrictions are still considered here.

(b) It considers the simplest expressions for the Alfvén velocity and the stability
criterion of the instabilities involved in our model. Yet, more accurate expressions
are required in an anisotropic plasma. The present work accounts for one of them.

(c) It only presents the allowed solutions to the conservation equations, plus (2.3). It
does not filter these solutions according to their physical relevance. Such a filtering
is the main goal of the present work.

Our purpose here is to deal with points (b) and (c) above.
Besides the variables explained on figure 1, we shall use the following dimensionless

parameters:

r = n2

n1
,

Ai = T⊥i

T‖i
,

MA,i = vi

vA,i
,

σ = B2
1/8π

1
2

n1 mv2
1

≡ 1
M2

A,1
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

where vA,i is the Alfvén velocity

vA,i = Bi√
4πnim

. (2.5)

The parameter σ is frequently used in simulations of collisionless shocks like Haggerty
et al. (2022), while the Alfvén Mach number is common in the MHD shock literature.

In addition to the Alfvén Mach number defined above, we shall often use in the sequel
its following variant:

MAix ≡ vi cos ξi

vA,i cos θi
. (2.6)

It compares the projection of the flow velocity along the shock normal (x axis) with the
projection of the Alfvén velocity, still along the shock normal.

Since the road map for solving our model is eventually the one already used in MHD,
we start by reminding the reader how it applies there.
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3. Isotropic MHD results and evolutionarity

One of the criteria used here to filter out some solutions is the so-called ‘evolutionarity
criterion’, already present in isotropic MHD. It is therefore convenient to present how it
operates there.

The MHD conservation equations for isotropic temperatures are reported in
Appendix A. They can be used to derive an expression of the downstream field angle
θ2 in terms of the upstream quantities only. Namely, the quantity

T2 ≡ tan θ2, (3.1)

is a root of the polynomial (A9) in Appendix A. The MHD density jump is then given by

r = M2
A1T2

M2
A1 tan θ1 + T2 cos2 θ1 − sin θ1 cos θ1

, (3.2)

in terms of the upstream Alfvén Mach number (2.4).
Although such a derivation of the MHD density jump is uncommon in the literature, it

mimics the derivation of the jump in our model. It is therefore pedagogically valuable for
the present work.

Figure 2 presents the solutions for 3 different angles θ1. The upper row shows all the
possible solutions. For θ1 = 0 and MA1x ∈ [1, 2], there are 2 MHD branches, the lower one
pertaining to the switch-on solutions. For θ1 = 0.175π/2 there are even 3 solutions for
MA1x ∈ [1, 1.34].

Which one will the shock choose? This question is at the heart of this work. Let us now
see how it is solved in MHD.

The MHD answer relies on the notion of shock ‘evolutionarity’, which has been
discussed several times in the literature (e.g. Kennel, Blandford & Wu 1990; Farris et al.
1994; Falle & Komissarov 2001; Kulsrud 2005). For given upstream and downstream
boundary conditions, the MHD Rankine–Hugoniot jump conditions give a unique solution
for fast shocks, where the flow speed on both sides of the shock are super-Alfvénic,
and also for slow shocks, where the fluid is throughout sub-Alfvénic. These two types
of shocks are stable and are described as evolutionary. Four other potential shock types,
each of which has super-Alfvénic upstream fluid and sub-Alfvénic downstream fluid, have
no unique solutions to the Rankine–Hugoniot relations. In these shocks, the transverse
magnetic field switches sign across the shock, and the fluid equations do not provide the
correct number of Alfvén waves to handle the field flip (Falle & Komissarov 1997; Kulsrud
2005). Such shocks will not arise naturally from generic initial conditions. Even if they are
artificially set up, they will tend to deviate quickly from their initial configuration, typically
splitting into two shocks, one fast and the other slow. These ‘forbidden’ shocks do not
satisfy the evolutionarity condition. They are called ‘intermediate’ (Falle & Komissarov
1997) or ‘extraneous’ (Kulsrud 2005) shocks.

The MHD solutions presented on the upper row of figure 2 need therefore to be
filtered according to the aforementioned evolutionarity criterion. The upstream Alfvén
Mach number to consider for the evolutionarity analysis is not the one given by
(2.4), but its variant (2.6) instead. With this definition, the downstream Alfvén Mach
number reads

M2
A2x = 1 + tan θ1(M2

A1 sec2 θ1 − 1)

T2
. (3.3)

It is with definition (2.6) that the Alfvén Mach number of the MHD switch-on shocks, see
left plot of third row in figure 2, is found equal to 1 (Goedbloed et al. 2010, p. 853). These
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FIGURE 2. Upper row: density jump r for different angles θ1 in terms of MA1x = MA1/ cos θ1,
defined by (2.6). Sometimes there is more than 1 solution. Second row: angle θ2 of the field B2
with the x axis (see figure 1). Third row: evolutionarity criterion. Some branches, namely the
ones crossing the shaded areas, are to be excluded. Lower row: same as upper row, but without
the branches excluded by the evolutionarity criterion. There is now but 1 solution for a given
MA1x, or none. The black circles for θ1 = 0.5π/2 are the results of our MHD simulations (see
§ 3.1).

modes, by definition, do not have θ2 = 0 (second row in figure 2) nor ξ2 = 0. Corrections
(2.6) to the Alfvén Mach number (2.4) are therefore important here.

The value of MA2x is plotted in terms of MA1x in the third row of figure 2. The forbidden,
non-evolutionary, zones have been coloured in the plots. They feature the non-evolutionary
transition just described, namely super-Alfvénic → sub-Alfvénic, together with the
reverse transition sub-Alfvénic → super-Alfvénic. As a result, the MHD branches going
through these regions are non-evolutionary, hence not physical solutions of the MHD
problem.

The lowest row of figure 2 is the result of this evolutionary filter applied to the upper
row. There is now but 1 solution for a given MA1x, or none, as there are MA1x-gaps where no
solutions appear. Regardless of the initial conditions, the shock formed is never found with
a MA1x inside such gaps like, for example, MA1x ∈ [1, 1.4] for θ1 = 0.5π/2 (see figure 2,
bottom right plot).

We shall assume in the sequel that the evolutionarity criteria also applies in the
collisionless case. This will have to be checked in future works.
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FIGURE 3. Magnetohydrodynamics simulation in which the evolutionarity criterion results in
the formation of 2 sub-shocks instead of one. The dashed blue lines show the initial fluid
configuration at t = 0, when two fluid columns collide at x = 0. The solid red lines show the
configuration at t = 1.5. Each fluid column develops two shocks, a fast shock at |x| = 1.58 and
a slow shock at |x| = 0.34. The little dip in density n at x = 0 for t = 1.5 is a numerical artefact.

3.1. Magnetohydrodynamics simulations
In order to illustrate these theoretical results, we ran some MHD simulations with the code
KORAL (Sa̧dowski et al. 2013, 2014). KORAL is designed for multi-dimensional radiative
MHD simulations in general relativistic space–times. However, if we turn off the radiation
module as well as special and general relativity, the code reduces to a multi-dimensional
non-relativistic MHD code. This version of the code was used here. Some of the results
for θ2, MA2x and r in terms of MA1x for upstream θ1 = 0.5π/2, are pictured in figure 2 by
the black circles. They perfectly line up with the theory and avoid the predicted gap in the
solutions for MA1x ∈ [1, 1.4].

Figure 3 shows the result of a simulation of a shock in a non-evolutionary case. At t = 0,
two cold fluids of identical density and opposite velocities ±1.5x collide (blue lines). The
magnetic field has modulus unity and θ1 = 0.5π/2. At t = 1.5, two shocks formed instead
of one. The non-evolutionary case gives rise to 2 sub-shocks, as predicted in Kulsrud
(2005) for example.

4. Instabilities involved and modified Alfvén velocity

As previously stated, the starting point for our model are the MHD conservation
equations with anisotropic temperatures. They have been derived in Hudson (1970) and
are reported in Appendix B with the notations of Bret & Narayan (2022a,b).

For stage 1, we solve them imposing relations (2.3). This defines stage 1. Then, mirror
or firehose stability of stage 1 has to be assessed. These instabilities are discussed here.
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Now, evolutionarity involves the downstream Alfvén velocity (projected onto the shock
normal). As long as the plasma is isotropic, the Alfvén velocity in given by (2.5). As a
result, the downstream Alfvén Mach number for the MHD switch-on shocks is exactly 1.

Yet, in an anisotropic plasma, it was found in Abraham-Shrauner (1967) that the Alfvén
velocity reads4

cA = ±vA

√
S⊥−S‖+1 cos θ, (4.1)

where vA is still given by (2.5) and

S⊥,‖ = nkBT⊥,‖
B2/4π

. (4.2)

In (4.1), the ± sign refers to waves propagating along the field, or in the opposite
direction. As shall be checked in the sequel (§§ 5.1 and 5.2 and figure 5), with this
correction to the Alfvén velocity, the switch-on solutions of our model have MA2x = 1,
exactly like in MHD.

In addition, the quantity below the square root can become negative. Such a situation
indicates that the Alfvén waves become unstable, which corresponds to the firehose
instability. For this to happen, S⊥ − S‖ + 1 < 0 is required, which can be cast under the
form

A ≡ T⊥
T‖

< 1 − 2
β‖

, (4.3)

where5

β‖= nkBT‖
B2/8π

. (4.4)

The criterion (4.3) is therefore the one we shall use in the sequel, in order to preserve the
inner coherence with the switch-on solutions of our model having MA2x = 1. This criterion
slightly differs, by the factor 2, from the one commonly used in the literature and in
Paper 1.

The Solar Wind data are a key test for the threshold of the firehose instability. They are
indeed compatible with both criteria, namely with or without the factor 2 (Hellinger et al.
2006; Bale et al. 2009; Maruca, Kasper & Bale 2011).

The other instability considered in relation to the stability of stage 1, is the mirror
instability. While the firehose instability occurs for too low an anisotropy T⊥/T‖, the mirror
instability occurs for too high an anisotropy. The standard threshold given in the literature
reads (Hasegawa 1975; Gary 1993)

A > 1 + 1
β‖

. (4.5)

Yet, a different criterion is given in Abraham-Shrauner (1967), namely

A > 1 + 1
A β‖

. (4.6)

However, while stage 2-firehose remains analytically tractable using (4.3), stage 2-mirror
is not when using (4.6) instead of (4.5). Therefore, we adopt criterion (4.3) for the firehose

4This expression already includes the cos θ factor of (2.6). There is no need to multiply it by an additional cos θ

when computing the Alfvén Mach number (2.6).
5This parameter is just twice the S‖ parameter defined by (4.2). We could use only β‖. But for clarity, we present the

result of Abraham-Shrauner (1967) with the notations of Abraham-Shrauner (1967).
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FIGURE 4. Stability diagram. The solid lines picture the criterion used here. The dashed lines
pertain to other criteria discussed in § 4.

instability and keep (4.5) for mirror. Note in this respect that (i) the Solar Wind data are
compatible with both criteria and (ii), the inner coherence of the model does not impose a
specific mirror criteria, as is the case for firehose.

Figure 4 pictures the various criteria commented here for the mirror and the firehose
instabilities. Even if the corrected criterion for the mirror instability is functionally
different than the one without the correction, the end result is qualitatively the same, and
remains compatible with the Solar Wind data.

The two stability domains are disconnected, so that the plasma cannot be unstable to
both at once. There is no possible competition between them.

5. Branch selection

Having specified the instabilities involved in the transition from stage 1 to stage 2,
together with their respective thresholds, we can proceed to the filtering of the solutions
our model offers. In this respect, it is instructive to single out the case θ1 = 0.

5.1. Case θ1 = 0
Figure 5(a) shows the solutions offered by our model for θ1 = 0, without any filtering. It
displays the various solutions with stable stage 1, plus a branch, in green, corresponding
to stage 2-firehose because stage 1 is firehose unstable for σ ∈ [0, 0.5]. For σ ∈ [0.5, 1],
there are up to 3 possible solutions: one has r = 2 and θ2 = 0, and the other two pertain
to the switch-on solutions in red, with θ2 �= 0.

Could the evolutionarity criterion help filtering them (the answer is ‘no’)? Figure 5(b)
answers the question. Here is plotted the downstream Mach number MA2x of each solution,
as defined by (2.6), where the Alfvén speed has been corrected according to (4.1). Our
switch-on solutions have exactly MA2x = 1, while the others also satisfy the evolutionary
criterion.6 In line with the adequate definition (2.6) of the Alfvén Mach number for

6Figure 5(b) of Bret & Narayan (2022a) shows the switch-on solutions of our model with MA2x �= 1. This is because
correction (4.1) to the Alfvén speed was not considered.
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FIGURE 5. (a) All solutions offered by our model for θ1 = 0. (b) All the solutions fulfil the
evolutionarity criterion. Note that this is different from the isotropic MHD problem, where some
solutions for θ1 = 0 enter the shaded forbidden zone (figure 2, row 3). Note also that, with
definition (4.1) of the Alfvén speed, MA2x = +∞ on the firehose threshold. This is why the
green branch on the left is sent to MA2x = +∞ on the centre plot. Notably, MA2x = 1 for the
switch-on shocks of our model (red segment on centre plot). For this analysis, the horizontal
axis must be σx = σ cos2 θ1, which for θ1 = 0 makes no difference. (c) End result once the ‘θ2
closest to θ1’ filter has been applied. This is the result found in Bret & Narayan (2018) and
Haggerty et al. (2022).

evolutionarity analysis, we use on the horizontal axis the parameter

σx ≡ σ cos2 θ1, (5.1)

which, for the present case θ1 = 0, makes no difference.
Note that, with definition (4.1) of the Alfvén speed, MA2x = +∞ on the firehose

threshold. This is the reason why the green branch on the left is sent to MA2x = +∞ on the
centre plot. As a consequence, each time the system eventually settles in stage 2-firehose
with σx < 1 (i.e. MA1x > 1), it is evolutionary.

As a conclusion, in the interval σ ∈ [0.5, 1], there are three solutions for stage 1, and all
three satisfy the evolutionarity criterion. The evolutionarity criterion by itself is therefore
not sufficient to trim the number of solutions down to 1, or even 0.

5.2. Particle-in-cell simulations for θ1 = 0
In order to check which solution the system chooses, we ran a series a PIC simulations
for various σ values, performed with the fully kinetic three-dimensional PIC code,
TRISTAN-MP (Buneman 1993; Spitkovsky 2005).7 The surest way to tell whether the
shock is of the switch-on type or not, is to plot the perpendicular component B⊥2 of the
field in the downstream. According to (B2), with θ1 = 0 it simply reads

B⊥2 = B1 tan θ2. (5.2)

Figure 6(a) shows the expected value of B⊥2/B1, in red for the switch-on solutions with
θ2 �= 0, and in black for the solution with θ2 = 0. The circles show the values of σ which
have been simulated. Figure 6(b) shows the results of the PIC simulations, with the shock
density profile on top, and the ratio B⊥2/B1 below. Besides some perturbations around the
shock front at low σ , B⊥2/B1 does not depart from 0 in the downstream for any σ . These
perturbations are due to particle acceleration and back-reaction in the precursor, and from
the instabilities triggered by the interaction of the fast upstream flow with the front (Sironi,
Spitkovsky & Arons 2013; Brown et al. 2023).

7Simulation parameters identical to those of Haggerty et al. (2022).
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FIGURE 6. (a) Expected value of B⊥2/B1, in red for the switch-on solutions with θ2 �= 0, and
in black for the solution with θ2 = θ1 = 0. The circles show the values of σ which have been
simulated. (b) Results of the PIC simulations, with the shock density profile on top, and the ratio
B⊥2/B1 below. The σ value for a curve is given by the circle of the same colour on the left plot.
The same results are obtained for θ1 = 2◦. The flow is along the x axis and de = c/ωp is the
electron inertial length.

Simply put, PIC simulations consistently discard the switch-on solutions. The same
results are obtained for θ1 = 2◦, so that we are not witnessing a singular behaviour fruit of
a perfect, hence unrealistic, symmetry. A similar pattern was observed in the relativistic
regime in Bret et al. (2017).

The situation for θ1 ∼ 0 is here markedly different from the MHD case. In MHD, where
isotropy is imposed, the evolutionarity criterion imposes switch-on shocks within some
σ -range, as explained in § 3. In our model, where an anisotropy is driven by the field,
the evolutionarity criterion does not impose switch-on solutions, while PIC simulations
consistently choose the non-switch-on ones.

Arguably, this explains why so few detections of switch-on shocks have been made in
the Solar System. Indeed, among the thousands of shocks observed (Farris et al. 1994;
Russell & Farris 1995; Balogh & Treumann 2013, § 2.3.6.) only one ‘possible’ detection
of an interplanetary switch-on shock was reported in Feng et al. (2009). Also, Russell &
Farris (1995) reported the detection of only one switch-on shock among the International
Sun-Earth Explorer data.8

Still, what about these exceptions, since our collisionless scenario should rule them out?
Several explanations are possible:

• The detections were faulty. Hence the adjective ‘possible’ associated with one of
them.

• We only solve our model for a cold upstream, namely T1 = 0. Maybe a finite T1
would have our model allowing for some switch-on shocks.

8Switch-on shocks have been produced in the laboratory (Craig & Paul 1973), but within a collisional environment,
where MHD rules. We here deal with collisionless plasmas.
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• The ansatz (2.3) is not accurate enough, and a better version would allow for some
switch-on shocks.

At any rate, PIC simulations and observations tell switch-on shocks in collisionless plasma
are rare. We therefore propose the following criterion allowing us to choose between
various solutions: the system chooses the solution with θ2 closest to θ1.

Note that this ‘θ2 closest to θ1’ criterion stems from our PIC simulations, as well as
others of parallel shocks in pair (Bret et al. 2017; Haggerty et al. 2022) or electron/ion
(Niemiec et al. 2012; Zeković 2019) plasmas, where the same, non-switch-on branch, is
consistently chosen. This is why we used the verb ‘propose’. Its robustness on longer time
scales, or other shock geometries, is beyond the scope of this work and should be assessed
in further works.

Figure 5(c) eventually shows the end result once the ‘θ2 closest to θ1’ filter has been
applied to the θ1 = 0 case. There is now but one solution for any σ , which indeed is the
one found in Bret & Narayan (2018) and Haggerty et al. (2022).

5.3. General algorithm for branches selection
We may now lay out the general algorithm for branches selection. The criteria used to
eliminate some are, applied in this order:

(a) Exclude stage 1 solutions with r < 1. Then select the one with the θ2 closest to θ1.
(b) In case stage 1 is unstable, is the anisotropy A2 of a given stage 2 solution, negative?

This was already implemented in Paper 1 and allows us to eliminate some stage
2 -firehose and -mirror solutions. This never happens with stage 1 since it has, by
design from (2.3), A2 = 1

2 tan2 θ2.
(c) Does the resulting solution fulfil the evolutionarity criterion ?

The evolutionarity criterion is applied last because it operates on time scales related to
the propagation of the shock,9 whereas the other criteria operate on much shorter time
scales, related to plasma instabilities.

The algorithm is eventually represented by the flowchart in figure 7. In case stage 1 is
mirror unstable for a given pair (σ, θ1), there can be a degeneracy in the choice of the stage
2-mirror states for the same pair (σ, θ1). In such a case, we choose the stage 2-mirror with
the θ2 closest to the θ2 of the stage 1 it comes from, as was already done in Bret & Narayan
(2022b). Such a situation never happens with stage 2-firehose.

According to the flowchart on figure 7, there is necessarily only 1 solution left before
applying the evolutionarity criterion. There is therefore no need to apply the ‘θ2 closest to
θ1’ filter in (c), since only 1 branch can make it to this stage. Yet, this does not mean the
evolutionarity filter is useless, as it can simply forbid the existence of a solution in some
σ range, as is the case in MHD (see bottom row of figure 2).

6. Results

While the fruit of our algorithm has already been explained for θ1 = 0, it is interesting
to detail how it unfolds for an oblique field, like for example θ1 = 0.3π/2.

Figure 8(a) shows all possible density jumps for stage 1. Notably, r < 1 for σ ∈ [1, 1.3].
The corresponding branches are then eliminated in figure 8(b).

For these stage 1 solutions with r > 1, figure 8(c) then shows the corresponding values
of θ2. The horizontal red line is at θ2 = θ1. The result of the ‘θ2 closest to θ1’ selection rule
is displayed in figure 8(d).

9See § 6.3 in Falle & Komissarov (2001).
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Stage 1 (r>1)
2 closest to 1

Upstream with given and 1

Stage 1 stable
Stage 2-mirror

2 closest to of the unstable Stage 1
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A2 > 0

Evolu�onarity criteria
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Mirror unstable?

Firehose
unstable?Stable?

FIGURE 7. Flowchart of the resolution of our model. In case stage 1 is mirror unstable for a pair
(σ, θ1), there can be a degeneracy in the choice of stage 2-mirror for the same pair (σ, θ1). In
such a case, we choose the stage 2-mirror with the θ2 closest to the θ2 of the stage 1 it comes
from, as was already done in Bret & Narayan (2022b). Such a situation never happens with stage
2-firehose.

In figure 8(d), the green colour indicates that some stage 1 solutions at low σ are
firehose unstable. We therefore need to examine stage 2-firehose solutions. All of them are
displayed in figure 8(e). Yet, figure 8( f ) shows that the lower branch has A2 < 0 and needs
to be eliminated. As a consequence, the only physical stage 2-firehose solution available
when stage 1 is firehose unstable, is the upper branch.

Replacing then the firehose unstable stage 1 solutions of figure 8(d), by the
corresponding stage 2-firehose solutions, gives figure 8(g).

We finally need to apply the evolutionarity test to the solutions of figure 8(g). This is
done in figure 8(h) where the downstream Alfvén Mach number MA2x has been computed
for the solution plotted in figure 8(g), with the forbidden zones shaded. Note that, for
such an analysis, the horizontal scale has to be σx = σ cos2 θ1. Then and only then has
the evolutionary analysis some branches passing exactly through the point (1, 1), as in
figure 8(h).

The stage 2-firehose branch visible in green in figure 8(g) at small σ passes the
evolutionarity test since it has σx < 1 and MA2x = +∞. The analysis shows that some
stable stage 1 solutions do not pass the evolutionarity test. As a result, figure 9 for
θ1 = 0.3π/2 displays a gap without solution for σ ∈ [1, 1.17], that does not show in
figure 8(g).

The end result of such a filtering process is eventually shown in figure 9 for several
angles θ1 between 0 and π/2. For comparison, all of them but θ1 = 0.3π/2, are the ones
considered in figure 8 of Bret & Narayan (2022b). The grey dashed line pictures the MHD
result, evolutionary filtered.
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FIGURE 8. Detailed progression of the application of the filtering process described by the flow
chart in figure 7, for θ1 = 0.3π/2. In (d), the green colour indicates that these stage 1 solutions
are firehose unstable. Then in (g), the green colour shows the density jump of stage 2-firehose.
The red branch in ( f ) with A2 ∼ −1 discards stage 2 firehose solutions with r > 4, not shown
in (e).
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FIGURE 9. Result of the filtering process elaborated in this work for various angles θ1 ∈
[0, π/2]. All of them but θ1 = 0.3π/2 are the ones considered in figure 8 of Bret & Narayan
(2022b). The grey dashed lines picture the MHD result, evolutionary filtered. The green solutions
pertain to (stage 2-firehose, green), and the red ones to (stage 2-mirror, red).

Figure 9 eventually interpolates between the parallel case treated in Bret & Narayan
(2018), and the perpendicular one treated in Bret & Narayan (2019). While § 5 showed that
some filtering is needed to get to the end result for the parallel case, no filtering at all is
required for the perpendicular case. Figure 9 for θ1 = 0.9π/2 gives the result already found
in Bret & Narayan (2019), without any filtering but the A2 < 0 for the mirror solutions. The
main reason for this is that for the perpendicular case, there is but one stage 1 solution,
which, when stable, fulfils the evolutionarity criterion.
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7. Conclusion

Applying the MHD formalism to analyse collisionless shocks may be problematic in the
presence of an ambient magnetic field, capable of stabilizing pressure anisotropies. In a
series of recent papers, we developed a method allowing us to determine the downstream
anisotropy of a collisionless shock (Bret & Narayan 2018, 2019, 2022a,b; Bret 2023a,b).
The anisotropy can then be included in the MHD conservation equations for anisotropic
pressures, and the modified density jump derived. The case of a parallel shock has been
successfully tested by PIC simulations in Haggerty et al. (2022), confirming that for a
strong enough field, the density jump can go from 4, the expected MHD value, to only 2,
the anisotropy corrected one.

Once the density jump is found, all the other jumps such as pressure, temperature,
entropy, etc. can be straightforwardly derived (Bret 2021).

As can be seen in figure 9, our results differ from the isotropic MHD ones in 2 ways:

• The ranges of σ without solutions differ.
• For σ values with a solution, our density jump is usually, although not always, lower

than the MHD one.

Overall, our results and the MHD ones bear a ‘family resemblance’, the largest
discrepancy being found for the parallel case θ1 = 0. The predicted large reduction of
the density jump could have important consequences for particle acceleration, since their
index scales like (r − 1)−1 (Axford, Leer & Skadron 1977; Bell 1978a,b; Blandford &
Ostriker 1978; Caprioli, Haggerty & Blasi 2020; Haggerty & Caprioli 2020).

Besides the strong sonic shock assumption of the present work, namely P1 = 0, its
main limitation may lie in the composition of the plasma, here a pair plasma. As stated
in the introduction, such an assumption allows us to consider only one parallel and one
perpendicular temperature. Yet, our formalism being eventually macroscopic, we expect
our conclusions to hold for electron/ion plasmas as well. Such a conjecture is currently
being tested through PIC simulations of such plasmas (Shalaby 2024).
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Appendix A. Isotropic MHD conservation equations for an oblique shock

The MHD conservation equations for an oblique shock and a fluid of adiabatic index
γ = 5/3 read (Kulsrud 2005)

n2v2 cos ξ2 = n1v1, (A1)

B2 cos θ2 = B1 cos θ1, (A2)

B2v2 sin θ2 cos ξ2 − B2v2 cos θ2 sin ξ2 = B1v1 sin θ1, (A3)

B2
2 sin2 θ2

8π
+ n2kBT2 + mn2v

2
2 cos2 ξ2 = B2

1 sin2 θ1

8π
+ n2kBT1 + mn1v

2
1, (A4)

− B2
2

4π
sin θ2 cos θ2 + mn2v

2
2 sin ξ2 cos ξ2 = −B2

1 sin θ1 cos θ1

4π
, (A5)

Av2 sin ξ2 + C = mn1v1

(
5kBT1

2m
+ B2

1 sin2 θ1

4πmn1
+ v2

1

2

)
, (A6)

where m is the mass of the particles, kB the Boltzmann constant and

A = − B2
2

4π
sin θ2 cos θ2, (A7)

C = mn2v2 cos ξ2

(
5

kBT2

2m
+ B2

2 sin2 θ2

4πmn2
+ v2

2

2

)
. (A8)

After some algebra, T̄2 ≡ tan θ2 is found as the solution of10

4∑
k=0

akT̄k
2 = 0, (A9)

with

a0 = 2M2
A1

(
sin 2θ1 − 2M2

A1 tan θ1
)2

,

a1 = −1
8

M2
A1 tan θ1[−4M2

A1(31 cos 2θ1 + 21) + 80M4
A1 + 4 cos2 θ1(21 cos 2θ1 + 11)],

a2 = 1
2

M2
A1 cos2 θ1(15 cos 2θ1 + 1) − M4

A1(7 cos 2θ1 + 3) + 2M6
A1,

a3 = −1
4

sin 2θ1M2
A1(−2M2

A1 + cos 2θ1 + 1),

a4 = 3 cos4 θ1M2
A1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A10)

10This quantity is written here with a bar to avoid confusion with the downstream temperature T2 in ((A4), (A6)).
Such a confusion is excluded in the rest of the paper since the downstream temperature splits into 2 different quantities,
namely T‖2 and T⊥2.
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Appendix B. Anisotropic MHD conservation equations for an oblique shock

The conservation equations for anisotropic temperatures were derived in Hudson (1970)
and Erkaev et al. (2000). They have been re-derived in Bret & Narayan (2022a) with the
present notations. They are formally valid even for anisotropic upstream temperatures,
with T‖1 �= T⊥1. Writing them for T‖1 = T⊥1 ≡ T1, they read

n2v2 cos ξ2 = n1v1, (B1)

B2 cos θ2 = B1 cos θ1, (B2)

B2v2 sin θ2 cos ξ2 − B2v2 cos θ2 sin ξ2 = B1v1 sin θ1, (B3)

B2
2 sin2 θ2

8π
+ n2kB(T‖2 cos2 θ2 + T⊥2 sin2 θ2) + mn2v

2
2 cos2 ξ2 = B2

1 sin2 θ1

8π
+ n2kBT1 + mn1v

2
1,

(B4)

A + mn2v
2
2 sin ξ2 cos ξ2 = −B2

1 sin θ1 cos θ1

4π
, (B5)

Av2 sin ξ2 + B + C = mn1v1

(
5kBT1

2m
+ B2

1 sin2 θ1

4πmn1
+ v2

1

2

)
, (B6)

where

A = sin θ2 cos θ2n2kB(T‖2 − T⊥2) − B2
2

4π
sin θ2 cos θ2, (B7)

B = v2 cos2 θ2 cos ξ2n2kB(T‖2 − T⊥2), (B8)

C = mn2v2 cos ξ2

(
kB

2m
(T‖2 + 4T⊥2) + B2

2 sin2 θ2

4πmn2
+ v2

2

2

)
. (B9)

It can be checked that setting T‖2 = T⊥2 = T2 gives back the MHD equations, ((A1)–(A6)).

Appendix C. Main quantities for stages 1 and 2

Implementing the algorithm described in figure 7 requires computing the density ratio
r, the anisotropy A2 and the downstream Alfvén Mach number MA2x, for stage 1, stage
2-firehose and stage 2-mirror. The results are presented below.

C.1. Stage 1
Solving the system of ((B1)–(B6)) with prescription (2.3) allows us to derive a polynomial
for the quantify T2 = tan θ2 defined in (3.1). It has been derived in Paper 1.11 Using now
the expression (4.1) for the Alfvén velocity, the Alfvén Mach number for stage 1 reads

M2
A2x = 4(T4

2 + 2) sec2 θ1M2
A1

(T2
2 − 2) sec2 θ1(4M2

A1(r − 1) − r cos 2θ1 + r) + 2r(T4
2 + 2T2

2 + 4)
. (C1)

From (2.3), the anisotropy of stage 1 is simply

A2 = 1
2 tan2 θ2. (C2)

11See (4.2)–(4.5) in Paper 1.
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The density ratio r is the same as in Paper 1, namely,

r = 4M2
A1T3

2 (1 + T2
2 )

5∑
k=0

bkT2k

, (C3)

where
b0 = 8M2

A1 tan θ1 − 4 sin 2θ1,

b1 = −8M2
A1 + 6 cos 2θ1 + 2,

b2 = 0,

b3 = 4M2
A1 + cos 2θ1 + 3,

b4 = 4M2
A1 tan θ1 − 2 sin 2θ1,

b5 = 2 cos2 θ1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C4)

C.2. Stage 2 firehose
If stage 1 has A2 < 1 − 2/β‖2, then stage 2-firehose is the end state. Since the stability
criterion differs from that used in Paper 1 by the factor 2, the properties of stage 2 firehose
change with respect to Paper 1. A polynomial equation can still be derived for T2 = tan θ2
as

3∑
k=0

akTk
2 = 0, (C5)

with

a0 = −8(sin 2θ1 − 2M2
A1 tan θ1)

2, (C6)

a1 = (−2M2
A1 + cos 2θ1 + 1)(−20M2

A1 + 9 cos 2θ1 − 1) tan θ1, (C7)

a2 = 8 cos 2θ1M2
A1 − 8(M4

A1 + M2
A1) − cos 4θ1 + 1, (C8)

a3 = (2M2
A1 − cos 2θ1 − 1) sin 2θ1. (C9)

The density jump is then given by

r = M2
A1T2

M2
A1 tan θ1 − sin θ1 cos θ1

. (C10)

As for the Alfvén Mach number, we found in § 4 that the Alfvén speed vanishes on the
firehose instability threshold. Therefore, stage 2-firehose has

MA2x = +∞. (C11)

As a consequence, when the system eventually settles in stage 2-firehose with σx < 1 (i.e.
MA1x > 1), it is evolutionary.

The anisotropy of stage 2-firehose is also modified with respect to Paper 1, due to the
modified stability criterion. It now reads

A2 = 1 − 2(T3
2 + T2) cos2 θ1

2M2
A1(T2 − tan θ1) + T3

2 cos2 θ1 + T2 sin2 θ1 + sin 2θ1
. (C12)
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C.3. Stage 2 mirror
Since the stability threshold for the mirror instability is the same as in Paper 1, the
polynomial for T2, the anisotropy A2 and the density ratio are also the same. The Alfvén
Mach number reads here

M2
A2x = 2

3
sec2 θ1

r
M2

A1. (C13)
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