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Abstract

We develop a concrete Fourier transform on a compact Lie group by means of a symbol calculus,
or *-product, on each integral co-adjoint orbit. These *-products are constructed by means of a
moment map defined for each irreducible representation. We derive integral formulae for these
algebra structures and discuss the relationship between two naturally occurring inner products on
them. A global Kirillov-type character is obtained for each irreducible representation. The case
of SU(2) is treated in some detail, where some interesting connections with classical spherical
trigonometry are obtained.

1991 Mathematics subject classification (Amer. Math. Soc): 22 E 46, 58 F 06.

Introduction

Classical harmonic analysis on the real line R and the torus T is largely the
study of the Fourier transform. This is a map from functions on the group G to
functions on the dual G, the set of unitary characters of G. It is given by the
formula

JG

where <f> is a function on G and x € G. Of course this is a formal definition whose
meaning must be investigated for (p belonging to various spaces of functions (or
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A,

distributions) on G. The point here is that for these groups, the dual G is itself
a topological group and the Fourier transform defined by (*) is a very explicit
and computable object. The resulting theory has a well-known generalisation
to locally compact abelian groups. For non-abelian groups, the situation is
considerably more complicated. We will restrict our attention here to real Lie
groups. Then the proper definition of the dual G is the set of equivalence classes
of irreducible unitary representations. One then defines the Fourier transform
for G by generalising (*). That is for </> a function on G and p e G one defines

(**) 4>\P)= I(p(g)p(g)dg.
JG

Ai

This is then an operator-valued function of G, with the operators </>A(p) acting
on (generally) different Hilbert spaces for different p e G. As such it also really
depends on our choice of representation in each equivalence class of G. It is
also clear that a necessary preliminary to any systematic study of the Fourier
transform is a description of the dual G. This turns out to be a deep and difficult
problem. For example, the dual of G = GL(n, R) has only recently been
classified (see Vogan [21]), and the situation for general reductive groups is not
yet understood, although progress has been made (see for example, Knapp and
Speh [10]).

Even with the dual G in hand however, the abstract nature of (**) is an
obstacle to further study. It may not be possible to even formulate analogues of
classical results from the abelian theory in any natural way.

The purpose of this paper is to describe an alternate framework for the defin-
ition and study of the Fourier transform for G a compact connected semisimple
Lie group. In effect we construct a new, geometric Fourier transform F for such
a group and then show that it incorporates the abstract definition of (**). We
may motivate this construction by going back to the Fourier transform for R or
T and rewriting (*) as

(***) <PA(X)= f <p(g)e(g,x)dg.
JG

Here e(g, x) — x(g) c a n be considered a function on G x G. Now for these
groups G can be naturally identified with a subset of the dual of the Lie algebra
0. That is G ~ g*NT where g^NT is the set of points in Q* satisfying a certain
integrality condition. Thus e may be considered to be a function on G x QlNT,
which is naturally a subset of the cotangent bundle T*G of G, which we may
call T*GlNT, the integral cotangent bundle.
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The usefulness of this point of view is that even for non-abelian groups,
there is a close connection between G and the dual of the Lie algebra g*.
Now the group G acts nontrivially on g* however, so it is the orbits of this
action, the so-called co-adjoint orbits, that play the role of the points of g*
in the abelian case. It is Kirillov's fundamental observation that for nilpotent
connected simply-connected Lie groups, there is a natural bijection between
G and the set of co-adjoint orbits (see Kirillov [9]). The theory of geometric
quantization, introduced by Kostant [11] and Souriau [16], has shown that this
close connection extends to many other groups. It becomes necessary, however,
to introduce an integrality condition on co-adjoint orbits and thus to consider
only integral co-adjoint orbits. One consequence of this theory is that for G a
compact connected semisimple Lie group, G is naturally in bijection with the
set of integral orbits in g*, which we call g,*NT. (This fact can be considered to
be a restatement of the classical description of G by highest weights together
with the Borel-Weil theorem.)

Now we may define as before, the integral contangent bundle T*GiNT as
G x flj^p. Our main result is the following. There exists on T*GINT a function
e which we call the Fourier kernel of G, which defines a Fourier transform F
from functions on G to functions on gj*NT by

/ . •
= / 4>i8)e(g,f)dg

for 0 a function on G, / e 0 ^ . This Fourier transform incorporates the abstract
one by means of a symbol calculus on each orbit (to be explained). The Fourier
kernel is constructed in a theoretically explicit fashion, it turns out to be both
unique and canonical, and in some sense contains all the representation theoretic
information for the group.

To justify our terminology of Fourier transform for the map F, we show that
it behaves in ways that resemble the abelian case. To describe this analogy in
more detail requires some additional results and notation.

First of all, if p e G and &p c flj^ is the associated integral orbit, we show
that there is a canonical finite dimensional space of functions Apoa.6p, and an
isomorphism

a : End Vp ->• Ap

where Vp is the space on which p acts. The isomorphism 'a ' establishes a
symbol calculus for operators on End Vp. It also allows the algebra structure
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of End Vp to be transferred to Ap; we call this the *-product on Ap (or on £?p).
This construction generalises the *-products constructed on the 2-sphere S2 by
Moreno and Ortega-Navarro [14].

Now it turns out that if Up C C(G) is the space of all matrix coefficients of
p, then F : Up -*• Ap is an isomorphism. That is, for u € Up, Fu is supported
only on the orbit Gp, where it is an element of Ap. Thus F separates a function
on G into its Fourier components. Furthermore convolution in Up is taken to
the *-product on Ap, so we may say that convolution on the group is taken to
an orbitwise product on gj*NT by F. We also show that the Fourier transform of
a positive-definite function u e Up is a positive function in Ap.

One of the most important results in the classical representation theory for
G is the Weyl character formula. Recently it has become well-known that
this formula is equivalent to Kirillov's character formula, which states that the
character xP of a representation p G G can be obtained by 'pushing down' from
g the Euclidean inverse Fourier transform of the invariant measure d\i on Cp.
This 'push down' involves the exponential map as well as a factor related to its
Jacobian. (For a precise description, see Khalgui [8]).

Kirillov's character formula seems to break down where the exponential map
is not well- behaved. We show that the Fourier transform F may be used to
introduce a similar character formula which however is globally defined. The
result is that

F- =
p | 0 elsewhere.

In other words Xp is the 'inverse Fourier transform' in our sense of a constant
function on Gp.

We now describe more explicitly the techniques employed to obtain these
results.

In Section 1 we study a calculus of operators on a representation space (V, p)
with respect to a non-zero G-orbit ^ . The main notion here is that of an
effective orbit - one that has the property that for T e End V, T — 0 if and only
if (Tm, m) — 0 for all m e J%. Then we may associate to each T its symbol
aT(m) — {Tm, m). We also define an orbit to be symmetric if

I (vi,m}(v2,m)(m,v3)(m,v4)dm

is a multiple of (vi, 1*3)(v2, V4) + (v\, v4)(v2, v3). Various integral formulae for
symbols on a symmetric orbit are proven, and we conclude in Proposition 1.17
that a symmetric orbit is effective.
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In Section 2 we introduce some ideas to describe algebras of functions on a
manifold Jt which carry a Hilbert space structure. We employ an integral-type
notation to deal with certain bilinear forms that arise and use it to define the
notion of a triple-kernel of the algebra (with respect to the inner product). This
is a function on Jt x Jt x Jt which encodes the algebra structure in a fashion
similar to the way in which the kernel of an operator encodes the operator.

If Jt\% an effective orbit, the space of symbols W on Jtturns out to carry two
natural Hilbert space structures and an algebra structure. In Section 3 we study
the operators which relate these two inner products. For a symmetric orbit, we
develop explicit formulae for the kernels of these operators. We also study the
triple-kernels for W, the main result being Theorem 3.11, giving a formula for
the triple-kernel with respect to one of the inner products for a general effective
orbit.

In Section 4, we relate the previous discussion to orbits in fl* by introducing
the moment map of a representation (V, p). Since G acts on the projective
space PV of V in a Hamiltonian way, there is a canonical map (the moment
map) <&' : PV ->• g*. Now if Q is the unit sphere in V and e : Q ->• PV
the natural map, we define O = 4>' o e and call it the moment map of p. Our
definition is actually more direct but equivalent. We study the image of $
and prove various functorial properties of it. These results are analogues of
the functorial relationships between representations and co-adjoint orbits first
discovered by Kirillov [9] for nilpotent groups. We show that the extremal set
of Im<J> is a single G-orbit Gp and that <£>~l(0p) = Jtp is a single G-orbit in £2.
Furthermore 4> : Jtp —>• Op is an S1 bundle, which we call the canonical bundle
of p (Proposition 4.9). In Theorem 4.11 we show that Jtp is an effective orbit.

The association of the orbit Cp to each p e G is injective and is closely related
to classical descriptions of G. If we fix a choice of positive roots, then 6P and
Jtp can be considered to be the orbits of the highest weight and highest weight
vector respectively. It also turns out that the canonical bundle of p is the same
as that constructed in geometric quantization—this fact was communicated to
us in conversation by I. Frenkel, to whom we are grateful.

In Section 5 we use <J> to transfer structure from Jtp to Gp. We show how
the canonical 2-form on £?p and the connection 1-form on Jtp are related to the
complex structure of V. We define the space of functions Ap on Gp.

In Section 6 the main definitions concerning the Fourier kernel e and the
Fourier transform F are introduced. The main results here have already been
described.

In Section 7 we turn in some detail to the case of G = SU(2). Here the
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integral orbits are spheres in g* of radii I = 0, 1/2, 1, 3/2, We compute the
Fourier kernel e of G in Theorem 7.5 and discover that it is closely related to the
Cayley transform for G. At this point we remark that in the thesis Wildberger
[22] we have constructed a similar Fourier transform theory for nilpotent Lie
groups using entirely different methods (see also Arnal and Cortet [2]). For the
group of real upper triangular matrices we found that the Fourier kernel also
involved the Cayley transform. This phenomenon has been investigated for a
wide class of nilpotent groups in Howe, Ratcliff and Wildberger [7] where it is
shown that the role of the Cayley transform is closely related to the theory of
the oscillator representation of the symplectic group.

We also remark that our Fourier transform theory coincides in the case of
SU(2) with that introduced by Sherman [15] in his work on Fourier analysis on
spheres (see also Helgason [6]). In Theorems 7.12 and 7.13 we give formulae for
the triple-kernels of the *-products on the integral spheres. These are related in a
surprising way to certain classical identities of spherical trigonometry, and shed
new light on the *-products of Moreno and Ortega-Navarro [14] as well as on
Sherman's work. More generally, our theory provides an explicit construction
of a *-product on any integral co-adjoint orbit of a compact semisimple Lie
group. It would be of interest to compare this with the general construction of
•-products on symplectic manifolds studied by Lichnerowicz [13], Gutt [5] and
others.

This paper is meant to be largely self-contained, the major requirement of
the reader being a familiarity with elementary representation theory, for which
references are Varadarajan [18] and Helgason [6].

This paper has existed in preprint form for some years now. A different
version of our geometric Fourier transform construction has since appeared in
Figueroa, Gracia-Bondia and Vaxilly [4] (see also Varilly and Gracia-Bondia
[19], Arnal, Cahen and Gutt [1]). Additional work on the relationship between
representations and moment maps has appeared in Wildberger [23,24] and Arnal
and Ludwig [3].

Section 1

Let G be a compact Lie group and (V, p) an irreducible unitary representation
of G. The Hermitian form on V will be denoted by (, ), and will be taken to be
linear in the first variable and conjugate linear in the second. Let dim V = n.
Let ./#be a non-zero orbit in V, so that there exists v ^ 0 in V with M =
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{g • v\g e G}. Here the use of p is suppressed, so that g • v = p(g)(v). The
orbit ^carr ies a G-invariant measure.

LEMMA 1.1. The G-invariant measure dm on j^may be normalised so that
for any v &V,

(1.1) v— I {v,m)mdm.

PROOF. Consider the operator A e End V defined by

A(v) = / {v, m)mdm

for v € V. Then for any g e G,

A(g • v) = I (g • v,m)mdm= f (8 • v,

L= I (v, g -m)mdm

= I (v, m)g • mdm

JM
= g-A(v).

Thus A commutes with all g e G and so by Schur's Lemma is a multiple of the
identity. By an appropriate normalisation of dm we may choose the multiple to
b e l .

Fix the measure dm on ^#so that (1.1) holds. Introduce L2(^#, dm) with
inner product (, )2. Thus for fa, <f>2 6 L2{M, dm),

<</>i,02)2= / fa(m)(f>2(m)dm.

For v e V, let t; be the function on Jtdefined by v(m) — {v, m). Let V be the
space of all v, v e V, and let ~ : V -*• V be the map that sends v to v.

LEMMA 1 . 2 . " : V - > V C l?(Jt, dm) is an isometry.
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PROOF. Since (V, p) is irreducible, v = 0 if and only if v = 0, so ~ is an
isomorphism. If vuv2 e V, then by Lemma 1.1,

{v\,v2)= I (vum)(m,v2)dm

= ( t>l , t>2>2-

DEFINITION 1.3. For T e End V, define KT : Jt x J( -+ C, the kernel of T
with respect to ^ , by the formula

KT(m',m) = {T -m',m)

for m', m e JK.

LEMMA 1.4. For TX,T2& End V andm", m € Jt,

KT2Tl(m",m)= I KTl(m",m')KT2(m',m)dm'.

PROOF. For T e End V, let f be the integral operator on L2(^, dm) with
kernel KT. That is, for <f> e L2{J%, dm) and m e ^#,

f(/)(m)= I KT{m',m)(t){m')dm'.

Then for v e V and m e Jt,

fv(m) = [ (T • m\ m)(v, m') dm'

= (T-v,m)

Here we have used Lemma 1.1. Now let

V x = {</>€ L2(J?,dm)\{<p,v)2 = 0 Vu e V } .

Then for <p e VL and m e J(,
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f4>(m) = f {Tm',m)4>(m')dm'

= / <f>(m')(T*m)~(m')dm'

= (<p, (T*m)~)2

= 0.

Here T* is the adjoint of T. Now the facts that f v - (Tv)~ for all v e V and
f<p = O for all </> e V"1 imply that the kernel of T2TX with respect to ^ i s just
the kernel of the integral operator T2Ti on L2(^#, dm). But it is a standard fact
that this is

KTlTl(m",m)= [ KTl(m",m')KT2(m',m)dm'.

PROPOSITION 1.5. For T e End V, tr T = f^KT(m, m)dm.

PROOF. It follows by the argument in the previous Lemma that tr T = tr f
since L2(J(, dm) = V ® V1. Buttr f = f^KT(m, m)dm.

Let | ^ 1 , the modulus of ^ , be the number sj{m, m) for any m e

COROLLARY 1.6.

I dm =n/\^\2.I
PROOF. Apply Proposition 1.5 to the identity / e End V. Then

tr / — n - / {m,m}dm — \JC? \\ dm

so the result follows.

COROLLARY 1.7. lf\Jt\ = 1, then f^dm = n.

DEFINITION 1.8. For T e End V, define aT : Jt-+ C, the symbol of T with
respect to JM, by the formula

aT(m) = KT(m,m).

Also let W be the space of all oT, T G End V, and let CT : End V - • W be the
map that sends T to aT.
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We are primarily interested in orbits ^#for which the map a can be used to
establish a symbol calculus.

DEFINITION 1.9. An orbit M C V is called effective if the map a is an
isomorphism from End V to W.

EXAMPLE 1.10. Let G = SU(n) and (V, p) be the standard (or defining)
representation of G. Thus dim V = n, and the orbits of G are simply spheres.
Let J(\K, the unit sphere. Then ^f is an effective orbit. This is a restatement of
the fact from elementary linear algebra that if T G End V and {Tm, m) = 0 for
all m e JK, then T = 0. This fact follows from the formula

(Tv, w) = \((T(v + w),v + w)- (T(v -w),v- w)

+i{T(v + iw), v + iw) — i{T(v — iw), v — iw})

for all v,w e v. For V\, v2, i>3, v4 € v define

\,v2, v3,v4) = / (vum)(v2,m){m,v3)(m,v4)dm.

DEFINITION 1.11. An orbit ^ C V is called symmetric if there exists a
constant c = c(^) such that for all i»i, v2, v3, v4 G V,

V2, Vi, V4) =C({VU V3){V2, V4) + (l>i, V4)(V2, V3}) .

PROPOSITION 1.12. Let M C V be the unit sphere, considered as an orbit of
SU(n) acting on V. Then jftis symmetric and for v\, v2, v3, v4 G V,

, vi, v3, v4) - (l/(n + l))((ui, v3){v2, v4) + (vu v4){v2, v3)).

PROOF. By multilinearity if suffices to prove the result for v\, v2, v3, v4 mem-
bers of an orthonormal basis of V. This is then an exercise in advanced calculus.

LEMMA 1.13. Let M C V be a symmetric orbit with constant c =
Then for TX,T2 G End V,

I (Tim, m){T2m, m)dm = c (tr Tx tr T2 + tr T\T2).
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PROOF. Fix an orthonormal basis {vu ... ,vn] of V. For 1 < i, j < n define
Tu € End V by the equation Tu(v) = (v, Vj)vt for v € V. These form a
basis of End V so we may find constants au, fa such that T, = £ \ j a,/7^ and

E

/ {Tlm,m){T2m,m)dm = y2iY\a>jPki I (Tum,m)(Tkim,m)dm

i ' Vk' VJ'

I,J k,l

( n n

COROLLARY 1.14.

c = c(J() = \JZ\2/{n + 1).

PROOF. Let T{ — T2 = I in the previous lemma. Then

/ (m,m)2dm = c(n2 + «).

But from Corollary 1.6,

/ (m,m)2dm = | ^ 4 f dm = \JZ\2n

so that c = \^\2/(n + 1)

COROLLARY 1.15. If\^\ = l then c = c(Jt) = l/(« + 1).

The constant c is thus independent of the symmetric orbit ̂ \i\JC\ = 1.
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PROPOSITION 1.16. Let Jt c V be a symmetric orbit. Then for T e End V
andv, w € V,

(Tv,w)= / {Tm,m} ( ———-{v,m){m, w) - (v,w) ) dm.
JM V \M\ )

PROOF. Write T = J],;«,-/7}7- in the notation of the proof of Lemma 1.13.
Then for v, w € V,

I {Tm,m){v,m}(m,w)dm - J ~ ] a u P ^ J V J , v , V j , w )

77

/
(v, w)

\
2

((v,w)trT + {Tv,w)).
n + \

Now since tr T — f^KT(m, m) dm — f^(Tm, m) dm (from Proposition 1.5),
the result follows.

Proposition 1.16 shows how to recover the values (Tv, w) (v, w e V) from
the symbol aT of T. In particular, we have the following immediate con-
sequence.

PROPOSITION 1.17. lfJ%<Z V isa symmetric orbit, then it is also an effective
orbit.

We may also write down an integral alternative to the formula of Example
1.10.

PROPOSITION 1.18. Let Ji c V be the unit sphere. Let T e End V and aT

be its symbol with respect to ^t. Then for v,w e V,

v,w}= I(Tv,w}= I aT(m) ((« + l)(v,m){m, w) — (v, w)) dm.
i
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Section 2

Let ̂ b e a compact manifold and W a finite-dimensional space of continuous
functions on J{, closed under conjugation and containing the constants. Suppose
further that W is a Hilbert space with inner product (, )„. In the application we
have in mind, a will be an index for several Hilbert space structures on W.

For a positive integer k, define W(k) to be the space of all functions on
^# x . . . x M (k factors ) which belong to W in each argument. Consider the
symmetric bilinear form on W defined by (w\, w2)a = (u>i, W2)a for wi, w2 e
W. We introduce the integral-like symbol fa dm for this form and write

The reader is warned that this symbol does not have its standard meaning
here, but nevertheless behaves in a fashion similar to the usual integral under
elementary operations. The following facts are immediate.

LEMMA 2.1. For any w\, w2, w3 e W and c e C,

(a) / Wi(m)w2(m)dm — I w2(m)wi(m)dm;
Jet J a

(b) I(cwi)(m)w2(m)dm = I wi(m)(cw2)(m)dm = c j Wi(jn)w2(.m)dm;
Ja Ja Ja

(c) / w\{m){w2 + w-y)(m)dm = I u>i(m)w2(m)dm + I W\(m)wi{m)dm\
Ja Ja Ja

(d) I Wi(m)w2(m)dm = I Wi(m)w2(m)dm.
J a Ja

Now suppose that 4>\ € W(k) and <f>2 e W(e) with fa =<f>l(mn,...,mik) and
02 = <p2(m2\, • • •, rnu). Let \ < i < k , \ < j < l . Then we can extend the
above notation to give meaning to the expression

L 4>\(mn,..., /ni,_i, m, m u + 1 , . . . , mlk)

• <p2(m2u ..., m2j-\,m, m2j+\ my) dm.
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The result is an element of Wk+t~2 in the variables mu, • • •, mu, • • •, mxk,
m2\,..., rh2j,..., m2l, where * means deletion. More generally we may 'in-
tegrate' in this fashion any finite product of functions belonging to W<O0> =
@T=\ ^<*> a s l°n§ a s t n e variable of integration appears as an argument of ex-
actly two of them. We also consider 'multiple integrals', that is, expressions
such as

/ ( I <t>i(m\,m2)<t>2(mi,m2)dmAdm2 = I I
Ja \Ja / JctJa

We leave the reader to check that we may freely interchange the order of integ-
ration in any such multiple integral. Thus the quantity in the above expression
is also equal to

/ II
Such manipulations will be made without further comment in what follows. We
now show how to use the above conventions to introduce some familiar objects
associated to W and End W.

DEFINITION 2.2. A reproducing kernel for W with respect to (, )a is a function
Ra e W™ such that for all w e W,

w{m) = I Ra(m',m)w(m')dm'.= f Ra(m',
Ja

DEFINITION 2.3. If T e End W, a kernel for T with respect to ( , )a is a
function Ka(T) e Wa) such that for all w e W,

Tw(m)= I Ka(T)(m',m)w(m')dm'.= f Ka
Ja

Note that a reproducing kernel for W is just a kernel for the identity / e
End W. (When a is fixed or there is no possibility of confusion, we will drop
the reference to (, >o.)

The following is a standard fact whose proof we leave to the reader.

LEMMA 2.4. Suppose dim W — p and that [eu ..., ep\ is an orthonormal
basis ofW with respect to ( , )„. Then for any T e EndW", a kernel for T with
respect to {, )a is

Ka(T)(m',m) =
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Furthermore it is unique (so does not depend on the particular basis). In
particular

p

Ra(m',m) = y~

is the unique reproducing kernel for W with respect to ( , )„.

Now suppose that the space W has in addition an algebra structure, denoted
by x. It will be useful to construct an object which will encode the algebra
structure of (W, x) in a fashion similar to the way the kernel Ka{T) encodes
the operator T e End W.

DEFINITION 2.5. A triple-kernel (or 3-kernel) for the algebra (W, x) with
respect to (, >„ is a function Ba e W0) such that for all wx, w2 e W

wx x w2{m) = I I Ba(m, mi,m2)wi(ml)w2(m2)dm1dm2-
Ja Ja

LEMMA 2.6. Suppose as before that {eu ..., ep} is an orthonormal basis of
W with respect to {, )„ and that for 1 < /, j < p,

e, x ej =
k=\

Then a triple-kernel for the algebra (W, x) with respect to { , )a is given by

Ba(m,mum2) =
ij.k

Furthermore it is unique (so does not depend on the choice of basis).

PROOF. Let wi,w2 e W with wi = £]f=1 Oi-e,-, w2 = 5Zf=i ^<e<- Th e n

P P /. /•

= ^,^2^2cijarbs / ei{mx)ej(m2)er{ml)es(m2)ek{m)dmldm2
i,j,k r=\ s=t J<* J<*
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r,s k

= ^arbser x es(m)
r,s

= wi x w2(m).

Thus Ba(m,mum2) = $Zi ykc
k
ijei(m\)ej(m2)ek(rri) is a triple-kernel for the

algebra (W, x) with respect to ( , )„. Its uniqueness follows directly from the
condition that Ba e W0).

The next few results show how properties of the algebra (W, x) are reflected
in properties of the triple-kernel Ba.

PROPOSITION 2.7. (W, x ) is associative if and only if for all m\, m.2, w3, m4

/
Ba(m,nii,m2)Ba(m4,m,m3)dm= I Ba(m4,m\,tri)Ba{m,m2,m?)dm.

J a

PROOF. Let wt, w2, w3 e W. Then

(wi x w2) x u>3(m4)

= I IBa(m4,m,mi) I lBa(m,m1,m2)wi(mi)w2(m2)dmidm2w3(m3)dmdmi
Ja Ja Ja Ja

while

x (w2 x

= I IBa(ni4, nix, m)wi(nii)I lBa(m,m2,
Ja Ja Ja Ja

Thus(W, x) is associative if and only if for all m^ € ^andfora l lw! , w2, w3 e
W,

mCa{m\,m2, w3, m4)wi(ml)u>2(m2)u>3(m3) dniidm2dm3 = 0

where
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Ca(mi,m2,m3,m4)

= I Ba(m4,m,m3)Ba(m,mx,m2) - Ba(m4,mx,m)Ba(m,m2,m2)dm.
Ja

But since Ba G W°\ it is clear that Ca e Ww. Thus Ca must be identically
zero, and we are done.

PROPOSITION 2.8. (W, x) is commutative if and only if

Ba(m, mum2) = Ba(m, m2, mx).

PROOF. Immediate from the definitions and a change of variable.

PROPOSITION 2.9. \ eW is the identity of(W, x) if and only if both

I Ba{m,m\,m2)dm2 = Ra{mx,m) and
Ja

/ Ba(m,mx,m2)dmx = Ra(m2,m).

PROOF. This follows immediately from the fact that

w x l(m) = I / Ba{m,mx,m2)w{mx)dmxdm2 and
J a Ja

1 x w{m) =11 Ba(m,mx,m2)w{m2)dmxdm2
J a Ja

since of course \{m) — 1.

PROPOSITION 2.10. The algebra (W, x) has the property that wx x w2

w2 x wx if and only if

Ba{m, m2, mx) = Ba{m, mx,m2).

PROOF. Left to the reader.
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PROPOSITION 2.11. The algebra (W', x) has the property thatfor all wx,w2 €
W

I Wi x UJ2(m)dm = (wx, w2)a

Ja
if and only if

/
Ba(m,mx,m2)dm = Ra(m2,mx).

PROOF. We first remark that the left hand side of both expressions is valid
since \ eW. F o r wx,w2€ W,

/
wx x vJ2(m)dm — I I I Ba(m,m\,m2)wx{mxyw2(m2)dm\dm2dm

Ja Ja Ja

while

{wuw2)a= / wx{m2)w2{m2)dm2.
Ja

Thus (W, x) has the required property if and only if for all u>i € W,

wx(m2) = I I Ba(m,mi,m2)dmwi(mi)dmu

Ja Ja
that is, if and only if

/
Ba(m, mum2)dm = Ra(mu m2).

These propositions show that in general an asymmetry exists between the first
argument of a triple-kernel Ba(m,m\, m2) and the last two. We will say that a
triple-kernel Ba is symmetric if

Ba(m, mx, m2) = Ba{mx,m2, m) = Ba(m2, m, m,)

for all m, m x, m2 e M. An algebra (W, x) will be called symmetric with respect
to {, )a if its triple-kernel Ba is symmetric.

PROPOSITION 2.12. The algebra (W, x) is symmetric with respect to ( , )a if
and only if

(WX X W2,W3)a — (W2 X W3,WX)a = {W3 X Wi,W2)a

for all wx, w2, W3 e W.

PROOF. This follows along the same lines as the previous arguments.
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Section 3

The definitions and notation of Section 2 will now be applied to the situation
in Section 1. Thus / c V will be taken to be an effective orbit of the compact
group G, and to each T € End V we have the unique symbol aT. The space
W of all symbols on M is a finite dimensional space of continuous functions
on ^# which contains the constants and is closed under conjugation. Let ( , )2

be the inner product on W which is the restriction of the inner product from
L2(JZ, dm), so that for w^, w2 e W,

(wi,w2)2— I Wi(m)w2(m)dm.

We may also consider another inner product on W, arising from the Hilbert
space structure of End V.

DEFINITION 3.1. For wu w2 e W with o~l(w\) — Tu a~l(w2) = T2, define

(u;,,u;2)1=tr(7',7';).

The two Hilbert space structures (, ) i and (, )2 are in general not the same.
Let fj : W -*• W be the unique invertible operator such that

(rj(wi),w2)i = (wuw2)2

for all wx, w2 6 W. Equivalently consider the operator r\ : End V -*• End V
such that cr,,(r) = fj(aT) for all T e End V.

PROPOSITION 3.2. For T € End V and v e V,

r)(T)(v) = I oT{m){v,m)mdm.

PROOF. Let \x : End V -> End V be defined by

fi(T)(v) = I oT(m){v,m)mdm

for T e End V and v e V. The kernel of fx(T) with respect to

i,m2) = I aT(m){mi,m)(m,m2)mdm.
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Thus for T{, T2 € End V, ix{Tx)T* has kernel

Wi,m2)= / KT>(ml,m)KfliTl)(m,m2)dm

— I I (mi,T2m)aTl(m'){m,m')(m',m2)dm'dm

= I oTl(m'){mi,T2m'){m',m2)dm'

from Lemma 1.4.
Thus by Proposition 1.5,

aTl(m'){muT2m')(m',ml)dm'dml

- I aTl(rn'){m',T2m')dm'

= [ aTl(m')aT2(m')dm'

= {aTl,aTl)2.

COROLLARY 3.3.

(a) For T e End V, tr r)(T) = \JZ\hv T

(b) For I = Identity, t]I = \Jtfl.

PROOF.

(a) tr»?(7')= / Kn(T){m,m)dm[
= j j aT(m')(m,m'){m',m) dm'dm

JjeJje

= I aT(m')(m',m')dm'

(b) r](I)(v) = I {m,m)(v,m)mdm

12,
'V.
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LEMMA 3.4. r\ commutes with the action of G on End V by conjugation.

PROOF. For g e G, v e V and T e End V we use Proposition 3.2 to obtain

v)= f c
JJC

r)(T)(g-v)= aT(m)(g •v,m)mdm

= / crT(g-m)(v,m)g-mdm

But aT(g • m) = (g~l • T • g • m, m) so

PROPOSITION 3.5. The kernel for fj : W -> W with respect to { , )2 w the
function N € W(2) given by

N(m',m) = \(m',m)\2.

PROOF. We must show that N(m', m) e W(2) and that for all w € W and

rj(w)(m) = I N(m',m)w(m')dm.
JM

Now for fixed m' G ^ t h e operator Tm/, € End V defined by Tm<(v) = (v, m')m'
has symbol aTm, (m) = \ (m', m) |2 so by the symmetry of N, N e W(2).

Now let w € W and suppose that w = crT,T e End V. For m e ^#, use
Proposition 3.2 to obtain

fj(w)(m) =CT,

= (r)(T)m,m)

= I aT(m'){m,m')(m',m)dm'

= I N(rn',m)w{m')dmf.
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It now follows that knowledge of r)~x (or equivalently, rj'1) allows one to
recover an operator T e End V from its symbol oT. In fact, from Proposition 3.2
it follows that for v, w € V,

X w) = I a,(Tv,w)=j (Tn-nT)(m){v,m){m,w)dm.

It is thus an interesting problem to write down explicitly the kernel of fj~l. In
the case of Jiz symmetric orbit we use the results of Section 1 to do this. For
convenience we treat only the case

PROPOSITION 3.6. Let M'be a symmetric orbit with \J%\ = 1. Then the kernel
offj"1 : W —y W with respect to (, )2 is the function M € Wm given by

M(m', m) = (n + l)2|(m', m)\2 - (n + 2).

PROOF. It is clear that M e Wm. Thus let I : W -+ W be the operator
whose kernel with respect to ( , )2 is M(m', m). Then the kernel of £rj is by
Lemma 1.4

K(m",m)= I N{m",m')M{m',m)dm'

t", m')\2 ((« + l)2|(/w\ m)\2 - (n + 2)) dm'

m, m , m) — yn -\- z) i | \/w , m ) \ um

= (n + l)((/w", m")(m, m) + (m", m)(m, m")) - (n + 2)

= (n + l)\(m",m)\2-l.

Here we have used Corollary 1.15. Now for vuv2 e V let w e W be denned
by

w(m) — (vum)(m, v2).

Then

/ K(m',m)w(m')dm' = / ((« + l)\(m',m)\2 - l) (vx, m')(m', v2)dm'

= (n + Y)PM(m, vum, v2) - {vu v2)

= (vum){m,v2)

= w(m).
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Now since elements of the form {vit m) (m, v2) span W, we see that K{m'', m)
is the reproducing kernel with respect to ( , )2 and so £ = fj~l.

COROLLARY 3.7. Let Jl be a symmetric orbit with \Jt\ = 1. Then the
reproducing kernel of W with respect to ( , }2is

R2(m',m) = (n + l)\(m',m)\2-\.

Now returning to the general effective orbit M, which we assume to be of
modulus 1, we can transfer the natural algebra structure of End V to W.

DEFINITION 3.8. Let wuw2 e W with a-1 (">,-) = 7} e End V, i = 1,2.
Define wt x w2 e W by

W\ x w2(m) — a{T2Tx)(m) for all m e J(.

The algebra (W, x) thus defined is isomorphic to the full matrix algebra
End V. Let B\{m, mx, m2) and B2(m, m.\, m2) in W(3) be the triple kernels for
(W, x) with respect to (, ) 1 and (, )2 respectively. We may utilise the results of
Section 2 and obvious properties of the algebra End V to deduce the following
properties of B\ and B2.

PROPOSITION 3.9.

For all mi, m2, m3, m4 e J(, andu = 1, 2,

(a) lBa(m,mum2)Ba(m4,m,m3)dm= j Ba{mA,mi,m)Ba{m,m2,m3)dm

(b) I Ba(m,mi,m2)dm2 = Ra(mi,m) and
Ja

Ba(m,mi,m2)dmi = Ra(m2,m)

(c) Ba(m,m

(d) I Bl(m,mum2)dm =

(e) Bi(m,mi,m2) is symmetric.

This result suggests that in general Bx will be a more natural object than B2.
Nevertheless we can compute B2 in the case of ̂ a symmetric orbit.
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PROPOSITION 3.10. Let Jtbe a symmetric orbit with \Jt\ = 1. Then for
m, m\, m2 e ^ ,

B2(m,mx,m2) = (n + l)2(m, mx)(mx, m2)(m2, m)

- ( « + \)\{m,mx)\
2 -(n + l)\(m, m2)\

2 + 1.

PROOF. Suppose wx, w2 e W with tr"1 («>,•) = 7] e End V, i = 1,2. Let
= r2Ti and let Kt be the kernel of 7] with respect to J(. By Proposition 1.16

= I {Tim,m)((n + l){mi,m){m,m2) - {mum2))dm

for/ = 1,2. Thus

K3(m",m) =

• (T2m2,m2) ((« + \){m',m2) (m2,m) — {m',m)) dmxdm2dm!

= wx(mx)w2(rn2)((n + l)2(m",mx)(mx,m2}(rn2,m)
JMJM

- (« + l)(m",mx)(mi,m) - (n + I)(m",m2){m2,m)

+ {m", m))dmxdm2.

Thus

wx x w2(m) = K3(m,m)

= wx(.mx)w2(rn2)B2(m,mx,

where

B2{m,mum2) = (n + \)2{m,mx){mum2){rn2,m) - (n + \)\{m,ml)\
2

-(n + l)\(m,m2)\
2 + \.

In contrast, the triple-kernel B{ has a simple form even in the general case.

THEOREM 3.11. Let JCbe an effective orbit with \J%\ = 1. Then for
m,nti,m2 e J(,

Bi(m,mum2) = {m,mx){mx,m2)(m2,m).
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PROOF. Let TuT2e End V. Then for v eV,

(T2TiV,v)— I {Tiv, /n)(r2/n, v) dm

-11
— I I (r)~1(Ti)m1,mi)(r)~l(T2)m2,m2)(v,mi)

• (mx, m2)(m2, v) dm\dm2-

~l(Tl)muml)(v,m1){ml,m)dml

• / (v~l(T2)m2,m2)(m,m2)(m2,v}dm2dm

Thus for w\, w2 e W,

wlxw2(m)= I v-\wx)(ml)rj-\w2){m2)(m,ml)(mum2)(m2,m)dmldm2.

But for w, w' € W,

(f)~\w),w')2 = (w,w')u

so

u>i x w2(m) —If u>l(m1)w2(m2)(m,nii)(m1,m2)(m2,m)dmldm2

for all wu w2 e W. Thus

Bl(m,mum2) = (m, mx)(mx, ni2}(m2, m).

Section 4

Let G be a compact Lie group and (V, p) a finite-dimensional unitary rep-
resentation of G (not necessarily irreducible). Let Q = [v e V\(v, v) = 1} be
the unit sphere, and suppose dim V — n. Let g be the Lie algebra of G and
g* its dual. We will continue to suppress the notation p, so that for X € g and
v & V, p(X)(v) will be denoted simply by X • v.
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D E F I N I T I O N 4 . 1 . <$>: £2 -> g*

v ^ <t>(v)(X) = -{X-v,v)
i

for v € £2, X e g, is the moment map of (V, p).

LEMMA 4.2. <t> w a G-map between Q and g*, where G acts on g* via the
co-adjoint action Ad*.

PROOF. For g e G,

I

= j(g-l-(X-(g.v)),v)

= -{Adg~l(X)-v,v)
i

= <t>(v)(Adg-l(X))

= Ad*g(^>(v)).

Let Im <& = {<P(v) | u € fi} be the image of 4>. This is a compact subset of

0*-

LEMMA 4.3. Ler (V|, pi) and (V2, P2) ^e two unitary representations of G
with moment maps 4>! and 4>2 respectively. Let V = Vi © V2 a«<^ ^ 6e //ze
corresponding moment map. Then

Im cD = {/ € 0* I / = tfx + (1 - O/2, 0 < t < 1, /• e Im <&,-, 1 = 1,2}.

PROOF. If QUQ2 and fi are the unit spheres of Vx, V2 and V respectively,
then any v e Q can be written as v = zxv\ + z2v2 with vx 6 Qi, v2 e Q2 and
z , , z 2 e C satisfying \zx |

2 + |z2|2 = 1. Then for X € 0,

<J>(l>)(X) = T < ^ • (ZiVi +Z2V2),ZlVl +Z2V2)

= \Z1\
2\(X-V1,V1) + \Z2\

2\{X-V2,V2)
I I

since (X • vu v2) = (X • v2, v\) = 0 . Thus

https://doi.org/10.1017/S1446788700034741 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034741


90 N. J. Wildberger [27]

LEMMA4.4. Let (Vi, Pi) and (V2, p2) be two unitary representations of G
with moment maps <t>i and 3>2 respectively. Let V — V\ ® V2 and p = P\® fa
the representation of G x G = G' given by p(g\, g2){v\ <8> v2) = (gi • Vi) ®
(gi • v2), g\, g2 G G and V\,v2 & V, with moment map <J>. Then Im<I> c f)* x g*
satisfies

x Im<f>2 C Im<t> c conv (Im^!) x conv (Im<t>2)

where conv (5) means the convex hull of S.

PROOF. Let £2i, Q2 and f2 be the unit spheres of V\, V2 and V respectively.
Thenforanyu! e Qu v2 € Q2, v = V\®v2 e Q so that for any (Xu X2) e gxg,

X2) = r ^ C Z i • W,) ® V2 + U! 0 (X2 • V2), Vi ® U2>

' , v2) + (uj, Ui)(X2 • v2, v2))

Thus Im <t>i x Im $2 C Im O. Now let {vu ..., vn] be an orthonormal basis
of Vi. Then if v € S2, we may write v = YH=i vk ® wk where iyt e V2 with

2 = 1. Then

n

<P(v)(Xi, X2) = i~l 7 ((Xi • vk) ® u>ir + Vic <S> (X2 • Wi), Vi

so that
n

<D(u)(0, X2) = I"1 £ 2 5U((X2 • wk), w,)

k,l=\

; - l

= I"1 ^ { ( ^ 2 • wk), wk)
k=l

where uk = wk/\wk\ if |u7*.J ^ 0 so that « t € £22-
Thus if p 2 : 0* x fl* -^- 8* is the projection onto the second factor, we

see that P2(lm $ ) C conv (Im <J>2) so by symmetry Im <$> C conv (Im <px) x
conv(Im <J>2).
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LEMMA 4.5. Let (V, p) be a unitary representation with moment map 4> and
let H be a Lie subgroup of G with Lie algebra t). Let p : g* —>• i)* be the
projection dual to the inclusion i : t) ->• g. If<$>H '• & —*• b* is the moment map
of(V, p\H) then <$>H = p o <I>.

PROOF. Obvious from the definitions.

In general Im cj> need not be convex. For example, if G = SU(2) and (V, p),
is the standard two-dimensional representation of G, then Im $ is easily seen to
be a single G-orbit in g*, namely a 2-sphere. However we have the following.

LEMMA 4.6. Let T be a torus with Lie algebra t. Let (V, p) be a finite
dimensional representation ofT with weights ik\, ..., ikn G it*. Then Im<t> is
the convex hull o / ( l i A , ) C t ' . / n particular ImO is convex.

PROOF. Write V = Vi © . . . 0 Vn with V, the one-dimensional representation
with weight ikj. That is, for X € t and Vj € Vj, X • vj = ikj(X)vj. Now if <J>;

is the moment map of V, and if vj e Qj, the unit sphere in Vj, we have

U j j )

Thus Im <E>7 = kj, and the result follows from Lemma 4.3 by induction.

Now let T C G be a maximal torus with Lie algebra t. Choose a G-invariant
positive-definite form (, ) on g. Let /A-i,..., ikn e it* be the weights of (V, p)
restricted to T and let D c t* be the convex hull of {ku ..., kn}. Then if
p : g* —>• t* is the projection, Lemmas 4.5 and 4.6 imply immediately that

p(Im <J>) = D.

Denote by Ext (D) those points of D which are not contained in any open line

segment in D. Clearly Ext (D) is a subset of {ku . . . , kn}.

It will be useful to sometimes identify g with g* via (, ) and thus to consider

t* c g*.

LEMMA 4.7. If f e ImO c g* and p(f) = ke Ext(D), then f = k.

PROOF. Write f = k + n with \x e g*, / i( t) = 0. Let 6 be the co-adjoint

orbit through / and let X • f e TG{ with X e g. Then dp(X • / ) is a tangent
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vector to t* at p(f) = A.. Now since p(0) C D, any curve in ^through / with
tangent vector X • f is sent by p to a curve in D through X € Ext (D). But any
such curve must be singular since D is a solid convex polyhedron in t* with a
finite number of vertices and A, is such a vertex. Thus p(X • f) = 0, so that for
all Z € t, X e g, X • f(Z) = 0.

Now a basic fact about Lie algebras of compact groups is that they are
reductive. This implies that g = t© [t, g], an orthogonal direct sum with respect
to the form (, ). Thus since we can rewrite the above as (A. + fi)([Z, X]) — 0,
we get /x([Z, X]) = 0 for all Z e t and l e g s o that /x = 0 and / = A..

LEMMA 4.8. Let X e Ext(D). Then v € ft is a weight vector for T of weight
iX if and only if<&(v) — X.

PROOF. Suppose first that v e ft is a weight vector of weight iX. Then
p(Q>(v)) = X so that by the previous lemma, <J>(u) = A..

On the other hand let v e ftwith3>(u) = X. If {u1 ; . . . , vn) is an orthonormal
basis of weight vectors with Vj of weight iXj then we can write v = YH=i aiv'
with J21=i l«/l2 = 1. Then if Z e t,

{ Z )

w=i

Y\aj\2x\(Z).

But if <3>(v) = A. then X = Yl"=i \aj l%- N o w s i n c e ^ e E x t ( ° ) a11 t n e ai m u s t

be zero except for one and so v is actually a weight vector of weight iX.

We remark more generally that if F C D is a face of D and

then the set of v e ft for which p(<&(v)) C F is

k

7 = 1

k

7 = 1
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Now we assume henceforth that G is semisimple and that (V, p) is irreducible.
Then it is well known that the weights iku ..., ikn of (V, p) are contained in
the convex hull of the G-translates of one of them, say iXu That is, if 6 is the
co-adjoint orbit through ku then ^intersects t in exactly Ext (D), which is just
the set ofWeyl group translates of Ai. From this it follows that p{@) C D, which
is part of a classical result of Kostant [12] which in this context is p(G) = D.
The orbit 6 so determined will be called the extremal orbit of Im <I>, and since
it is determined solely by the representation, it will be denoted Gp.

The weight /A.! is usually called a highest weight and it is a standard fact that
a weight vector V\ for ik\ is unique up to a scalar.

PROPOSITION 4.9. Let <&~l(Gp) = Jtp <z SI. Then Jtp -+ Gp is an Sl

principal bundle.

PROOF. From the remark, ^ ' ( ^ i ) = {zt>i||z|2 = l } . But for X e t,

so since <t> is a G-map by Lemma 4.2, we have that Jtp is a single G-orbit. Both
jftp and Gp are homogeneous spaces for G so <1> : ^p —>• @p is a fibre bundle
with fibre S1. But S1, when regarded as the unit circle in C, acts naturally on
V and preserves the fibre. We see that the S1 action on a fibre arises from the
group action of a one-parameter subgroup.

DEFINITION 4.10. The bundle <& : Jtp -> Gp will be called the canonical S1

bundle of (V, p).

THEOREM 4.11. The orbit Jtp C Si is effective.

PROOF. We begin by recalling some basic facts about G and the representation
(V,p).

Let fl be the complexification of g and h c 0 a Cartan subalgebra con-
taining t. Let A be the set of roots of g with respect to the action of fj, and
fix a subset A+ c A of positive roots. For each a € A+, we may choose
non-zero vectors Xa and Ya in the root spaces for a and —a respectively such
that {Xa • v, w) = {v, Ya • w) for all v, w € V.

An element fi G t)* is a weight of p if for some non-zero vector v e V and
all H e f), H • v — ix{H)v. The set of all weights of p, denoted A(p), is
partially ordered by setting /x > /x' if \i = [x! + J2i=i mi°ii^ where a, e A+
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and the m, > 0 are integers not all zero. Then A(p) contains a unique highest
weight /Xi with the property that /xi > fi for any other weight fi € A(p). It is
the extension to t) of the functional ik\ on t, for some A-i € Ext (D).

For each /x e A(p), we denote the weight space of /x by VM so that

For ui, v2 e V, define 7;,,^ e End V by

For /x, /x' € A(yo) define f/MiM' c End V to be the span of all TVtV> with v e
V^, u' e V^'. Then clearly

End V - 0M,M'eA(p)^,M'-

The spaces C / ^ can be partially ordered by setting U^,^ > £/,,,< if /x > ?j or if
/x = ?? and /x' > rj'.

Let ^ be the representation of G on End V by conjugation so that for g €
G, T e End V and u e V,

Jr(«)( r )u = g • (T • (g-1 • v))

while if X e g then

T T ( X ) ( 7 > = X • T • v - T • X • v.

F o r a € A + , v e V^, u' 6 V -̂, iw e V,

jr(Xa)Tu,A*>) = X* • (w, v')v - (Xa • w, v')v

= (w, v')Xa • v — (w, Ya • v')v

= TXa.v,v-{w) - TvJ

Thus
(4.1) Tt{Xa)U^ C tV*./.' © ^/

Similarly

so that

https://doi.org/10.1017/S1446788700034741 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034741


[32]

Now let
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U = {T eEndV\{Tm,m)=O V m s i , ) .

We must show U = 0. Clearly U is invariant under n{G) since jftp is a G-orbit,
so it is also n(g ) invariant. For any T e U, we may write T as

where 5MM' e f/̂ ,M'. Consider the set of all spaces U^^' for which there exists a
T € U with non-zero component 5̂ M< in f/M,M-.

We will show this set to be empty. If not, let Un^ be a maximal element, so
that there exists T € U with

1 — "1.1 ^ / . "/i
H,n'€A(p)

where 0 ^ S,,,,- e £/„,,- and SMiM- e t/MiM' for all /i, /LI' e A(p).
We claim that r\ = /;' = \i\. For suppose first that fit > rf. Write

"1.1' ~ 7 , •*i«;.u>,'

where [w[,..., w's] is a basis of V,' and HI, e V,, with say w\ # 0. Then since
(V, p) is irreducible, we can find a e A+ such that Xa • w\ ^ 0. Thus

has a nonzero component in [/,,+„, ̂  since {iy'p . . . , u;̂ } is linearly independent.
Combining this with the fact that none of the elements 7r(Xa)5/i i/t<, (yu,, //.') ^

(r;, rj')> can have a component in Un+a^ (by the maximality of t/,^ and (4.1)),
we find that n{Xa)T has a non-zero component in Un+a<n'. But this is impossible
since n(Xa)T e U, so we must have r) — / i t .

Now suppose that /zj > r)'. Then we write

C f
J1.1' — fl.f'

where D, e K, = VMl and v' e V,-, with both vu v' non-zero. This is possible
since V^ is one-dimensional. Now again by the irreducibility of (V, p), we may
find 0 e A+ such that Xfi • v' # 0. Then
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so that n{Yp)T has a non-zero component in Un^+a. But since n(Yp)T e U,
we have a contradiction so that rj' = ixx.

We have thus shown that if U =£ 0, then there exists T e U with

where 0 ^ 5MliMl € £/Mll/tl and 5Mi^ e f/̂ ,̂  for (/A, JU.') ^ (/ti, /xO. Now let
t>! e fi be a weight vector for fiu that is, ui e VMl. Then <l>(ui) = A.i e ^ p so
that ui e A/p. But then

u Vi) +

#0.

This is a contradiction, so that U = 0 and Jtp is effective.

Section 5

Recall that the co-adjoint orbit Gp is canonically a symplectic manifold, that
is, it carries a closed non-degenerate 2-form co. For / € Gp, let Xx • f, X2 • f €
T0p{f) where XuX2e g. Then

(5.1)

On the other hand, the complex structure of V defines the l-form 6 on V by

0v(w) = Im (w, v)

for v e V, w € 7 V(u) ~ V. Then for u e V . i D ^ e 7" V(u),

dOv(wu w2) = 2Im {w;i, w2).

This is the 2-form on V which determines its symplectic structure. Both 9
and d9 may be restricted to Jtp c V.

LEMMA 5A.OnJCp,dd = (d<J>)*(<o).
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PROOF. Let m e Mp and Xx • m, X2 • m e T J(p(m), where Xu X2 € g.
Then

d6m(X1 • m, X2 • m) = 2Im (X, • m, X2 • m)

= - ({X, •m,X2-m)- {X2 -m,Xf m))
i

= U[XuX2].m,m)

= cof(X{ .f,X2- f)

where / = O(m) G Gp. But O is a G-map, so that d<t>(X, • m) = X, • / ,
i = 1,2 so that d6 = (d$>)*(co).

Note that the 1-form 9, when restricted to JZP, is a connection 1-form for the
canonical bundle 4> : J(9 -+ Gp whose curvature 2-form, by the Lemma above,
is u>. Thus the familiar connection and curvature on the quantum bundle in
geometric quantization appear here naturally as manifestations of the complex
structure of V.

The orbit JMP carries a space W of symbols where as before

W = {aT | T e End V}

and by Theorem 4.11, a : End V —*• W is an isomorphism. As in Section 3, we
have two inner products ( , )] and ( , )2 on W, as well as the algebra structure
(W, x).

We now make a simple but crucial observation. Each function aT e W has
the property that aT(zm) = oT(m) for all z e S1, so that W really 'lives' on the
orbit Gp.

DEFINITION 5.2. For T e End V, let aT be the function on Gp defined by

aAf)=<TT(<l>~1(f))

for / e 6. This function will be called the symbol of T. Let Ap be the space of
all aT, T e End V, and a : End V ->• Ap the map that sends T to a r .

LEMMA 5.3. a : End V —> Ap is an isomorphism.
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Now let dfi be the unique G-invariant measure on Gp such that

f <Kf)dfi(f)= f
Jep JM

for all continuous functions <f> on t?p. Note that d\x may also be specified
by requiring that it be G-invariant and that fff dfi = n (this follows from
Corollary 1.7).

Define inner products {, >a, a = 1, 2 on Ap by

(aTl,aT2)a = {(TTl,aTl)a

for all Tu T2 e End V. Let rj : Ap —• A,, be the unique invertible operator such
that for all aua2 € Ap,

Equivalently we may say that for all T e End V, a,(r) = Tj'(
We let N' e A<,2) be the kernel of rf with respect to ( , >2, so that for all

a e ^ and / 6 ^ p ,

The kernel of (rj')"1 : Ap ->• Ap with respect to (, )2 will be denoted M' e AfK
The reproducing kernel for Ap with respect to (, )o will be denoted R'a, a = 1,2.

DEFINTTION 5.4. For aTl, aT2 e Ap (Tj, T2 € End V) we define the ^-product
of ar, and aTl to be

ar, * ar2 =

The triple-kernel for the algebra (Ap, *) with respect to (, )„ will be denoted
Ba(f, f\, / 2 ) , a = 1, 2. The following is a direct consequence of Proposi-
tions 2.7,2.9, 2.10, 2.11 and 2.12 and elementary properties of End V.

PROPOSITION 5.5.

For all / , , f2, f3, f4e0p,a = l,2,

(a) h'a(f, fuf2)B'a(f4,f, h)dn{f) = [B'a(U fu f)B'a(f, f2,f3)dn(f)
Ja Ja
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(b) I Bf
a(/, fh f2) dii(f2) = Ra(/i, / ) and

Ja
(w B (y, j2» f\) ^ *̂ (j * 7 1» fl)

(d) / BK/, /,, f2)dn{f) = R\{fu f2)

(e) B[ (/, / ] , /2) is symmetric .

Section 6

We now construct the Fourier transform for G, a compact semisimple Lie
group. For each p e G, the unitary dual of G, we have the canonical Sl bundle
<J> : J(p -> Gp, with Gp the extremal orbit in fl*. Since G is parametrized
by the set of highest weights, it follows from the discussion in Section 4 that a
representation p e G is uniquely determined by the extremal orbit Gp. Define
fliNT C fl* to be the union of all extremal orbits

We use the subscript INT since the set of extremal orbits is the same as the set of
integral orbits, in the sense of geometric quantization (see Kostant [11]).

The cotangent bundle T*G of G can be identified with G x fl* by right
translation. Define !T*GINT, the integral cotangent bundle, to be

T*Gim = G x g;m c T*G.

DEFINITION 6.1. The Fourier kernel of G is the function e on T* GINT defined
by

e(g,f) = (g- * - ' ( / ) , * - ' ( / )>

where g € G, / e Op c fl!^ and 3> : Jtp -*• Gp is the canonical S1 bundle of

It is clear that e is well-defined and is a continuous function on T*Gyw Also
note that

e{g, f) = e{g, g' • / )

whenever g and g' in G commute. Thus e does not depend on our choice of
identification of T*G with G x fl*.
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DEFINITION 6.2. The Fourier transform of a function </> € Ll (G) is the func-
tion F4> on Q\m defined by

F4>(f)= [ <Kg)e(g,f)dg
JG

where / € 0*^.

Here we have chosen Haar measure dg on G so that fG dg — 1.
Now fix an irreducible unitary representation (V, p) with extremal orbit €?p

and a : End V -*• Ap as in Section 5.

LEMMA 6.3. / /> e Ll(G), then F<\>\@ = apW where

P(<t>)= [ 4>(g)p(g)dg
JG

PROOF. Follows immediately from the definitions.

Now since any T e End V can be written as p(4>) for some <j> e L'(G), we
see that the image of F restricted to Cp C flj^r is exactly Ap.

For vi, v2 e V, define the matrix coefficient uVliV2 e Ll{G) by

for g € G, and let f/p be the space of all such functions.

LEMMA 6.4. For vu v2 e V, let TVuVl e End V be defined by TVliV2(v)
{v, v2)vi. Then

FuVuV2 \e = -aTn,n-

PROOF. Let / e @p and m e Jtp such that <P(m) = f. Then

= I uVuV2(g)(g-m,m)dg
JG

= I (g •v2,v1){g •m,m)dg
JGJG

= -{vum)(m, v2)
n

= -(TVuV2(m),m)
n
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where we have used the Schur orthogonality relations.

LEMMA 6.5. Let 4> eL\G) such that 4> eU^. Then F<j>\ffp= 0.

PROOF. If 0 e £/^ then for / e Gp and m e Jtp with <S>(m) = / , we have

= [ <Kg)(g-m,m)dg
JG

= / (t>(g)um,m(g)dg
JG

= 0.

Now let Xp be the character of p, so that for g G G,

XP(g) = tr p(g).

The following is our version of the Kirillov character formula in this setting.

THEOREM 6.6. xP e Up and FxP{f) = 1/nforall f e 0P.

PROOF. If {vu ..., vn) is an orthonormal basis of V then for g e G,

Thus Xp^Up- Now

FXP =

1 "

"7=1

i
n

_ 1

n
where we have used the notation and result of Lemma 6.4 and where / e End V
is the identity.
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THEOREM 6.7. For any </> 6 Ll(G),

tr/>(*)= f F<j>(f)dn(f).

PROOF.

t r p ( 0 ) = l (p(4>)m,m)dm
JM,,

= f W/)<W)

= [ F<Kf)dfi(f)
J

where we have used Proposition 1.5.

PROPOSITION 6.8. Let u e Up be a positive-definite function. Then Fu(f)
>0 for all f e ep.

PROOF. It is a standard fact that any uv,„ e Up is positive-definite and any
u e Up which is positive-definite can be written as

1=1

with iu( 6 V, / = 1 , . . . , r. Then for f e 0P and m e ^#p with <I>(m) = / , we
have

-

from Lemma 6.4.
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Now for fa, 02 G Ll{G), define their convolution

- f -'
JG

Then p{<j>x * 4>2) = p((h)p(4>i) and from Lemma 6.3 and Definition 5.4 we get

PROPOSITION 6.9. For<t>u<t>2 e L\G),

Thus the *-product on Ap is the 'Fourier transform side' of convolution in Up.

Section 7

We now examine in some detail the case of G = SU(2). Notation and the
basic facts about the representation theory are taken from Vilenkin [20]. We first
review these facts. The representations in G are indexed by £ = 0 , 1 / 2 , 1 , . . .
and denoted pt. Let Ve be the space of polynomials in one variable of degree
21. Then if ^ 6 Vt and

a 6
« = -fi a

then pt(g)<t>(x) = (px + d)2'</>((ax - jj)/(fix + a)). Let

0
i

i
0

v i 0
1

- 1
0

v i
» X 3 = j

(

0
0

—J

Then {Xu X2, X3} is a basis of fl and [Xu X2] = X3, [X2, X3] = Xx and
[X3, Xi] = X2. A basis for Vt consists of the monomials

rl—n

for -I <n <L

This basis is orthonormal and the action of the Lie algebra is given by the
formulae

p(Xl)x
t-' = ki - n)*'—1 + l-(

p(X2)x
1-" = (̂€ - ' 1 U

n)xe-n+i

n)xl-n+l

= -inx
l~n
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We denote the unit sphere in Vt by Qt and Q>t :
for pe. From the above equations we have

[41]

g* the moment map

LEMMA 7.1.

* , ( * „ ) = -nX; for -l<n<l.

Let ft = 1X1 e g*, and Gt the orbit through ft. Then Gt is the extremal
orbit for the representation pe and is simply a 2-sphere. Then for g e G,

e(g, ft) = (g • *-€, *-*)•

LEMMA 7.2. For

8 = a
-P a

eG, e(g,ft)=a2e.

PROOF. From Vilenkin [20], we have

e(g, ft) = tl_t_t{g) =
1 1 d2t

(2l)\ a-11 dzu

= au

Introduce the positive definite form on g

(X, Y) = -2tr (XY)

for X, Y € g = SU(2). The basis {Xu X2, X3} is thus orthonormal. The orbit
Gt is the sphere of radius t when g is identified with g* by the above form.

DEFINITION 7.3. For

define C(g) e g by

a
-fi

a —
2

P
a

a

_ a-a
2
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LEMMA 7.4. For
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8 =
a p

-P a
let d = det (I + g) ^ 0. Here I is the identity matrix. Then

We note that d = det(/ + g) = 2 + tr g. The map § - > • ( / - #) / ( / + g)
is the well-known Cayley transform. Because of the possible singularity when
tr g = —2, it is denned only on a subset of G. Note however that the map
C : G —*• fl has no such problem and is defined on all of G.

We also remark that the Cayley transform has been shown to play an important
role in the study of the Fourier transform for certain nilpotent Lie groups (see
Howe, Ratcliff and Wildberger [7] and Wildberger [22]).

THEOREM 7.5. For g eG and

PROOF. Since X € 6t, X = g' • ft for some g' e G. If

2|a'|2 - 1 -2a'P'
8 — -J' a7 then

-2a'P' l - 2 | a ' |

Now since e(g, g'ftg' ') = e(g' ]gg', fe) we apply Lemma 7.2 to obtain
e(g, g'fig"1) = {OL'T where

8'~l88' =
a^ p»_

-P" a"

A short calculation shows that

a" = a|a'|2 + a

But |/3f = 1 - |a'|2 so

a"=

2|a'|2 - 1 -2a'P'

-2x0^ l - 2 | a ' |

a + a
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Thus

e(g, X)

N. J. Wildbeiger [43]

LEMMA 7.6. C : G -*• g has the following properties

(a) C(e) = 0;
(b) C is a G-map under the actions ofGonG and Q by conjugation and the

adjoint action respectively;
(c)

PROOF, (a) and (b) are easily checked. Now for

e*
8 =

•••« o
-i90 e

-/sine 0
0 /sine

we have

so that

Let Mt € £le be the extremal orbit of p<.

PROPOSITION 7.7. Ler mu m2 e ^ i an^ <!>(m,) = / , / = 1,2 w/YA y; e Gt.
Then

PROOF. Let

A short computation shows that

« fi
-P a e G .

\ ft) = t2{2\a\2 - \).

Thus
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Let mt € Jtt such that <&(mt) = ft (for example, we could take mt = \ft-i by
Lemma 7.1). Then (g • me, mt) = e(g, ft) = au. Thus

\ I — I f

(\ 1 _, \2*
= I ~ + -Znigflg , ft) I •

For any other g' e G, we thus have

/I 1 \2£

\{g • mt, g' • mt)\
2 = [- + ^pig/eg-1, g'ftg'-l)\ •

But then gfig"1 = f\ and g'fig'~l = fi are arbitrary elements of 6t and
m, = g • mt, m2 = g' • mt with <t>(/w,) = /•.

COROLLARY 7.8. Ifmum2 e Jtt and <!>(/«,) = / e Ot, i - 1,2, /Ae/i

(a) | (mi, m2)|2 = 1 if and only if fx = f2;
(b) | (m,, m2) |2 = 0 i/and on/y jy / , = -f2;
(c) |(m,, m2)|2 = (1/2)2* if and only if (/,, /2) = 0.

PROOF. These statements follow immediately from the previous proposition
and the fact that for yi, y2 e Gt

-i2<(fufi)<i2

since Gt is a sphere of radius £.

COROLLARY 7 .9 . For any m e Jtt, ifmL = {veV\ (v,m) = 0} then
mL fl ^ i w a circle S 1 .

PROOF. Corollary 7.8 shows that if (m,m') — Owithm' e ^ , then4>(m') =
—<I>(m). But then m' is determined uniquely up to a scalar of modulus one.

We now turn to the space of functions Ap = A( on Gt and the *-product on
this space. For g & G, let eg(f) = e(g, f). Then the functions eg, g e G span
A; and

Any X 6 g may be regarded as a function on g* and so also on Gt. If (p is
any polynomial then <f>(X) is the corresponding element in S(g), which we also
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view as a function on g* and so on Gt. Note that if g e G and C(g) = Y e g,
then Theorem 7.5 shows that

€g~\2 +2i]

which is a polynomial function on Gt.

PROPOSITION 7.10. IfXeg and </> is a polynomial, with 4>(X) e At, then

(X2-(2ir)2) d
X * <p(X) = X(/>(X) -

where r = \X\/2.

PROOF. We will prove this for

2£ dX
<KX)

ix 0
0 -ix

The general case will follow since an arbitrary element of g is conjugate (under
G) to such an X. Let

g, =exptX =
eilx 0

0 <?-•""
e G .

Then

(7.1)

where t,s e

with

e,, *e,=

egl = ( cos tx + ^
u

C(g,) =
—i sin tx 0

0 /si
X.

We differentiate both sides of (7.1) with respect to t and set t = 0

/ sin sx ^u

COS SX Ji.
2lx

= 21 [cossx - -^X) {-xsmsx - cossx
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Then

isinsx \2t

( • • \2t-l

cos sx X I (—2lix sinsx + cossxX)
Ux )

( /sinsx \ M " '
= I COSSX X IV Ux )

[ ( isaisx

x (isinsx\u (X2\ u (X2-(2lx)2) d (

) 21 dX\

/smsx \
cossx X) .

2t )
X ( c o s 5 x I I c o s s x

V 2lx ) 21 dX\ 2tx )

Thus
{X2-(2tx)2) d

X*eg! = Xeg, -egs.

Now if <p is any polynomial such that (p(X) € At, then <p(X) is in the span of
the egs a s s e l , so that

(X2-(2ix)2) d

It aX
Note that (X, X) = Ax2 so x = \X\/2 = r.

The above proposition shows that the *-product we have constructed agrees
in the case of G = SU(2) with that obtained by Moreno and Ortega-Navarro
[14] on S2.

COROLLARY 7.11. xx * X, + X2 * X2 + X3 * X3 = 1(1 + 1).

PROOF. From the previous proposition, we have

* - * > - * - ^ -

Thus

\ 21 ) 2
= 1(1
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The inner product ( , )i on At is determined by the kernel N'(f, / ' ) on Ot

(see Section 5) and from Proposition 7.7 we see immediately that

N'(f, /') = Q + ~(f, /'

for / , / ' e Gt. The *-product is determined by the triple kernel B[(fu f2, /3)
with respect to (, )i which we now determine.

THEOREM 7.12. For fu f2, f3 € 0t, let A = A(/i, f2, /3) be a geodesic
triangle through fu f2, f3. Then

B[(fu ft, h) =
f\ f\ £\

cos — cos — cos —
u

where 9i,02, 03 are the angles subtended at the origin 0 by the arcs f2h, /3/1
and f\fi respectively, and |A(/i, f2, fc)\ is the (signed) area of the triangle A
with respect to the 2-form co.

PROOF. Let w, e 4 C fi< such that 4>(m,-) = fhi = 1,2,3. Then

= (mum2)(m2,m3){m3,mi)

from Theorem 3.11.
Thus using Proposition 3.5

i, fi, / 3 ) | 2 = \(mu m2)\
2\(m2, m3)\

2\{m3,

— N(mu m2)N(m2, m3)N(m3,

= N'(fu f2)N'(f2, f3)N'(f3, J

COS#i

•a a cos 93 \ u

Thus
9\ 92 93

cos — cos — cos —
2 2 2

it

and we need only show that

arg £,'(/,, h, h) = -|A(/,, f2, /3)|.
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Let the arcs / 2 / 3 , f3f\ and / i / 2 on Gt be denoted by yu y2 and )/3 where

/ 2 0<t<l

Yiif) = e x p t Y 2 - f 3 0 < r < l
yi(t) = exp/y3 • / , 0 < / < 1

and Yi,Y2,Yi e g. The condition that the y, be geodesies is equivalent to the
conditions

We now choose mu ... ,m3as above more carefully. Begin with an arbitrary
but fixed ffii € ^ - ' ( / i ) . and define the curve y3' in ^tt by

y3'(0 = expfF3 • /«!, 0 < r < 1

with final endpoint m2 = exp F3 • m\. Then define

j/,'(0 = exprFi • m2, 0 < t < 1

with final endpoint m3 = exp Y\ • m2. Then define

y2'(0 = expfy2 • m3, 0<t<\

and call its endpoint m4 = exp F2 • m3. Then by Lemma 4.2,

*oy / ' = Kf J = 1 , . . . , 3

and <&(/«,) = fi, i = 1 , . . . , 3. Since <!>(/W4) = / i , Proposition 4.9 implies that

/ni = e'r/w4

for some t e R . Thus define

y4'(0 = «"m4 0 < ? < r.

Denote the closed curve yi + y2 + y3 in ^ by y and the closed curve
y{ + Yi + Yi + Yi by y'. Then y' lies over y in the 5 l bundle 4> : ^ -*• 6t.
Suppose that y is oriented positively with respect to the 2-form u>on&t. Recall
from Lemma 5.1 and the remarks following it that co is the curvature form for
the connection 1-form 0 on JKt. Thus

= f CO
AL

'y
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We claim that

N. J. Wildberger

o= I e= f 0= I e.
JY[ Jyi Jyi

[49]

For let m = expsXi • m2, 0 < s < 1, be on y/ say. Then a tangent vector to y{
at m is rj = Xi • m and so

0mO?) = Im(»j,»j)

= Im {Xi • m,m)

= o.

This proves the claim and shows that

|A(/,,/2,/3)i= f e

= / Im {ie"m4, ei'mA)dt
Jo

= ix.
On the other hand

argfiJ( / i , / 2 , / 3 ) = arg(m1,m2) +aig{m2,m3)

We now claim that

arg(w3, m4) + arg(m4, mi).

, m2) — arg(/n2, m3) = arg(m3, m4) = 0.

To see this, it suffices to consider the model of Vt described at the beginning of
this section. Suppose mi = \jr-t. Then from Lemma 7.1,

<t>tW_t) = ex; = fi.

Then since fi(Y3) = 0 , we may take Y3 to be

0 1
- 1 0 J6K.

https://doi.org/10.1017/S1446788700034741 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034741


[50] Fourier transforms of Lie groups 113

by conjugating by an element of G if necessary. But then exp tY3 has the form

cos st sin st
— sins? cos st

and thus we find that
(exptY3 • mi, mi) e R

for all t € R so that {mx, m2) e R. This proves the second claim since the other
two cases are conjugate to this one. We thus have

i, f2, h) = arg(m4,

= —it

as required.
If y is n o t oriented positively then we apply the argument to the triangle

A ( / i , / 3 , / 2 ) to show that

But B[{fu / , , f2) = B[{fu f2, /3) so we are done.

Note that the geodesic triangle A was not uniquely specified in the above
theorem. This is due to the integrality of the 2-form w on ^ , that is

is a multiple of 2n. In fact we may view this as a consequence of Theorem 7.12
if we wish. Of course it is the existence of the S1 bundle with connection over
Gt that is the real reason for the integrality of Ot (see for example Kostant [11]).

It turns out that the function B\(fx, f2, /3) has a simple radial dependence.
Since ft e Gt, let

Xi = j e 0 u i = l , 2 , 3 .

If A(/i, f2, f3) is a geodesic triangle through / , , f2 and f3, let A'(xu x2, x3) be
the corresponding triangle on 6X. Then it is an immediate consequence of (5.1)
that

\A(fi,f2,f3)\=£\A(xux2,x3)\.
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We may thus rewrite the formula of Theorem 7.12 as

B[(IXU t*2, f-X3) = ( COS y COS j COS - e-'"IAC*..*2.*j)l/2 j

Thus it suffices to study B[ on the unit sphere 6\.

THEOREM 7.13. Forxux2,x3 e Gx,

4B[(xux2, x3) — l + (xi, x2) + x2, x3) + (x3, Xi) - i(xux2 x x3)

where x2 x x3 is the cross product of x2 and x3, and is identified with [x2, x3]
under g* ~ g.

PROOF. This is a result of certain formulae in spherical trigonometry. If A is
the spherical triangle whose sides are all no greater than n with vertices xx, x2

and x3 and opposite sides a, b and c respectively then we find the following
formula from Todhunter [17, Section 138]

(7.2)
1 + cos a + cos b + cos c

where E is the spherical excess of A, and is equal to the absolute value of the
area in our case, and 2« is the sine of the trihedral angle subtended by the triangle
at the origin. From remarks made in [17, Section 51] of the same reference we
may conclude that in our notation

2n = (xux2 xx3)

that is, it is the triple-product of xu x2 and x3. We also find there that

An2 — 1 — cos2 a — cos2 b — cos2 c + 2 cos a cos b cos c.

From this we may easily calculate that

, 1 ( a b c\

(2n) + (1 + cos a +cosb + cosc) = I 4 cos - cos - cos - I .

It follows that

a b c _Fn
1 + cos a + cos b + cos c — iln = 4 cos - cos - cos -e ' .

Our result follows.
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We cannot resist extracting a few more relevant formulae from Todhunter.
From Section 154 we get Keogh's theorem, stating that

s i n - £ = In'

where 2n' is the sine of the trihedral angle subtended by the triangle whose
vertices are in the midpoints of A. Combining this with (7.2), we have

. 1 1, 1 In
4 cos -a cos -b cos -c = — .

2 2 2 2n'
This is a purely geometric interpretation of \B[ |. Another one is

4 cos -a cos -b cos -c = cos s + cos(s — a) + cos(s — b) + cos(s — c)

where Is = a + b + c, found in [17, Section 119].
It seems an interesting program to extend these results to more general com-

pact groups.
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