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PERMANENTS OF (0, 1)-MATRICES HAVING AT
MOST TWO ZEROS PER LINE

BY
J. R. HENDERSON

SumMARY. Let U, denote the nth ménage number. Within the
class of order » matrices of zeros and ones with at most two
zeros in every row and column the minimum permanent is U,
when 7 is even and—1+ U, when # is odd.

If A=(a;;) is a real order n matrix, the permanent of A (per A) is defined to be
> @1,1)%02) * * * Ana(ny» the sum being over all permutations 7 € S, the symmetric
group on n letters. Permanents have considerable combinatorial interest, a result
in part due to the fact that

(¢Y) per A = per B

when A4, B are “‘combinatorially equivalent”, i.e., when there exist permutation
matrices P, Q such that B=PAQ. For example, the “probléme des ménages”
asks for the number (M) of ways 2n symbols a;, as, . . . , a,, by, by, . . . , b, may
be arranged in a circle so that the a’s and &’s occur alternately but a;, b; are not
adjacent for any i=1,2,...,n. The answer is M,=2n! U, where an explicit
formula for the nth ménage number U, is known [4] but equivalently, it may be
defined as the permanent of the order n (0, 1)-matrix having exactly two zeros in
every line (row or column),

[0 0
010 1
01
V)]
10
1 010
L 0 ol

or of any combinatorially equivalent matrix [3].
Further interest in permanents is fostered by various unresolved conjectures
concerning maximum and minimum permanent values within certain classes of
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matrices, e.g., [2]. In particular, the van der Waerden conjecture remains un-
resolved [1]. Let d(n, k)(Z%(n, k)) denote the class of all order n(0, 1)-matrices
having exactly n—k (at most n—k) zeros per line. It is the purpose of this paper
to determine the minimum permanent within %(n, n—2). Specifically we shall
show:

THEOREM 1. The minimum permanent in %(n, n—2)is U, for n even and —1+U,
for n odd.

Before turning to the proof we shall make a simplification (Lemma 1) and obtain
some useful formulae (Lemma 2). Use will be made of the fact that members of
#(n, n—2) are combinatorially equivalent to (0, 1)-complements of the direct
sum of (0, 1)-complements of matrices of type (2) of orders py, p,, . . . , p, Where
n=p,+p,+ + - +p, is a partition of n with all p,>2.

LeMMA 1. The minimum permanent in %(n, n—2) can be found in the union of the
following two subclasses of %(n, n—2):

@) ¥(n,n—2)

(ii) the class of order n matrices of the form:

of11 . . .1
1
1

3 ) B

L1 J
with B € $(n—1, n—3). (Note, since the constant line sum of B is two less than its
order, all combinatorially inequivalent forms for B have been implicitly described

above.)

Proof. If 4 has minimum permanent within the class %(n, n—2) then we can
assume that every one in 4 is in some line with sum exactly equal to n—2, else such
a one can be removed without change in the permanent value. For convenience
we shall say such a reduced 4 has “property R”. Now suppose 4 ¢ ¥(n, n—2).
Clearly 4 cannot have a line, say a row, of sum # since by property R every column
would contain two zeros and hence since the matrix is square, some row would
contain more than two zeros, i.e., 4 ¢ %(n, n—2). It follows that 4 has both a
row and a column with sum #n—1. Let the first column of 4 be such a column,
taking its zero to be in the first row. By property R the last n—1 rows have row
sums equal to n—2 so the first row must be the one with sum n—1. Hence 4 is of
the form (3) with the row sums of B equal to n—3. Repeating the argument for the
column sums of B we conclude B € ¢(n—1, n—3).

It is obvious that an even simpler application of property R solves the analogous
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problem of the minimum permanent in %#(n, n—1). Namely, the minimum per-
manent in this class is D,, the nth derangement number, for which an explicit
formula is known but which can be equivalently defined as the permanent of the
(0, 1)-complement of the order » identity matrix [3].

By a “list” we mean a finite unordered set of positive integers. A particular list
of length u will be denoted either as

(4) [pls ) 2T P,‘]
or, more commonly as
(5) (p29 P, - - .,pp)‘

The notation (5) will be used rather than (4) when some terms have possibly been
suppressed, i.e.,

(Pl& ) 2T Pu) = [pl’ Pos« o« s Dus Dpt1s « « +» pu+v]

for some non-negative integer » and for some positive integers p,,1, - - - 5 Pyt
By Ulpi, pss - - - » pu] We shall denote the permanent of the matrix which is the
(0, 1)-complement of the direct sum of (0, 1)-complements of matrices of type (2)
of orders p;, ps, . . . , p,, Tespectively. If some p,=1, the corresponding summand
will be an order one zero matrix. By (1) the value U[p,, p,, . . . , p,] is independent
of the ordering of the p;’s and by Lemma 1 U[p,, p,, . . . , p,], for some partition
n=p;+p.+- - *+p, of n, is the minimum permanent wanted. U(py, ps, ..., p,)
has the same definition as U[p,, p,, . . . , p,], the notation implying that indication
of some matrix summands might have been suppressed. In particular, an equation
involving U(py, ps, - - - » P> U(q1, 425 - - - » 4y), €tc., holds when identical, arbitrary
(positive integer) terms are adjoined to all lists.

LemMA 2. Ifk>1,1>1,

k+1-1 k—1 -1

(©) Uk, ) =U(k+D+2 21: u@- ZIU(I', 1)—21U(k, i).
If k=1, I>1, (6) has the modified form

™ zl U, i) = 32 U@)+20()+U(+1).
IfI>2,

@® ut, ) = U(l—-D+UD+U(I+1).

Procf. If the zero in the (1, 1) position of the matrix 4, in (2) is replaced by a
one, the new permanent value, per A,lq, is

U,+per 45
so by induction,

©) per 4} = S U,
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Moreover, this is the permanent of any matrix obtained by replacing a zero of 4,,
by a one since all such matrices are combinatorially equivalent. Let £>1, /> 1,
and consider the matrices which define Ulk, /], U[k+1]:

[0 0 '\'00 ]
01 . 1 01 . 1
k k
1 10 1 .10
0lo]1 ol1|o0
(10) 1/0]0 0l1
01 1 01 1
I I
1 1
1 .10 1 .10
L ool L 0 0.

These matrices differ only in an order 2 submatrix as indicated. By comparing the
sets of k+/ ones, no two in a line, occurring in the two matrices (10) and by
making use of (9), we obtain the identity (6). This fails if k=1, but a slight modi-
fication of the comparison gives

u(, 1)—§1U(i)—2i UG) = U(z+1)—§1U(1, i)

which is a rearrangement of (7). If /—1>1 we can rewrite (7) with /—1 replacing
1. Subtraction of these two forms of (7) then gives (8).

By (8) U(1, )>U(I+1) for I>2 so that except possibly for U(1, 1), U(1, 2),
permanent values smaller than U(1, I) can be found among the values U(/+1).
Theorem 1 will now be proven. First we show U[py, p,, . .., p, 1> Ulg] if

u
q=2p
i=1

unless u=2 and |p;—p.|=1. Finally we complete the proof by showing
Ulk, k+1]=—14U[2k+1].

Proof of Theorem 1. Our first reduction is to show:
(11) Uk, ) =U(l+k)+U(l—k) if k>1 and > k+1.
Subtracting expressions for U(2, 4), U(2, 3) as obtained from (6) we have
U2,4-U(2,3) =U®)+UB)+U1,3)—U1,4)-U(Q2, 3)
and using (8) this simplifies to (11) when k=2 and /=4. The same approach works
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for U(k, I) by induction. Assume the result for U(k’, I’) for all pairs k', I'(k">1
and I'>k’+1) satisfying k' <k or I'<I if k'=k. Again by (6),
Uk, )=U(k, I—-1) = Uk+D+Uk+1—-1)—-U(, D)

(12) k-1 k-1
- > UG, D+UQ, I-1)+ > UG, I-1)=U(k, I1-1).
=2

=2
Using (8) for the terms U(1, I), U(1, I—1) and applying the induction hypothesis
to the two summations in (12) we obtain the result wanted.
The proof of Theorem 1 has now been reduced to a consideration of those lists
of the form

[k, ky.o. bk, k+1,k+1,...,k+1] with k> 1,
We next note that:
13) Uk, k) > UQ2k) if k>1.
Applying (11) to (6) and making use of (8) (assuming k>3), we have
14 U(k, k) = UQRk)+2U(1)+2UQRk—1)—2U(k—1, k)
15) Uk, k+1) = UQk+1)+2U(1)+UQRk—1)+UQ2k)—U(k—1, k)—U(k, k).

Equating the two expressions for U(k, k)— U(2k)—2U(1) as obtained from (14),
(15) we get

(16) Uk, k+1)—UQRk+1) = U(k—1, k)—UQ2k—1).
So (14) becomes
17 U(k, k)—UQk) = 2{U)+U(5)-U2,3)}, k>3

after successive applications of (16). For k=2 (14), (15) must be modified, but simi-
larly equating the analogous expressions for U(2, 2)—U(4)—2U(1) we obtain

U2,3)—-U(5) = U(1,2)—-UB)—-U(2).
Consequently, for k>1, (17) becomes
U(k, k)—U(Q2k) = 2{U1)+U2)+U(3)—U(1, 2)}

and using (7) for /=2,

U(k, k)—UQ2k) = 2{U(1, 1)—2U(1)—U(2)}.
If we consider the terms in the permanent value U(1, 1) we have
(18) U1, 1) =U@)+20()+U()
and therefore (17), for k>1 can be written

Uk, k)—U2k) = 2U( )

so that U(k, k)— U(2k)>0 if k>1 and the same result follows from (18) for k=1.
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To complete the proof of Theorem 1 we note that Ulk, k+1]=—14+U[2k+1]
for k>1. This is readily checked for k=1, 2 and for k>3 (16) gives us

ULk, k+1]—URk+1] = U[2, 3]-U[5] = —1.

A final point should be noted: For all n33, the minimum permanent in
% (n, n—2) is attained in ¥(n, n—2).
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