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ON REAL ZEROS OF DEDEKIND f-FUNCTIONS 

H. HEILBRONN 

1. Introduction. Let K be a finite normal extension of an algebraic number 
field k; let k2 be the compositum of all quadratic extensions of k which are 
contained in K. Let ffc(s), fic(s) and Çk2(s) denote the Dedekind f-functions of 
these fields. The main purpose of this paper is to prove 

THEOREM 1. Any real simple zero of ÇK(s) is a zero of ffc2 (s). 

In particular, if k is the rational field, any real simple zero of f^(s) is a zero 
of an L-series 

LA(S) = £ (A/n)n-° 

where A is a rational integral divisor of disc (K/Q). 
The motivation arises from the following well-known facts. Let C be a 

number field, d its absolute discriminant, K the residue of its f-function fc(s) 
at 5 = 1. Then either K~1 = O(log|d|) or fc(^o) = 0 for some s0 < 1 with 
log|d| = 0 ( (1 — So)-1,) in which case the lower bound for K may be very poor 
indeed. Moreover, the zero s0 is simple and unique. 

Now let K be the normal closure of C over 0 , of absolute discriminant D 
such that 

\D\ g \d\nl, n = degr C. 

Then s0 will also be a zero of ÇK(s)> The application of Theorem 1 to K yields 

THEOREM 2. Let C any number field of degree n and discriminant d. Then either 

K-1 = O(»!log|d | ) , 

or there exists a divisor A of d such that 

LA(S0) = 0 , 1 - so = 0(K). 

Thus the task to find an effective realistic lower bound for K is, at least in 
principle, reduced to the same problem for quadratic number fields. In the case 
where C is a totally complex quadratic extension of a totally real field, J. 
Sunley [4] and L. Goldstein [3] have already obtained results of this nature. 
I wish to record my gratitude to Prof. L. Goldstein who made me familiar with 
these researches, and thus provided the stimulus which led me to the present 
investigation. 
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2. Proof of Theorem 1. The proof is based on the use of Artin L-series. 
We shall make use of two fundamental results of R. Brauer [1; 2]. 

B.l. The Artin L-series are meromorphic functions of s. 
B.2. If K is a normal extension of k, then 

is an integral function of s. 

Let ka be the maximal abelian extension of k contained in K, so that 

k C k2 C ka C K. 

Let G = Gsl(K/k), so that G' = Gal (K/ka) is the commutator group of G. 
Then 

f*a(s) = fjtiW E[ L(s;k,y) 
7 

where y runs through the complex characters of G/G'. 
Because the y are abelian characters, the L(s; k, y) are integral functions. 

Because L(s; k, y) = 0 => L(s; k, y) = 0 for real s, any real zero s0 of £ka(s) 
is either a zero of £k2(s) or a zero of multiplicity ^ 2 of £ica(s). By B.2 the last 
case is impossible, hence we assume from now on that Çka(s) ^ 0. 

Let Xb run through all irreducible characters of G. Then 

fr(5)= I l L(s;k,x)
x>W, 

b 

where x&(l) denotes the dimension of the character which equals its value for 
the unit element of G. 

It follows from B.l that L(s; k, %&) has a zero of order mb at s = SQ, where 
mb 6 Z, and nothing may be assumed about the sign of mb. We now define the 
general character 

0 = 2 màXb-
b 

Let kj be any field in the range ka C kj C k, and \f/j the character of G 
induced by the principal character of the subgroup Gj = Gal (K/kj). Then 
it is well-known that 

**,(*) = I I L(s;k,xi,Yi,t, 
b 

where the non-negative rational integers rj>b are determined by the decomposi­
tion 

tj = Z) ri,bXb-
b 

By virtue of the Frobenius reciprocity the rjfb are explicitely given by the 
formula 

'i.ft = l^il"1 X) x&(7). 
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Thus, the order of the zero of Çkj (s) at s = s0 is given by 

S(Gj) = X) rj,b*nb = \Gj\~1 X) ™b Z) X&(Y) 
ft ft y£Gj 

= [Gt1 E <KT), 

and we know from B.2 that S(G,) = 0 or 1 for all j , S(Gf) = 0, and 5({ 1} ) = 1, 
where {1} denotes the trivial subgroup of G consisting of the unit only. 

Now let H* be a minimal subgroup of G', such that 5 (H* ) = 0 a n d 5 ( i 7 ) = 1 
for each genuine subgroup H of H*. Then we have for every genuine subgroup 
H of H* 

X ( - 1 + 0(7)) = 0 , 
7GH" 

whereas Y,yeH*<t>(y) = 0. 
It is easy to verify that these relations are compatible only if iJ* is cyclic. 

If H* were not cyclic, we should have for each y Ç iJ* of order TV" 

£ (-1+ ,*>(/)) = 0; 
n=l 

and by virtue of the Môbius inversion formula 

ë ( - I + <KY")) = O. 
n=l,(n,2V)=l 

We can find group elements 71, . . . , ya of order iVi, . . . , Nq respectively such 
that the elements yt

ni, 1 ^ i ^ q, 1 ta nt S Nu (nu Nt) = 1 represent all 
group elements uniquely. Thus 

X ( - 1 + 0(7)) = 0, 
y£H* 

which is a contradiction. Thus we have shown that H* is cyclic. 
Moreover, the order of H* cannot be divisible by an odd prime p. Otherwise 

the field K*, corresponding to the subgroup H*, would have a cyclic extension 
of degree p, say Kv*, and Kv* would be a subfield of K. The function ÇKp*(s) 
would have a simple 0 at so. But 

?K*(S) = fz*M fi L(s;K*9nt). 

In this product rji runs through non-principal abelian characters in Kp* which 
occur in pairs of conjugate complex characters. Hence, if the product vanishes 
at so, it must have a zero of multiplicity ^ 2; this contradicts our assumption. 
Hence the order of H* is a power of 2, say 2K 

Let r be a generator of H*, and let H** denote the subgroup of H* which is 
generated by r2. We have 

2« 

1 = SCO**) - S(H*) = Tl 2 (-l)w<Krn). 
n=l 
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The general character <j> can be decomposed into two genuine characters 
<£+, 0_ by the formula $ = <t>+ — <£_. This decomposition is not unique, but as 
<j> is real, 0+ and <t>- can be chosen as real characters of G. We now remember 
that <£+ and <£_ are the sum of the characteristic roots of the corresponding 
matrix representation of G. Since the characters <£+ and <j>- are real, conjugate 
roots occur with equal multiplicity. The characteristic roots forming 0+(r) and 
<t>-(j) are 2'th roots of unity. Because r £ G', the determinants of the cor­
responding matrices are + 1 , and the products of the characteristic roots are 
+ 1. As the complex roots cancel in the product, the root —1 occurs in #+ 

exactly a+ times, and in </>_ exactly a_ times, where a+ and a_ are even. 
As 

2' = £; (-DW) = i: (-DV(TW) - i: (-ir<Mrw) 
w = l n = l w = l 

= 2\a+ - a_), 

1 = a+ — a_, 

We obtain the desired contradiction. 

Postscript. The referee has kindly pointed out to me that the result B.2 
quoted above was proved originally by H. Aramata, Proc. Japan Acad. 
0(1933), 31-34. 
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