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Abstract

In this note we study the boundary behavior of meromorphic functions in bounded plane regions
along Green's lines. As applications we obtain extensions of Lohwater's theorems and Seidel's
theorems concerning radial cluster sets.

1980 Mathematics subject classification (Amer. Math. Soc.): 30 A 72.

A. J. Lohwater has given the following analogues (1) and (2) of Iversen's
theorem and Gross-Iversen's theorem concerning boundary cluster sets (see
Lohwater (I960)): Let g be a meromorphic function in {\z\ < 1} and let E* be
any set of measure zero on {\z\ = 1}. Let C(g, e'9*) and CR_E.(g, e19*) denote
the cluster set of g at e'e' and the radial boundary cluster set of g at e** modulo
E*, respectively.

(1) C(g, e">') - CR_E.{g, e®*) is open.
(2) Every value of C(g, e'9') — CR_E,(g, e'9*) is assumed by g in any neigh-

borhood of e'9* with the possible exception of a set of capacity zero.
W. Seidel has given the following results (3) and (4) (see Seidel (1934)): Let g

be an analytic function in {\z\ < 1} with \g\ < 1. Let 0 < a, < 9 < a2 < 2-ir,
r = 1, be an arc of {\z\ = 1} such that lim^^J^re'9)! = 1 for almost all values
of 9 in (a, < 9 < a2}. Let e'9' be a singular point of g lying in {a, < 9 < a2}.

(3) C(g, e'**) = {|w| < 1}.
(4) The range of g at e10' is a set of points everywhere dense in {|w| < 1}.
In this note we study the boundary behavior of meromorphic functions in

bounded plane regions along Green's lines. As applications we obtain extensions
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of (1), (2), (3) and (4). Namely (1), (2), (3) and (4) are special cases of Theorems
1 and 2, and Corollaries 1 and 2, respectively.

For the definitions concerning Green's lines we refer to Sario and Nakai
(1970). Let D be a bounded region in the complex plane and let / be a
nonconstant meromorphic function in D. We consider Green's lines issuing
from a fixed point chosen arbitrarily in D. Let z0 be a point on the boundary dD
of D taken in the Euclidean sense. We assume that z0 satisfies the following (5)
and (6):

(5) For any /--neighborhood U(z0, r) of z^ f/(z0, r) n dD is of positive
harmonic measure.

(6) There exists no nondegenerate continuum K containing z0 such that every
point of K is an accumulation point of dD — K.

The cluster set of/at z0 is defined as

C(f,zo)= H KU(zo, r) n D) ,
r>0

where the bar denotes closure. Let E' be any set of harmonic measure zero lying
in dD. It is easy to see from Theorem 8.6 and Theorem 8.7 of Arsove and
Johnson (1970) that for any U(z0, r) there are Green's lines terminating at points
of U(ZQ, r) n dD except for a set E" of harmonic measure zero lying in 3D. We
put E = E' u E" u (z0). Let L(z', t)(0 <t < 1) denote a parametric represen-
tation of each Green's line terminating at z' G dD. The boundary cluster set of/
at z0 along Green's lines modulo E is defined as

CR.E(f,zJ- H f U f(L(z',t))\
r>0 [ z'SW{r) J

where W(r) = U(z0, r) n dD — E. CR_E(f, z0) is not empty. A subregion of D
is called of type SOHB if there is no nonconstant bounded harmonic function in
the subregion which vanishes continuously at every point on its relative
boundary with respect to D.

THEOREM 1. C(/, z0) - CR_E(f, z0) is open.

PROOF. We take any point w* of C(/, z0) - CR_E(f, ZQ) and choose a
U(w*, r*) and an open set G with the properties that CR_E{f, ZQ) C G and that
U{w*, #•*) n G is empty. It is possible to find a U(z0, r0) with the property that
for each L(z', t) terminating at z' e W(r0) there is a t0 such that/(L(z', t)) c G
for all t > t0. Let D' be a component of /"'(C/(w*, r*)) with D' c U(zo, rj. The
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subset W of W(r0) such that for z' G W, L(z', t) n D' is not relatively compact
in D is of harmonic measure zero. Hence the set of ends of Green's lines L such
that L n D' is not relatively compact in D is of harmonic measure zero.
Therefore by Theorem 8.7 of Arsove and Johnson (1970), the totality of regular
Green's lines L such that L n D' is not relatively compact in D is of Green's
measure zero. Thus by Lemma 3 of Nagasaka (1978), D' is of type SOHB. It
follows from Theorem 21.2 of Heins (1955) that U(w*, r*) - f(D') is of capacity
zero.

We put Vn = f~\U(w*, r*/n)), /i = 1, 2, 3, . . . . Evidently z0 G Vn. If for
some N,f~l(VN) consists of infinitely many components {Dn} such that either
z0 G Dn for every n o r z 0 ? Dn for every n, then {Dn} converges to z0. Otherwise
the following two possibilities would occur: One is the case that for a subregion
D'n of each £>„, an infinite subsequence {Dk} of {£>„'} converges metrically to a
nondegenerate continuum, containing z0, of dD (see Alexandroff and Hopf
(1935), p. 111). For a sufficiently large k*, D'k. meets at least one L(z', t) (t > t<d
terminating at z' G W(r0). This is a contradiction. The other is the case that
infinitely many level curves \f(z) — w*\ = r*/N meet a disc contained in D.
This is also a contradiction (see Collingwood and Lohwater (1966), p. 137). It is
therefore seen that U(w*, #•*) c C(/, ZQ).

Uf~\Vn) consists of only finitely many components {Dnk)k for each n, then
we can choose a component Gn = Dnk with z0 G Gn for each n and obtain a
sequence {<?„} with Gn+l c (?„. {Gn} converges to z0. Otherwise C\Gn would
contain a nondegenerate continuum lying in D. Indeed if there is a nondegener-
ate continuum, containing z0, of dD, then there are Green's lines L(z', t) each
terminating at z' G W(r0) such that for all f > /0, G, n L(z', 0 is empty. This is
impossible since/is nonconstant.

Consequently there is a simple curve L* lying in G, and terminating at z0

along which/has an asymptotic piont w*. We put D* = Gx — L* and note that
D n 9G, accumulates to z0. We may assume that D* is a region contained in
(/(z0, r0). Hence D* is of type SOHB. Therefore it is easy to see from the proof of
Lemma 3 of Niimura (1979) that the following result holds: If v is a bounded
subharmonic function in £)*, then

Urn v(z) < Tim v(z'), z G £>*, z' G D n 3D*.

Thus it is easy to see from the proofs of Lemma 4 and the theorem of Niimura
(1979) that we have a contradiction.

The assertion of Theorem 1 is proved.

THEOREM 2. Every point of C(/, z0) — CR_E(f, z0) is assumed by f infinitely
often in any neighborhood of z0 with a possible exceptional set of capacity zero.
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PROOF. Suppose that the assertion of Theorem 2 is false. It is easy to see from
the proof of Theorem 1 of Niimura (1977) that there is a U(W, r') contained in
C(/> zo) ~ CR-EU> ZO)

 a n d having the following properties (i), (ii) and (iii):
(i) There is a closed set F relative to C(/, z0) — CR_E(f, ZQ) such that for

every n, F n U(w', r'/n) is of positive capacity.
(ii) There are components D*k of f~l(U{w', r'/n)) for each n such that no

point of F n U(w', r'/n) is assumed by/ in D*k.
(iii) For each n, z0 G U k D*k.
For the C/(z0, r0) in the proof of Theorem 1, it is easy to see from the proof of

Theorem 1 that there is at least one component D*.k. c (/(z^ r0). Therefore as
can be seen easily from the proof of Theorem 1, D*.^ is of type SOHB and
U(w', r'/n') — f(D*, k) is of capacity zero. This is a contradiction.

The assertion of Theorem 2 is proved.

We call z0 a singular point if C(f, z0) contains at least one nondegenerate
continuum lying in /(/>). The following Corollaries 1 and 2 are immediately
deduced from Theorems 1 and 2, respectively:

COROLLARY 1. Let z0 be a singular point and let 3/(Z)) be not empty. Let there
be a U(z0, r) such that all the cluster sets of f along Green's lines terminating at
each point of U(z0, r) n 3D except for a set of harmonic measure zero are
contained in df(D). Then C(f, z0) =f(D).

COROLLARY 2. Under the hypotheses of Corollary 1, every point of f(D) is
assumed by f infinitely often in any neighborhood of z0 with a possible exceptional
set of capacity zero.
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