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PERMANENTS OF (0, 1)-MATRICES HAVING AT 
MOST TWO ZEROS PER LINE 

BY 

J. R. HENDERSON 

SUMMARY. Let Un denote the nth ménage number. Within the 
class of order n matrices of zeros and ones with at most two 
zeros in every row and column the minimum permanent is Un 

when n is even and—1 + Un when n is odd. 

If A = (a{j) is a real order n matrix, the permanent of A (per A) is defined to be 
2 aua)a2Tt(2) • " " anvin)9 ^ e sum being over all permutations IT e Sn> the symmetric 
group on n letters. Permanents have considerable combinatorial interest, a result 
in part due to the fact that 

(1) per A = per B 

when A, B are "combinatorially equivalent", i.e., when there exist permutation 
matrices P, Q such that B=PAQ. For example, the "problème des ménages" 
asks for the number (Mn) of ways In symbols al9 a2,... , an9 bl9 b2,... , bn may 
be arranged in a circle so that the a's and 6's occur alternately but ai9 èt- are not 
adjacent for any z=l, 2 , . . . , n. The answer is Mn=2nl Un where an explicit 
formula for the «th ménage number Un is known [4] but equivalently, it may be 
defined as the permanent of the order n (0, l)-matrix having exactly two zeros in 
every line (row or column), 

0 0 
0 1 0 

0 1 
1 

(2) 

. 1 0 
1 0 1 0 

0 0_ 

or of any combinatorially equivalent matrix [3]. 
Further interest in permanents is fostered by various unresolved conjectures 

concerning maximum and minimum permanent values within certain classes of 
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matrices, e.g., [2]. In particular, the van der Waerden conjecture remains un­
resolved [1]. Let &(n, k)(é$(n, k)) denote the class of all order n(0, l)-matrices 
having exactly n—k (at most n—k) zeros per line. It is the purpose of this paper 
to determine the minimum permanent within 3§(n, n—2). Specifically we shall 
show: 

THEOREM 1. The minimum permanent in 
for n odd. 

(n, n—2) is Unfor n even and — 1 + Un 

Before turning to the proof we shall make a simplification (Lemma 1) and obtain 
some useful formulae (Lemma 2). Use will be made of the fact that members of 
&(n, n—2) are combinatorially equivalent to (0, l)-complements of the direct 
sum of (0, l)-complements of matrices of type (2) of orders pl9p2,... ,pv where 
n=p±+p2+ • • • +pv is a partition of n with a l l ^ > 2 . 

LEMMA 1. The minimum permanent in £%(n, n—2) can be found in the union of the 
following two subclasses of 33(n, n—2): 

(i)ê(n,n-2) 
(ii) the class of order n matrices of the form: 

(3) 

0 

.1 

1 1 

B 

with B e #(«—1, n—3). (Note, since the constant line sum of B is two less than its 
order, all combinatorially inequivalent forms for B have been implicitly described 
above.) 

Proof. If A has minimum permanent within the class &(n, n—2) then we can 
assume that every one in A is in some line with sum exactly equal to n—2, else such 
a one can be removed without change in the permanent value. For convenience 
we shall say such a reduced A has "property R". Now suppose A $ â(n9 n—2). 
Clearly A cannot have a line, say a row, of sum n since by property R every column 
would contain two zeros and hence since the matrix is square, some row would 
contain more than two zeros, i.e., A <£ 3§{n, n—2). It follows that A has both a 
row and a column with sum n — 1. Let the first column of A be such a column, 
taking its zero to be in the first row. By property R the last n— 1 rows have row 
sums equal to n—2 so the first row must be the one with sum n—\. Hence A is of 
the form (3) with the row sums of B equal to n—3. Repeating the argument for the 
column sums of B we conclude B e #(n—1, n—3). 

It is obvious that an even simpler application of property R solves the analogous 
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problem of the minimum permanent in £S(n9 «—1). Namely, the minimum per­
manent in this class is Dn9 the nth derangement number, for which an explicit 
formula is known but which can be equivalently defined as the permanent of the 
(0, l)-complement of the order n identity matrix [3]. 

By a "list" we mean a finite unordered set of positive integers. A particular list 
of length ix will be denoted either as 

(4) [Pi, p 2 9 . . . , pj 
or, more commonly as 

(5) (j>2, P2, • • • , Pfil 

The notation (5) will be used rather than (4) when some terms have possibly been 
suppressed, i.e., 

(Pl> P2> • - • > Pfi) = [Pi, Pto • • • » Pfi> Pn+1> • • • » JVfvl 

for some non-negative integer v and for some positive integers />M+i,... ,/v+v 
By U[pl9p29... tpp] we shall denote the permanent of the matrix which is the 
(0, l)-complement of the direct sum of (0, l)-complements of matrices of type (2) 
of orders pl9p29. •. ,JV respectively. If some/?t=l, the corresponding summand 
will be an order one zero matrix. By (1) the value U[pl9p29... ,/>,,] is independent 
of the ordering of the pjs and by Lemma 1 U[pl9p29... ,/>J, for some partition 
n=p1+p2-\ hPn of n9 is the minimum permanent wanted. U(pl9p29... 9p^) 
has the same definition as U[pl9p29... ,/?v], the notation implying that indication 
of some matrix summands might have been suppressed. In particular, an equation 
involving U(pl9p29... ,/?„), U(ql9 q29... , qv)9 etc., holds when identical, arbitrary 
(positive integer) terms are adjoined to all lists. 

LEMMA 2. Ifk>l9l>\9 

k+l-l Tc-1 l-l 

(6) u(k, i) =u(k+i)+2 2 u(i)- 2 m , 0 -2 v(k, o. 
t = l i = l *'=1 

Ifk=l9 />1 , (6) has the modified form 

(7) 2 17(1, 0 = 3 2 U(ï)+2U(l)+U(l+l). 

Ifl>2, 

(8) 1/(1,1) = U(!-Ï)+U(T)+U(l+Ï). 

Proof. If the zero in the (1, 1) position of the matrix An in (2) is replaced by a 
one, the new permanent value, per A„, is 

[7n+per A\_x 
so by induction, 

(9) per^i-iX 
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Moreover, this is the permanent of any matrix obtained by replacing a zero of A„ 
by a one since all such matrices are combinatorially equivalent. Let k>\, / > 1 , 
and consider the matrices which define U[k, I], U[k+l]: 

(10) 

0 0 
0 1 

1 0 
1 
0 
0 1 

1 1 0 
0 0. 

0 0 
0 1 

1 0 
1 
0 

0 

0 1 

1 0 
0 0. 

These matrices differ only in an order 2 submatrix as indicated. By comparing the 
sets of k+l ones, no two in a line, occurring in the two matrices (10) and by 
making use of (9), we obtain the identity (6). This fails if k—\, but a slight modi­
fication of the comparison gives 

u(i, 9-2 u(o-2 2 u® = u(i+i)-zu(i, 9 

which is a rearrangement of (7). If /— 1 > 1 we can rewrite (7) with /•— 1 replacing 
/. Subtraction of these two forms of (7) then gives (8). 

By (8) £7(1, /)>£/(/+1) for />2 so that except possibly for 17(1,1), 17(1, 2), 
permanent values smaller than 17(1, /) can be found among the values U(l+l). 
Theorem 1 will now be proven. First we show U[pl9p29... ,p,Ji>U[q] if 

A * 

0 = 2 A* 

unless ^=2 and \p±—/?2| = 1« Finally we complete the proof by showing 
U[k9k+l]=-l + U[2k+l]. 

Proof of Theorem 1. Our first reduction is to show: 

(11) Ukfl) = U(l+k)+U(l-k) if fc>l and / > k+ l . 

Subtracting expressions for t/(2, 4), U(2, 3) as obtained from (6) we have 

U(2, 4)-17(2, 3) = U(6)+U(5)+U(l, 3)-17(1, 4)-17(2, 3) 

and using (8) this simplifies to (11) when k=2 and /=4. The same approach works 
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for [7(fc, /) by induction. Assume the result for [7(fc', /') for all pairs k\ / '(fc'>l 

and V>k'+\) satisfying k'<k or / ' < / if fc'=fc. Again by (6), 

U(k9 Z)-[/(fc, J - l ) = U(k+I)+U(k+l-l)-U(l91) 

K } -2U(i, 0 + 17(1, J - l ) + 2 £ / ( f , J_l)_C7(fc, / - l ) . 

Using (8) for the terms 17(1, /), [7(1, /—1) and applying the induction hypothesis 
to the two summations in (12) we obtain the result wanted. 

The proof of Theorem 1 has now been reduced to a consideration of those lists 
of the form 

[fc, fc,..., fc, fc+1, fc+1,..., fc+1] with fc ^ 1. 

We next note that: 

(13) U(kf k) > U(2k) if k > 1. 

Applying (11) to (6) and making use of (8) (assuming k>3)9 we have 

(14) U(k, k) = U(2k)+2U(l)+2U(2k-l)-2U(k-l, fc) 

(15) U(k, fc+1) = C7(2fc+l)+2(7(l)+l7(2k~l)+(7(2fc)~l7(fc-l,fc)--C7(fc,fc). 

Equating the two expressions for U(k, fc)— I7(2fc)—2t7(l) as obtained from (14), 
(15) we get 

(16) U(k9 fc+l)-L7(2fc+l) = (7(fc-l, fc)-l/(2fc-l). 

So (14) becomes 

(17) U(k, fc)-l/(2fc) = 2{17(1)+1/(5)-17(2, 3)}, fc ^ 3 

after successive applications of (16). For fc=2 (14), (15) must be modified, but simi­
larly equating the analogous expressions for U{29 2)—U(A)—2U{\) we obtain 

U(29 3)-17(5) = 17(1, 2)-[7(3)-17(2). 

Consequently, for fc>l, (17) becomes 

l/(fc, fc)-C7(2fc) = 2{C7(l)+[7(2)+17(3)-17(1, 2)} 

and using (7) for 7=2, 

[7(fc, fc)-[7(2fc) = 2{[/(l, l ) - 2 [ / ( l ) - [ / ( 2 )} . 

If we consider the terms in the permanent value [7(1,1) we have 

(18) [7(1,1) = [7(2)+2[/(l)+[/( ) 

and therefore (17), for fc>l can be written 

[7(fc, fc)-[7(2fc) = 2[7( ) 

so that [7(fc, fc)— [7(2fc)>0 if fc>l and the same result follows from (18) for fc=l. 
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To complete the proof of Theorem 1 we note that U[k9 /c+l] = —1 + U[2k+l] 

for k>\. This is readily checked for k=l, 2 and for k>3 (16) gives us 

U[k, k+l]-U[2k+l] = U[2, 3]-t/[5] = - 1 . 

A final point should be noted: For all «7e 3, the minimum permanent in 

£§(n, n—2) is attained in ê(n, n—2). 
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