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1. Two numerical characterizations of commutativity for C*-algebra si (acting on
the Hilbert space H) were given in [1]; one used the norms of self-adjoint operators in si
(Theorem 2), and the other the numerical index of si (Theorem 3). In both cases the
proofs were based on the result of Kaplansky which states that if the only nilpotent
operator in si is 0, then si is commutative ([2] 2.12.21, p. 68). Of course the converse
also holds.

We shall apply in this note both Kaplansky's result and Holbrook's operator radii [3]
to give two types of characterizations; one is by means of operator radii, and the other in
terms of Cp -classes of operators in si. These also enable us to generalize Theorem 2 and 3
in [1]. Finally, a particular case of our Theorem 5 shows that si is commutative if and
only if every T esi satisfies the first order growth condition (Gi).

2. First we need some notation, definitions and well known results. Let T e si. We
recall that T is in the class Cp(p > 0), operators having unitary p-dilation, if

(ph, h) - 2Re(z(p - \)Th, h) + |z|2 ((/? - 2)Th, Th) 3= 0

holds for all heH and |z|=sl ([4 p. 45]). Since the inequality can be rewritten as
Re(p - 2z(p - 1)T + \z\2 (p - 2)T*T) 3= 0, it follows easily that T e Cp if and only if for
all \z\ =£l we have

We need the following properties from [3].

(1) T e Cp if and only if wp(T) =£ 1, where

wp(T) = inf{u: u > 0, T/ue Cp},

the operator radius of T.
(2) Wi(T) = | |r | | , and w^T) is the numerical radius of T.
(3) wp(uT) = \u\ wp(T), and wp(T)^\\T\\/p.
(4) wp(.) is a norm on si whenever 0<p «= 2.

THEOREM 1 (Theorem 4.4, 4.5 and 5.5 [3]). Let Tesi,

(1) IfO<p<p', then wp.(T)^wp(T) and

(2) / / || T|| = 1 and T2 = 0, then wp(T) = Up for every p > 0.
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(3) If T is normaloid, that is || T|| is the spectral radius of T, then

(2
\p V""1 1 if 0<p<l,

if p&l.

Note that a normal operator is normaloid.

3. Now we are ready to give characterizations.

THEOREM 2. For p>0 and p^l, si is commutative if and only if

if P>i,

for every T e si.

Proof. ( ^ ) . The commutativity implies that every T e si is normal and so we may
apply (3) in Theorem 1.

(<^). If si is not commutative, then there exists a Tesi, T¥=0 and T2 = 0 such that
wp(T) = | | r | | /p, p > 0 by (2) in Theorem 1. Hence the equality in the statement does not
hold.

COROLLARY 1. Forp > 0 andp =£1, si is not commutative if and only ifwp{T) = || T\\/p
for some T e si.

From the well known results in section two we see that

holds for 0 < p < l , and | |r | | /p « wp(T)^ \\T\\ f o r p ^ l . Let us define

= inf{wp(T):Tesi>\\T\\ = l}.

Clearly, l/p^np(si)^ ^for 0 < p < l , and l/p*Znp(st)^l for p =s 1. Note that

n2(si) is called the numerical index of si.

COROLLARY 2. (Theorem 3 [1] when p = 2). (1) For p > 1, si is commutative or not
commutative according to np(si) is 1 or 1/p.

(2) For 0<p<l, si is commutative or not commutative according to np{si) is

^ or lip.
P

Proof. This is a simple consequence of Theorem 2 and Corollary 1.

https://doi.org/10.1017/S0017089500006704 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006704


ON COMMUTATIVITY OF C*-ALGEBRAS 95

THEOREM 3. The following statements are equivalent.
(1) si is commutative.
(2) cT i Cp for all p^l, all T with 0 # T e M and any c> \\T\\~1.

(3) (jzr)T$ CP for allp with 0<p < 1, all T with 0± Te si and any c> \\T\\~1.

Proof. (1)=>(2). Since cT is normal, wp(cT) = c | | r | | > i for every p 5= 1 by (3) in
Theorem 1. Hence, cT $CP.

(2)=>(1). If si is not commutative, then wp(cT) = c \\T\\/p for some T esi, TJ=0
and T2 = 0. We may select a suitable p > 1 so that p 3= c | |r | | . This implies that cT eCp.

1 by (3) in Theorem 1 and

so (z -^ - ) T $CP for every p with 0 <p < 1.

(3) => (1). If .stf is not commutative, then wJ—?— T) = " " for some T esi, T # 0
\2 — p ) 2 — p

and r 2 = 0. By choosing suitable c and p(=s2 —c ||T||) we may conclude that

THEOREM 4 (Theorem 2 [1] when p = 1). The following statements are equivalent.
(1) si is commutative.
(2) For any p^l, wp(A + B) =£ 1 + wp(AB) for all self-adjoint operators A and B e si

with\\A\\ = \\B\\ = l.

(3) For any p with 0<p<l, wp(A + B)^ - + wp(AB) for all self-adjoint

operators A and B e si with \\A\\ = \\B\\ = 1.

Proof. We shall adapt the original result in [1]; si is commutative if and only if
\\A + 51| « 1 + ||i4B|| for all self-adjoint operators A and B e si with \\A\\ = \\B\\ = 1.

(1)=> (2). wp(A + B) = \\A + B\\ « 1 + ||i4fl|| = 1 + wP{AB) by (3) in Theorem 1.
(2)=>(1). If si is not commutative, then for some self-adjoint operators A and B,

wp(A + B)=\\A + B\\>l + \\AB\\2*l + wp(AB) by (1) in Theorem 1 for the last
inequality.

(^) (^) by (3) in

Theorem 1.
(3) ̂  (1). If si is not commutative, for some self-adjoint operators A and B,

by (1) in Theorem 1 for the last inequality.
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We recall that T e si satisfies the first order growth condition (Gt) if ||(M - T)'1]] =
l/d(u) for all u £ o(T), the spectrum of T, where d(u) denotes the distance from u to
o(T). It is known that ||(u - T")"1!! 2* l/d(u) holds for any T esi, and a normal operator
satisfies condition (G{). We shall next generalize this to operator radii and prove the
following result.

THEOREM 5. The following statements are equivalent.
(1) d is commutative.
(2) Forp 3= 1, wp((u - T)'1) = l/d(u) for every Ted and u$ o(T).

•(3) For 0 <p < 1, wp((u - T)'1) = —jrkfor every Tesiandu* o(T).

Proof. (1)=>(2). Since (u - T)'1 is normal,

d(u)wp((u - T)'1) = d(u) \\(u - T)"1!! = d(u)(l/d(u)) = 1

by (3) in Theorem 1.
). Let Ted, Tk = 0, k^2 and Tk~l^Q; then o(T) = {0}. We shall show() {}

that if T satisfies the condition wp((u - T)'1)« l/d(u), that is u(u - T)"1 e Cp for any
complex number u =£ 0, then T = 0. To this end, let z = 1 in the inequality (*). We obtain

(p - 2)(/ - u(u - T)'1)*^ - u(u - T)-1) + (I- u(u - T)'1) + (/ - u(u - T)"1)* ̂  0.

Let the left hand side in the above be F; then (u - T)*F(u - T) 2*0 and so

(p -2)T*T - (u - T)*T - T*(u -T)^0.

We claim that N(T) c N(T*), where A (̂-) denotes the null space. Let x e N(T), and Q be
the left side in above inequality; then Q(x) = -T*(ux) so that \\Qm(x)\\2 = (Q(x), x) =
(-T*(ux),x) = 0 and hence T*(JC) = O. Now, for any xeH, 0=Tk(x) = T*Tk-\x) by
the claim. It follows that T*"1 = 0, contrary to our assumption. Thus, T = 0.

(1) ̂  (3). Normality of (u - T)~l implies that

by (3) in Theorem 1.
(3)=>(1). The proof may be carried out in a manner similar to the one above by

showing that T = 0. To make computation simple let u = 1, and z = —l in (*). Since

—— (I - T)'1 e Cp, it follows that
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Let x e N(T) and consider S(x); after a few simplifications we have

The remainder of the proof is the same as above.
Finally, we remark that the above conditions on T may be relaxed and the result still

holds. For example, u e U\o(T), where the set U need not contain o{T) but U\o(T)
must be non-empty.
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