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Abstract

Finite subset spaces of a metric space X form a nested sequence under natural isometric embeddings
X = X(1) ⊂ X(2) ⊂ · · · . We prove that this sequence admits Lipschitz retractions X(n)→ X(n − 1) when
X is a Hilbert space.
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1. Introduction

Let X be a metric space. For n ≥ 1, X(n) denotes the set of all nonempty subsets of
X with cardinality at most n. Equipped with the Hausdorff metric, X(n) becomes a
metric space which is sometimes called a symmetric product or symmetric power of
X. Following Tuffley [8] we use the descriptive term finite subset space for X(n). This
space is related to, but different from, Xn/S n, the space of unordered n-tuples of points
in X.

One feature that distinguishes X(n) from the Cartesian power Xn and the quotient
Xn/S n is the existence of canonical isometric embeddings X(n) ⊂ X(n + 1). The
embeddings Xn ⊂ Xn+1 are not canonical: they depend on the choice of a base point
in X. Furthermore, the geometry of embedding X(n) ⊂ X(n + 1) is far richer than the
geometry of Xn ⊂ Xn+1. For example, in [6] it is shown that S 1(1) ⊂ S 1(3) is a trefoil
knot embedded in S 3 which bounds a Möbius band, namely S 1(2). This example
shows that in general the canonical embeddings ι : X(n)→ X(n + 1) do not split: there
need not be a continuous map r : X(n + 1)→ X(n) such that r ◦ ι = id.

On the other hand, there is a Lipschitz retraction of R(n + 1) onto R(n) for every
n ≥ 1. This observation, made in [5], was used to show the bi-Lipschitz embeddability
of R(n) into a Euclidean space. Our main result shows that such a Lipschitz retraction
exists for all Hilbert spaces, either finite-dimensional or infinite-dimensional. In this
context, there is no loss of generality in assuming the vector spaces are real.
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Theorem 1.1. Let H be a Hilbert space. Then for every n ≥ 2 there exists a Lipschitz
retraction rn :H(n)→H(n − 1).

By [5, Remark 4.5], combining the case X = Rd of Theorem 1.1 with the results
of [5] yields the following corollary.

Corollary 1.2. For d, n ≥ 1, the space Rd(n) is an absolute Lipschitz retract.

Since the existence of Lipschitz retractions r : X(n)→ X(n − 1) is a bi-Lipschitz
invariant of X, Theorem 1.1 applies also to Banach spaces that are isomorphic to a
Hilbert space. However, it remains unclear whether such retractions exist for general
Banach spaces, beyond the trivial case X(2) → X(1) given by the midpoint map
{a, b} 7→ {(a + b)/2}.

Of particular interest here is the case X = `∞, because `∞ is an absolute
1-Lipschitz retract, that is, it admits a 1-Lipschitz retraction from any larger metric
space containing it. Indeed, it remains unknown whether the property of being an
absolute Lipschitz retract is inherited by finite subset spaces in general. See [1] for the
topological version of this problem and [3, 4] for the Lipschitz version.

Another setting to which Theorem 1.1 could conceivably be extended is CAT(0)
metric spaces. The existence of a 1-Lipschitz retraction X(2)→ X(1) for such spaces
is a well-known consequence of the convexity of the metric in CAT(0) spaces (see,
for example, [2]); the map sending each pair of points to the midpoint of the geodesic
connecting them provides such a retraction.

2. Proof of Theorem 1.1

LetHn be the Cartesian power ofH , equipped with the metric

d((x1, . . . , xn), (y1, . . . , yn)) =

( n∑
k=1

‖xk − yk‖
2
)1/2

.

The productHn is also a Hilbert space. Define a function Φ :Hn → R by

Φ(x1, . . . , xn) =
∑

1≤i< j≤n

‖xi − x j‖.

It is easy to see that Φ is a convex function on Hn. Let D = {x ∈ Hn : xi = x j
for some i , j}. The function Φ is Fréchet differentiable at every point ofHn\D, with
the derivative

∇Φ(x) =

(∑
j,i

xi − x j

‖x j − xi‖

)n

i=1
. (2.1)

By (2.1), Φ satisfies the upper gradient bound

‖∇Φ‖ ≤ (n − 1)
√

n, x ∈ Hn\D.

Given a set in H(n)\H(n − 1), enumerate its elements as {x1, . . . , xn} (in arbitrary
order), thus associating to it a point x ∈ Hn\D. Since x uniquely identifies the set {xi},
we sometimes write x instead of {xi} to simplify notation.
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Consider the system of ordinary differential equations

dui

dt
=

∑
j,i

u j − ui

‖u j − ui‖
, i = 1, . . . , n (2.2)

with the initial conditions ui(0) = xi. In view of (2.1), the system (2.2) can be seen
as the gradient flow of the function Φ. Note that the right-hand side of (2.2) belongs
to the finite-dimensional subspace spanned by x1, . . . , xn. Hence, the solution remains
in this subspace as long as it exists. By the Picard existence and uniqueness theorem,
there is a unique solution until u reaches the set D.

Let [0, T (x)) be the maximal interval of existence of solution of (2.2). Denote
δ(x) = mini< j ‖xi − x j‖. Since ∥∥∥∥∥dui

dt

∥∥∥∥∥ ≤ n − 1 ∀i (2.3)

it follows that
T (x) ≥

δ(x)
2(n − 1)

.

The following inequality provides an estimate for T (x) in the reverse direction; it
turns out that T (x) is comparable to δ(x):

T (x) ≤
δ(x)

2
. (2.4)

Proof of (2.4). A map F :H →H is said to be monotone if

〈F(a) − F(b), a − b〉 ≥ 0 ∀a, b ∈ Rd.

It is a well-known fact [7, Section 24] that the gradient of any convex function is
monotone. In particular, F(x) = x/‖x‖ is a monotone map, being the gradient of the
convex function x 7→ ‖x‖.

Renumbering the points xi, we may assume ‖x1 − x2‖ = δ(x). Consider the function
ϕ(t) = ‖u1(t) − u2(t)‖, 0 < t < tc. Differentiation yields

ϕ′(t) = ‖u1 − u2‖
−1

〈du1

dt
−

du2

dt
, u1 − u2

〉
.

The inner product on the right consists of the term

〈F(u2 − u1) − F(u1 − u2), u1 − u2〉 = −2‖u1 − u2‖

and the sum over j = 3, . . . , n consists of

〈F(u j − u1) − F(u j − u2), u1 − u2〉

= −〈F(u j − u1) − F(u j − u2), (u j − u1) − (u j − u2)〉
≤ 0.

Thus, ϕ′(t) ≤ −2 for 0 < t < T (x), and since ϕ(t) ≥ 0 by definition, it follows that
T (x) ≤ ϕ(0)/2 = δ(x)/2. �
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We are now ready to define the retraction r : X(n)→ X(n − 1). On the subset
X(n − 1) ⊂ X(n) it is the identity map. For a set x = {x1, . . . , xn} ∈ X(n)\X(n − 1)
let r({xi}) = {ui(T (x))}. This is well defined because a different enumeration of the
elements {x1, . . . , xn} would result only in a different enumeration of the elements
{ui(T (x))}.

It remains to prove that r is a Lipschitz retraction of H(n) onto H(n − 1) in the
Hausdorff metric dH . Specifically,

dH(r(x), r(y)) ≤ max(n3/2, 2n − 1) dH(x, y) (2.5)

for all x, y ∈ H(n).

Proof of (2.5). Let (ui) and (vi) be the solutions of (2.2) with initial data (xi) and (yi),
respectively.

Combining (2.4) and (2.3) yields

dH(r(x), x) ≤
n − 1

2
δ(x), (2.6)

and similarly for y.

Lemma 2.1.
∑n

i=1 ‖ui(t) − vi(t)‖2 is a nonincreasing function of t for 0 < t <
min(T (x),T (y)).

Proof. The point (u1(t), . . . , un(t)) ∈ Hn evolves under the gradient flow of the convex
function Φ(u1, . . . , un) =

∑
i< j ‖ui − u j‖. Since the gradient of a convex function is

monotone, 〈du
dt
−

dv
dt
, u − v

〉
≤ 0.

The left-hand side is 1/2 of the derivative of ‖u(t) − v(t)‖2 with respect to t, which
proves the claim. �

As a consequence of Lemma 2.1,

dH({ui}, {vi}) ≤
√

n max
i
‖xi − yi‖ (2.7)

for all t with 0 < t < min(T (x),T (y)). Let ρ = dH(x, y).

Case 1: δ(x) + δ(y) ≤ 4 ρ. From (2.6),

dH(r(x), r(y)) ≤ ρ + dH(r(x), x) + dH(r(y), y) ≤ ρ + 2(n − 1)ρ,

which implies (2.5).

Case 2: δ(x) + δ(y) > 4ρ. We may assume δ(x) > 2ρ. Since the function δ is
2-Lipschitz in the Hausdorff metric, it follows that δ(y) > 0.

The geometric meaning of δ(x) > 2ρ is that the points xi are separated by more than
2ρ, yet each of them is within ρ of some point y j. Therefore, we can enumerate the
points xi and yi in such a way that

‖xi − yi‖ ≤ ρ for i = 1, . . . , n. (2.8)
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From now on, we use only (2.8), in which the roles of x and y can be interchanged.
Thus, we may assume that T (x) ≤ T (y).

By definition, r(x) = {ui(T (x))}. Let z = {vi(T (x))}. By (2.7),

dH(r(x), z) ≤
√

nρ. (2.9)

Since δ is 2-Lipschitz and δ(r(x)) = 0,

δ(z) ≤ 2dH(r(x), z) ≤ 2
√

nρ.

The estimate (2.6) yields

dH(r(z), z) ≤ (n − 1)
√

nρ. (2.10)

Now (2.5) follows from (2.9) and (2.10):

dH(r(x), r(y)) ≤ dH(r(x), z) + dH(r(z), z) ≤ n3/2ρ. �

This concludes the proof.

3. An example and open questions

Since the midpoint map H(2)→H(1) is Lipschitz with constant 1, it is natural
to ask whether a 1-Lipschitz retraction of H(n) onto H(n − 1) exists for n ≥ 3. The
following example, given by the referee of an earlier version of this paper, shows that
the answer is negative already for n = 3.

Example 3.1. There is no 1-Lipschitz retraction from R2(3) onto R2(2).

Proof. Let A = {(0, 0), (1, 0), (1/2,
√

3/2)} be the set of vertices of an equilateral
triangle of side length 1 in the plane R2. Also let B = {(−1, 0), (0, 0)} and C =

{(1, 0), (2, 0)}; these sets lie on the line extending the base of the triangle. Then
dH(A, B) = dH(A,C) = 1 and dH(B,C) = 2. If there was a 1-Lipschitz retraction of
R2(3) onto R2(2), the image of A would be some set E ∈ R2(2) such that dH(E, B) ≤ 1
and dH(E,C) ≤ 1. The only such set is {(0,0), (1,0)}, formed by the vertices of the base
of the triangle A. However, the above argument also applies to the two other sides of
A, which yields a contradiction. �

Question 3.2. Do there exist retractionsH(n)→H(n − 1) with the Lipschitz constants
bounded independently of n?

In conclusion, we state the questions mentioned in the introduction.

Question 3.3. If X is a CAT(0) metric space, do there exist Lipschitz retractions
X(n)→ X(n − 1) for every n ≥ 2?

Question 3.4. If X is a Banach space, do there exist Lipschitz retractions X(n)→
X(n − 1) for every n ≥ 2?

Although the linear span of every n-subset of a Banach space X can be given an
equivalent inner product metric (thus allowing for a Lipschitz retraction within this
subspace), the retraction depends on the choice of renorming. Thus, it seems that
Theorem 1.1 cannot be used to answer Question 3.4.

https://doi.org/10.1017/S0004972715000672 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000672


[6] Lipschitz retraction of finite subsets 151

References
[1] K. Borsuk and S. Ulam, ‘On symmetric products of topological spaces’, Bull. Amer. Math. Soc.

37(12) (1931), 875–882.
[2] M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319
(Springer, Berlin, 1999).

[3] L. Capogna, J. Tyson and S. Wenger (ed..s.), AimPL: Mapping Theory in Metric Spaces (American
Institute of Mathematics, Palo Alto, 2012), available from http://aimpl.org/mappingmetric.

[4] J. Goblet, ‘Lipschitz extension of multiple Banach-valued functions in the sense of Almgren’,
Houston J. Math. 35(1) (2009), 223–231.

[5] L. V. Kovalev, ‘Symmetric products of the line: embeddings and retractions’, Proc. Amer. Math.
Soc. 143(2) (2015), 801–809.

[6] J. Mostovoy, ‘Lattices in C and finite subsets of a circle’, Amer. Math. Monthly 111(4) (2004),
357–360.

[7] R. T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics (Princeton University
Press, Princeton, NJ, 1997).

[8] C. Tuffley, ‘Finite subset spaces of S 1’, Algebr. Geom. Topol. 2 (2002), 1119–1145.

LEONID V. KOVALEV, 215 Carnegie, Mathematics Department,
Syracuse University, Syracuse, NY 13244-1150, USA
e-mail: lvkovale@syr.edu

https://doi.org/10.1017/S0004972715000672 Published online by Cambridge University Press

http://aimpl.org/mappingmetric
mailto:lvkovale@syr.edu
https://doi.org/10.1017/S0004972715000672

	Introduction
	Proof of Theorem 1.1
	An example and open questions
	References

