
Robotica (2024), 42, pp. 1715–1730
doi:10.1017/S0263574724000389

RESEARCH ARTICLE

Learning vision-based robotic manipulation tasks
sequentially in offline reinforcement learning settings
Sudhir Pratap Yadav1 , Rajendra Nagar2 and Suril V. Shah3

1iHub Drishti Foundation, Jodhpur, India, iHub Drishti Foundation
2Department of Electrical Engineering, IIT Jodhpur, Jodhpur, India, IIT Jodhpur
3Department of Mechanical Engineering, IIT Jodhpur, Jodhpur, India, IIT Jodhpur
Corresponding author: Sudhir Pratap Yadav; Email: yadav.1@iitj.ac.in

Received: 27 May 2023; Revised: 19 January 2024; Accepted: 20 February 2024; First published online: 2 May 2024

Keywords: sequential task learning; offline deep reinforcement learning; grasping; computer vision; vision-based manipulation

Abstract
With the rise of deep reinforcement learning (RL) methods, many complex robotic manipulation tasks are being
solved. However, harnessing the full power of deep learning requires large datasets. Online RL does not suit itself
readily into this paradigm due to costly and time-consuming agent-environment interaction. Therefore, many offline
RL algorithms have recently been proposed to learn robotic tasks. But mainly, all such methods focus on a single-
task or multitask learning, which requires retraining whenever we need to learn a new task. Continuously learning
tasks without forgetting previous knowledge combined with the power of offline deep RL would allow us to scale the
number of tasks by adding them one after another. This paper investigates the effectiveness of regularisation-based
methods like synaptic intelligence for sequentially learning image-based robotic manipulation tasks in an offline-RL
setup. We evaluate the performance of this combined framework against common challenges of sequential learning:
catastrophic forgetting and forward knowledge transfer. We performed experiments with different task combinations
to analyse the effect of task ordering. We also investigated the effect of the number of object configurations and
the density of robot trajectories. We found that learning tasks sequentially helps in the retention of knowledge
from previous tasks, thereby reducing the time required to learn a new task. Regularisation-based approaches for
continuous learning, like the synaptic intelligence method, help mitigate catastrophic forgetting but have shown
only limited transfer of knowledge from previous tasks.

1. Introduction
Robotics has experienced a significant transformation with the integration of deep Reinforcement
Learning (RL), which has revolutionised robot capabilities in manipulation tasks. Unlike traditional
control architecture that depends on fixed rules and explicit programming, RL enables robots to learn
adaptively from observations, modifying their behaviour in response to contextual cues. This advance-
ment allows robots to adjust and optimise actions for new tasks, enhancing their utility in diverse
scenarios. This allows robots to handle rigid objects in various industrial operations and manage
deformable items. While significant progress has been made in enabling robots to handle a variety of
rigid and deformable objects, challenges persist in the scalability and efficiency of these learning models.

A significant challenge emerges when a single agent, such as a domestic robot, must learn new tasks
as different situations arise. Existing multitask frameworks lack the flexibility to incorporate new tasks
without retraining the agent on all existing tasks. This paper uses a sequential learning approach where
the robot acquires tasks one after the other. This method enables the robot to adapt to new circumstances
without the necessity for comprehensive retraining. We use offline RL as the base framework to learn
a single image-based robotic manipulation task and then use a regularisation-based continual learning
approach for learning tasks sequentially. This combined framework forms the main contribution of this
work.

C© The Author(s), 2024. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389
https://orcid.org/0009-0007-4879-3811
mailto:yadav.1@iitj.ac.in
https://doi.org/10.1017/S0263574724000389

1716 Sudhir Pratap Yadav et al.

We mainly focus on two challenges of continual learning: catastrophic forgetting and forward knowl-
edge transfer. Catastrophic forgetting is the tendency of artificial neural networks to forget previous
information when new information is provided. In a continual learning scenario, the neural network’s
accuracy on previous tasks drops significantly as it tries to learn a new task. Forward knowledge transfer
tries to capture the improvement in the performance of the current task based on the learning from pre-
vious tasks. For example, once a robot learns to pick up an object, it can reuse this knowledge in other
tasks that require picking up objects without the need to learn it again. An effective continual learning
algorithm should be able to increase its performance on the current task (based on previous tasks) while
maintaining its performance on previous tasks.

The developed framework, combining offline reinforcement learning with synaptic intelligence for
continual learning, offers a promising approach to overcoming challenges associated with adapting
robots to new tasks. Additionally, we analyse the effects of task ordering and the number of object
configurations on both forgetting and the knowledge transfer between tasks.

1.1. Related work
In the past several years, the field of robotics has witnessed substantial progress, particularly marked by
robots gaining a variety of manipulation skills via deep Reinforcement Learning (RL). The introduction
of the Deep Q-Network (DQN) [1] marked a significant advancement in robotic manipulation, paving
the way for the development of advanced end-to-end policy training methods [2–5].

1.1.1 Single-task RL
These developments enabled robots to effectively perform a range of rigid object manipulations, includ-
ing pick-and-place operations [6,7], stacking [8], sorting [9], insertion tasks [10–12], as well as more
complex challenges such as opening doors [13], opening cabinets [14], using electric drills [15], and
completing assembly tasks [16–18]. Additionally, the application of RL expanded to include the manip-
ulation of deformable objects, like ropes [19] and folding clothes [20], with learning systems typically
acquiring these skills from task-specific datasets.

1.1.2 Multitask RL
However, for such an approach to be more effective across a broader range of tasks, it necessitates the
collection and use of specific data for each task, along with training distinct networks. A promising
solution to this challenge is multitask reinforcement learning (RL). In this approach, an agent undergoes
simultaneous training across multiple tasks. Throughout the training process, the algorithm has access
to data (sampled trajectories) from all tasks and optimises them jointly. This strategy enables the agent to
develop generalised skills applicable across various tasks. Multitask RL has been applied successfully to
learn robotic manipulation tasks [21–25]. However, in multitask RL, the set of tasks and the distribution
of task-related data remain constant. Consequently, the agent requires retraining from the beginning
for any new task, even if there is significant overlap with previously learned tasks. Such a requirement
for retraining renders the scaling of this approach to human-equivalent mastery of all manipulation
tasks impractical. In contrast, humans leverage their experience from prior tasks to facilitate new task
learning, avoiding the need to start from scratch. The sequential (or continual) learning model attempts
to address this limitation by providing a framework where an agent learns tasks sequentially. As a result,
when encountering a new task, the agent does not necessitate complete retraining.

1.1.3 Online continual RL
Continual learning research began with a focus on classification tasks using datasets like MNIST and
CIFAR [26–28]. Recently, the field has expanded to include continual reinforcement learning (RL), with
applications in Atari games [29] and GYM environments [30], and extended to robotic manipulation

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

Robotica 1717

tasks [31], [32]. [31] introduced a benchmark for continual learning in robotic manipulation, providing
baselines for key continual learning methods in online RL settings, particularly using the soft actor-
critic (SAC) method [33]. However, this research primarily focuses on online-continual RL with low-
dimensional observation spaces, such as joint and task space data, under the assumption of complete
access to the simulator. In contrast, our study emphasises offline-continual RL with high-dimensional
observation space, specifically images, in the sequential learning of robotic manipulation tasks.

1.1.4 Catastrophic forgetting
In sequential deep reinforcement learning, neural networks trained on one task often experience perfor-
mance degradation when retrained on another, a phenomenon known as catastrophic forgetting. This
issue, central to connectionist models, arises from a stability-plasticity dilemma: if we strive to make
the network flexible enough to accommodate new information, it tends to lose its stability, conse-
quently resulting in a degradation of its performance on previously learned tasks. Conversely, if we
lean towards enhancing its stability, the network may struggle to effectively acquire the new task, as pre-
sented in ref. [34]. One strategy to address catastrophic forgetting involves the adoption of penalty-based
methods. These methods apply constraints on neural network parameters, ensuring that the weights of
the neural network stay closer to the solutions derived from previous tasks. Notably, Elastic Weight
Consolidation (EWC) [29] and Synaptic Intelligence (SI) [35] have made significant contributions in
this area. Kirkpatrick et al. (2017) [29] introduced EWC, offering a regularisation-based solution to
catastrophic forgetting; however, its calculation of parameter importance is not localised. This paper
adopts the Synaptic Intelligence approach, as proposed by Zenke et al. (2017) [35], due to its localised
assessment of synaptic importance (weights in Neural Networks). The local nature of this computation
aids in maintaining solution generality, unaffected by specific problem characteristics. Furthermore, SI
boasts advantages in computational speed and simplicity of implementation compared to EWC, which
necessitates the computation of the Fisher Information Matrix.

Singh et al. (2020) [36] applied Offline-RL to image-based manipulation tasks, focusing on initial
condition generalisation without exploring sequential task learning. In contrast, to the best of our knowl-
edge, this study is the first to explore sequential learning in image-based robotic manipulation within
offline-RL settings.

2. Learning image-based robotic manipulation tasks sequentially
In this section, we formulate our RL agent and environment interaction setup to learn robotic manipu-
lation tasks. We then discuss the problem of sequential task learning and present an approach to solve
this problem.

2.1. RL formulation for learning image-based robotic manipulation tasks
Agent and environment interaction is formally defined by the Markov Decision Process (MDP). A
Markov Decision Process is a discrete-time stochastic control process. In RL, we formally define the
MDP as a tuple 〈S , A, P , R, γ 〉. Here, S is a finite set of states, A is a finite set of actions, P is the state
transition probability matrix, R set of rewards for all state-action pair and γ is the discount factor. A
stochastic policy is defined as a probability distribution over actions, given the states, that is, the prob-
ability of taking each action for every state. π (at|st) = P[at ∈A|st ∈ S]. We formulate the vision-based
robotic manipulation tasks in the MDP framework as below.

• Environment: It consists of WidowX 250, a five-axe robot arm equipped with a gripper.
We place a table in front of the robot and a camera in the environment in an eye-to-hand
configuration. Every task consists of an object placed on the table, which needs to be manipulated
to complete the task successfully.

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

1718 Sudhir Pratap Yadav et al.

• State: The state st represents the RGB image of the environment captured at time step t. We use
images of size 48 × 48 × 3.

• Action: We define the action at the time step t as a 7-dimensional vector at =
[
�xt �ot gt

]�.
Here, �xt ∈R

3, �ot ∈R
3, gt ∈ {0, 1} denotes the change in position, change in orientation, and

gripper command (open/close), respectively, at time step t.
• Reward: The reward r(st, at) ∈ {0, 1} is a binary variable which is equal to 1 if the task is

successful and 0, otherwise.

The reward is kept simple and not shaped according to the tasks so that the same reward frame-
work can be used while scaling for a large number of tasks. Also, giving a reward at each time step,
instead of at the end of the episode, makes the sum of rewards during an episode dependent on time
steps. Therefore, if the agent completes a task in fewer steps, the total reward for that episode will
be more.

2.2. Sequential learning problem and solution
We define the sequential tasks learning problem as follows. The agent is required to learn N number of
tasks but with the condition that tasks will be given sequentially to the agent and not simultaneously.
Therefore, when the agent is learning to perform a particular task, it can only access the data of the
current task. This learning process reassembles how a human learns. Let a sequence of robotic manip-
ulation tasks T1, T2, . . . , TN be given. We assume that each task has the same type of state and action
space. Each task has its own data in typical offline reinforcement learning format 〈st, at, rt, st+1〉. The
agent has to learn a single policy π , a mapping from state to action, for all tasks. If we naively train a
neural network in a sequential manner, the problem of catastrophic forgetting will occur, which means
performance on the previous task will decrease drastically as soon as the neural network starts learning
a new task.

We use a regularisation-based approach presented in ref. [35] to mitigate the problem of catastrophic
forgetting. Fig. 1 describes the framework we developed to solve this problem.

3. Integrating sequential task learning with offline RL
In this section, we first discuss the SAC-CQL [37] offline RL algorithm used for learning a single robotic
manipulation task and its implementation details. We then discuss the Synaptic Intelligence (SI) regular-
isation method for continual learning and provide details to integrate these methods to learn sequential
robotic manipulation tasks.

3.1. SAC-CQL algorithm for offline RL
There are two frameworks, namely online and offline learning, to train an RL agent. In the case of an
online RL training framework, an RL agent interacts with the environment to collect experience, update
itself (train), interact again, and so on. Simply put, the environment is always available for the RL agent
to evaluate and improve itself further. This interaction loop is repeated for many episodes during training
until the RL agent gets good enough to perform the task successfully. This dynamic approach allows
the agent to adapt to unforeseen circumstances but may be computationally expensive and less sample-
efficient. While in offline RL settings, we collect data once and then it is not required to interact with the
environment. These data can be collected by executing a hand-designed policy or by a human controlling
the robot (human demonstration). Data are a sequence of 〈st, at, rt, st+1〉 tuples. Offline RL poses unique
challenges such as data distribution shifts and the need to balance exploration and exploitation without
the ability to collect additional data during the learning process. While it may lack the adaptability of
online RL, offline RL is computationally efficient and allows for systematically exploring individual
tasks with carefully curated datasets.

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

Robotica 1719

Figure 1. The SAC-CQL-SI method (soft actor-critic - conservative Q-learning - synaptic intelligence)
for sequential learning is depicted in the block diagram. This method begins with a dataset comprising
tasks 1 to N, from which one task is selected sequentially, as denoted by the task index k. Initially, the
algorithm samples a mini-batch from the dataset of the current task. This batch is then processed by
the soft actor-critic conservative Q-learning (SAC-CQL) algorithm, which calculates the losses for both
the actor (policy network) and the critic (Q-network). In instances where the task index exceeds one,
quadratic regularisation [35] is integrated into the actor loss to mitigate forgetting. These calculated
losses are subsequently used to update the neural networks that embody the policy (actor-network) and
the Q-value function (critic network). The process involves continuous sampling of subsequent batches,
with training on the current task persisting until a predetermined number of training steps is reached.
After completing training for a task, the agent transitions to the next task by loading its data and incre-
menting the task index. This cycle is repeated, allowing the agent to progress through and learn each
task successively.

In recent years, SAC [33] has emerged as one of the robust ways for training RL agents in con-
tinuous action space (when action is a real vector), which typically is the case in robotics. SAC is an
off-policy entropy-based actor-critic method for continuous action MDPs. Entropy-based methods add
entropy term to the existing optimisation goal of maximising expected reward. In addition to maximis-
ing expected reward, the RL agent also needs to maximise the entropy of the overall policy. This helps
make the policy inherently exploratory and not stuck inside a local minima. Haarnoja et al. [33] define
the RL objective in maximum entropy RL settings as in (1).

J(π) =
T∑

t=0

E(st ,at)∼ρπ
[r(st, at) + αH(π (· |st))]. (1)

Here, ρπ (st, at) denotes the joint distribution of the state and actions over all trajectories that the agent
could take and H(π (· |st)) is the entropy of the policy for state st as defined in (2). α is the temperature
parameter controlling the entropy in the policy. E represents the expectation over all state and action
pairs sampled from the trajectory distribution ρπ . Overall, this objective function tries to maximise the
expected sum of rewards along with the entropy of the policy.

H(π (· |st)) =E[− log(fπ (· |st))]. (2)

Here, π (· |st) is a probability distribution over actions and fπ (· |st) is the probability density function of
the policy π , we have selected Gaussian distribution to represent the policy.

SAC provides an actor-critic framework where the actor separately represents the policy, and the
critic only helps in improving the actor, thus limiting the role of critic only to training. As our state (s) is

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

1720 Sudhir Pratap Yadav et al.

Figure 2. CNN architecture of policy network. It has three convolutional layers with max-pooling fol-
lowing the first two. The convolutional layers are followed by a four-layer MLP (multilayer perceptron).
The output layer is multiheaded, with the number of heads corresponding to the number of tasks. Based
on the current task index, only one head is enabled during training and testing. Given an input state
(an RGB image), the network produces two 7-dimensional vectors, μ and σ , representing the mean and
standard deviation of the stochastic policy modelled by a Gaussian distribution.

Figure 3. The Q-network’s CNN architecture is similar to that of the policy network, with two notable
distinctions: firstly, the action vector is incorporated into the first layer of the MLP, and secondly, the net-
work’s output is a scalar Q-value. This network takes state (an RGB image) and action (a 7-dimensional
vector) and produces scalar Q-value, that is, Q(s, a).

an image, we use convolutional neural networks (CNNs) to represent both actor and critic. Also, instead
of using a single Q-value network for the critic, we use two Q-value networks and take their minimum
to estimate better the Q-value, as proposed in ref. [38]. To stabilise the learning, we use two more neural
networks to represent target Q-values for each critic network, as described in DQN [1]. Therefore, we
use 5 CNNs to implement the SAC algorithm.

Figures 2 and 3 illustrate the architectures of the policy and the Q-value neural networks, respectively.
As we parameterise the policy and Q-value using neural networks, φ represents the set of weights of the
policy network. θ1, θ2, θ̂1, and θ̂2 represent the set of weights of two Q-value networks and two target Q-
value networks for the critic, respectively. Since our policy is stochastic, we use tanh-Gaussian policy,
as used in ref. [36]. The policy network takes the state as input and outputs the mean (μ) and standard
deviation (σ) of the Gaussian distribution for each action. Action is then sampled from this distribution
and passed through tanh function to bound actions between (−1, 1). Target Q-value is defined as

Q̂θ̂1,θ̂2
(st+1, at+1) = rt + γE(st+1∼D,at+1∼πφ (·|st+1))[Q̂min − αlog(πφ(at+1|st+1))], (3)

where Q̂min represents the minimum Q-value of both target Q-networks and is given by

Q̂min(st+1, at+1) = min[Qθ̂1
(st+1, at+1), Qθ̂2

(st+1, at+1)] (4)

The target Q-value in (3) is then used to calculate Q-loss for each critic network as

JQ(θi) = 1

2
E(st ,at)∼D[(Q̂θ̂i ,θ̂2

(st+1, at+1) − Qθ1 (st, at))
2], (5)

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

Robotica 1721

where i ∈ {1, 2}, aπ
t is the action sampled from policy πφ for state st and D represents the current task

data. Further, policy-loss for actor-network is defined as

Jπ (φ) =E(st∼D,at∼πφ (·|st))[αlog(πφ(at|st)) − min[Qθ1 (st, aπ

t), Qθ2 (st, aπ

t)]] (6)

For offline-RL, we use the non-Lagrange version of the conservative Q-learning (CQL) approach pro-
posed in ref. [37] as it only requires adding a regularisation loss to already well-established continuous
RL methods like SAC. Upon adding this CQL-loss to (5), total Q-loss becomes

Jtotal
Q (θi) = JQ(θi) + αcqlEst∼D[log

∑

at

exp(Qθi (st, at)) −Eat∼D[Qθi (st, at)]], (7)

where i ∈ {1, 2}, αcql controls the amount of CQL-loss to be added to Q-loss to penalise actions that are
too far away from the existing trajectories, thus keeping the policy conservative in the sense of explo-
ration. These losses are then used to update actor and critic networks using the Adam [39] optimisation
algorithm.

3.2. Applying synaptic intelligence in offline RL
Synaptic intelligence is a regularisation-based algorithm proposed in ref. [35] for sequential task learn-
ing. It regularises the loss function of a task with a quadratic loss function as defined in (8) to reduce
catastrophic forgetting.

Lμ =
∑

k

μ

k (φ̃k − φk)
2 (8)

Here, Lμ is the SI loss for the current task being learned with index μ, φk is k-th weight of the policy
network, and φ̃k is the reference weight corresponding to policy network parameters at the end of the
previous task.

μ

k is per-parameter regularisation strength. For more details on calculating

μ

k , refer
to [35]. SI algorithm penalises neural network weights based on their contributions to the change in
the overall loss function. Weights that contributed more to the previous tasks are penalised more and
thus do not deviate much from their original values, while the other weights help in learning new tasks.
SI defines the importance of weights as the sum of the gradients over the training trajectory, as this
approximates the contribution to the reduction in the overall loss function. We use a similar approach to
apply SI to Offline-RL as presented in ref. [31]. Although the authors did not use SI or offline RL, the
approach is similar to applying any regularisation-based continual learning method for the actor-critic
RL framework. We regularise the actor to reduce forgetting on previous tasks while learning new tasks
using offline reinforcement learning. We add quadratic loss as defined in ref. [35] to the policy-loss term
in the SAC-CQL algorithm. So now overall policy-loss becomes as described in (9)

Jtotal
π

(φ) = Jπ (φ) + cLμ (9)

Here, c is regularisation strength. Another aspect of continual learning is providing the current task
index to the neural network. There are many approaches to tackle this problem, from 1-hot encoding
to recognising the task from context. We chose the most straightforward option of a multi-head neural
network. Each head of the neural network represents a separate task. Therefore, we select the head for a
given task.

4. Experiments, results, and discussion
In this section, we first discuss the RL environment setup and provide details of data collection for
offline RL. Further, we evaluate the performance of SI with varying numbers of object configurations
and densities for different task ordering.

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

1722 Sudhir Pratap Yadav et al.

Table I. Details of the collected 6 datasets for each task. The number of trajectories
decreases as the area of the object space decreases to maintain a consistent object-space
density.

Object Space Density Object-space Area Number of Number of
(objects/cm2) (cm2) Trajectories Data Points

20 1000 20k 400k
20 360 12k 240k
20 40 4k 80k
10 1000 10k 200k
10 360 6k 120k
10 40 2k 40k

4.1. Experimental setup
Our experimental setup is based on a simulated environment, Roboverse, used in ref. [36]. It is a GYM
[30]-like environment based upon open-source physics simulator py-bullet [40]. We collected data for
three tasks using this simulated environment.

4.1.1. Object space
We define object space as a subset of the robot’s workspace where the task’s target object is to be placed.
In our case, it is a rectangular area on the table before the robot. When initialising the task, the target
object is randomly placed in the object space. Fig. 4 object space of all three tasks is visible as a rectangle
on the table.

4.1.2. Tasks definitions
We selected three tasks for all our experiments with some similarities. In each task, an object is placed in
front of the robot on the table. At the start of every new episode, the object’s initial position is randomly
changed within the object-space area. Completion of a task requires some interaction with the object.
Task definitions are given below.

1. Press Button: Button is placed in the object space. The objective of the task is to press the button.
This is the easiest task, as this task can be seen as a go-to-goal task where the goal point is the
point on the button in pressed configuration.

2. Pick Shed: This task aims to pick the object successfully. Thus, the robot also needs to learn to
close the gripper at a specific position, apart from reaching the object.

3. Open Drawer: The objective of this task is to open the drawer.

4.1.3. Data collection
To examine the impact of the object-space area and object placement density, we collected a dataset for
each combination of the object-space area (40 cm2, 360 cm2, and 1000 cm2) and the object placement
density (10 and 20 placements per cm2) resulting in a total of six datasets for each task. Table I shows the
quantitative details of 6 datasets for each task. It shows the number of trajectories and images collected
for all combinations of object density and size of area. The length of a single episode (single trajectory)
is 20; therefore, 20 data points per trajectory are collected. Format of each data point is 〈st, at, rt, st+1〉,
here st is 48 × 48 × 3 RGB image. Fig. 4 displays trajectories (in green colour) and reward distribu-
tion across object space in the dataset for all three tasks, with an object-space area of 360 cm2 and a
density of 20 object configurations per cm2. It can be seen that when the object is placed closer to the

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

Robotica 1723

Figure 4. Top row displays sampled trajectories and bottom row displays the scatter plot of the reward
distribution for tasks button-press, pick-shed and open drawer with object-space area 1000cm2 and
density 20 object configurations per cm2. The robot’s base is at (0.6m, 0.0m), which is shown as a black
semicircle.

robot, the reward is high as the task is completed in a few steps, while it becomes low as the object
moves away.
Hand-designed policies. We collect data by employing hand-designed policies. The core of the hand-
designed policies revolves around action selection, where the policy decides the next action based on
the robot’s current state and the task’s requirements. These actions include moving the end-effector,
closing/opening the gripper, lifting the end-effector upward, or halting all movement. The policy has
full access to simulation and thus can use various parameters required for task completion, which are
otherwise unavailable to the RL agent. We use the following hand-designed policies

1. Press-button Policy: The policy first calculates the distance between the gripper and the button.
It moves the gripper towards the top of the button until a certain threshold is crossed. Once
the gripper is on the top of the button, it is moved down to press it. The state of the button is
continuously monitored at every step. The task is considered successful if the button is pressed
and a reward of 1 is awarded per step until the end of the episode.

2. Pick-shed Policy: The policy calculates the distance between gripper and object. If the distance
is greater than a threshold, the gripper is moved in the direction of the object. If the gripper and
object are close enough, the policy gives action to close the gripper. Then, the object is lifted up
in the z direction until a certain height threshold.

3. Open Drawer Policy: Similar to the above policy, this policy also calculates the distance between
the drawer handle and gripper. The gripper is moved towards the door handle until a certain
threshold. Once the gripper is above the handle, the gripper is closed. Finally, the gripper is
moved in the direction of opening the drawer. This direction depends on the drawer’s orientation,
which is provided in the policy from the simulation.

Our data collection procedure, as defined in algorithm 1, follows the standard agent-environment
loop. We initiate an outer loop to iterate over the total number of trajectories (or episodes) NT , which
is determined by considering the area and density of the object space, ensuring a consistent density
across different areas. Each episode consists of 20 time steps. During each time step, the hand-designed

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

1724 Sudhir Pratap Yadav et al.

Algorithm 1. Data Collection Procedure.

← [];

← 0;
while ≤ do

← 0;
while ≤ 20 do

← ();

← () + N (0, 1);

+1 ← ();

← + +1 >;
← + 1;

end
← + 1;

end

policy generates an action (at) based on the current environment state. Then, a Gaussian noise (N) is
added to the action. The purpose of this noise is twofold: it reduces the policy’s accuracy from 100%
to approximately 80% so that we get both successful and failure cases, and it introduces variations in
the trajectories. The noisy action is then provided to the simulator, which produces the next state (st+1)
and the corresponding reward (rt). We store this information as a typical tuple < st, at, rt, st+1 >, which
is commonly utilised in reinforcement learning.

4.2. Empirical results and analysis
For one sequential learning experiment, we select a sequence of two tasks from the three tasks set, as
mentioned in the previous section. This selection yields six possible combinations: button-shed, button-
drawer, shed-button, shed-drawer, drawer-shed, and drawer-button. We perform two sets of experiments
for each doublet sequence, one with SI regularisation and another without SI regularisation. Each set
contains six experiments by varying the area and density of object space. Therefore, in total, we per-
formed 72 experiments of sequential learning. Apart from these 72 experiments, we also trained the
agent for single tasks using SAC-CQL for reference baseline performance to evaluate forward transfer.
We do behaviour cloning for the initial 5k steps to learn faster as we have a limited compute budget.
We use metrics mentioned in ref. [31] for evaluating the performance of a continual learning agent.
Each task is trained for � = 100K steps. The total number of tasks in a sequence is N = 2. Total steps
T = 2 · �. The i-th task is trained from t ∈ [(i − 1) · �, i · �].

4.2.1 Task accuracy
We evaluate the agent after every 1000 training steps by sampling ten trajectories from the environment
for each task. The agent’s accuracy pi(t), for a task i, is defined as the number of successful trajectories
out of those ten trials. Fig. 5 shows the accuracy of three experiments corresponding to button-shed,
button-drawer, and drawer-button task combinations for the area size of 40cm2 with a density of 10
and 20 object configurations per cm2. The top row represents sequential learning with SI, while the
bottom represents sequential learning without SI. SMMMMMMMMI is working better, as evidenced
by overlapping Task-1 and Task-2 accuracy. We observed that SI was most helpful in button-shed task
doublet due to the overlapping nature of these tasks, as both require reaching the object. This shows the
benefit of using SI for overlapping tasks.

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

Robotica 1725

Figure 5. Task accuracy for tasks button-shed, button-drawer and drawer-button. The top row is with
SI, and the bottom row is without SI. In each plot, the X-axis represents the number of gradient update
steps, and the Y-axis represents accuracy.

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

1726 Sudhir Pratap Yadav et al.

Figure 6. Forgetting matrix (0-button, 1-shed, 2-drawer). The top row is with SI regularisation, and
the bottom row is without regularisation. Measuring units for area and density are cm2 and objects/cm2

respectively for every task.

4.2.2 Forgetting
It measures the decrease in accuracy of the task as we train more tasks and is defined as Fi: = pi(i.�) −
pi(T). Here, pi(t) ∈ [0, 1] is the success rate of task i at time t. Fig. 6 shows the forgetting of Task-1 after
training Task-2. We can see that SI performed better or equal in all cases. In fact, in some cases, like
button-shed forgetting is negative, which means that the performance of Task-1 improved after training
on Task-2. This indicates knowledge transfer from Task-1 to Task-2. This phenomenon is not seen in the
case of sequential learning without SI. This indicates that SI helps in reducing catastrophic forgetting.
No significant trends are observed in the variation of object-space area, but forgetting increases with
increased object-space density. This might be due to the limited computing budget (100K) per task, as
tasks with more area size and density would require more training to show good results.

4.2.3 Forward transfer
It measures knowledge transfer by comparing the performance of a given task when trained individually
versus learning the task after the network is already trained on previous tasks and is defined as

FTi: = AUCi − AUCb
i

1 − AUCb
i

, (10)

where AUCi = 1
�

∫ i·�
(i−1)·� pi(t)dt represents area under the accuracy curve of task i and AUCb

i =
1
�

∫ �

0
pb

i (t)dt represents area under curve of the reference baseline task. pb
i (t) represents reference base-

line performance. We use single-task training performance as the reference for Task-2 while evaluating
forward transfer. Fig. 7 shows forward transfer for Task-2 after it is trained on Task-1. We observed that
in most cases, training without SI gives a better transfer ratio than training with SI. Since reducing catas-
trophic forgetting is the primary objective of the sequential learning framework, we set a high value of
SI regularisation strength. This restricts the movement of weights from the solution of the previous task,
which helps to reduce catastrophic forgetting but also hinders the ability to learn new task thus reducing
forward transfer. This can also be noticed in Fig. 5, where the accuracy of Task-2 is lower for SI than
its non-SI counterpart. This highlights the problem of stability-plasticity; any method that tries to make
learning more stable to reduce forgetting inadvertently also restricts the flexibility of the connectionist
model to learn a new task.

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

Robotica 1727

Figure 7. Forward transfer matrix (0-button, 1-shed, 2-drawer). The top row is with SI regularisa-
tion, and the bottom row is without regularisation. Measuring units for area and density are cm2 and
objects/cm2 respectively for every task.

Figure 8. Accuracy for sequentially learning pick-shed and press-button tasks (area = 360cm2, den-
sity = 20objects/cm2). The left column is with SI, and the right column is without SI. In each plot, the
X-axis represents the number of gradient update steps, and the Y-axis represents accuracy.

4.2.4 Training time
We used NVIDIA DGX A100 GPU for training. Training time for one experiment with three sequen-
tial tasks on 1 GPU is 18h (6h per task). We used 8 GPUs in parallel for training and testing all 72
experiments, which took approximately 7 days. Apart from these metrics, we observed that the agent
requires 14k, 10k, and 16k steps on average to achieve its first success on Task-2 when trained directly,
sequentially without SI, and sequentially with SI, respectively. This shows the advantage of the sequen-
tial training framework as the agent learns the task faster when trained sequentially (without SI) than
when directly training the task, but the agent slows down a little when we add SI to reduce forgetting.

Fig. 8 shows another interesting observation we made in the case of sequential learning of pick-shed
and press-button (area = 360cm2, density = 20objects/cm2) tasks. While training for Task-1 (pick shed),
the agent showed some success on Task-2 (press button) even before getting any success on Task-1 itself.
This might be due to the nature of the tasks, as the trajectory of the press-button task is common for
another task. Therefore, the agent tends to acquire knowledge for similar tasks. This may also result from
behaviour cloning for the initial 5k steps, where the agent tries to mimic the data collection policy for a
few initial training steps. Also, we observed that increasing the object-space area (keeping the density

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000389

1728 Sudhir Pratap Yadav et al.

the same) helps in knowledge transfer, which the increase can be seen in average forward transfer with
area size.

5. Conclusion and future work
We investigated catastrophic forgetting and forward knowledge transfer for sequentially learning image-
based robotic manipulation tasks by combining a continual learning approach with an offline RL
framework. We use SAC-CQL as an offline deep RL framework with synaptic intelligence (SI) to miti-
gate catastrophic forgetting. Multiheaded CNN was used to provide knowledge of the current task index
to the neural network. We performed a series of experiments with different task combinations and with
a varying number of object configurations and densities. We found that SI is useful for reducing for-
getting. However, it showed a limited transfer of knowledge from previous tasks. We also found that
the ordering of tasks significantly affects the performance of sequential task learning. Experiments also
suggest the importance of prior knowledge for continual learning. Agent trained only with state-action
pairs of many diverse tasks (even without reward) may provide better prior knowledge.

In addition to the findings presented in this work, there are several promising directions for extending
the research on sequential learning of image-based robotic manipulation tasks. Firstly, the scope of our
framework can be expanded to encompass a more comprehensive array of robotic manipulation tasks,
thereby demonstrating its versatility and applicability across diverse manipulation domains. This exten-
sion would involve testing the agent’s ability to continuously acquire new skills, even when the task set
evolves. Secondly, the order in which tasks are presented to the agent can significantly influence the
learning process. Therefore, investigating curriculum learning strategies that dynamically arrange the
sequence of tasks to optimise knowledge transfer represents a valuable avenue for future exploration.
Finally, we used a simulator for data collection. However, simulation may not account for varying light-
ing conditions, distribution of natural images, unmodelled dynamics, and uncertainty of the real world.
These factors introduce a discrepancy between the simulated and real-world scenarios, known as the
reality gap. As such, the future will also focus on datasets collected from real hardware for a more
comprehensive understanding of continual learning in robotic manipulation in real-world scenarios.

Author contributions. All three authors, Sudhir Pratap Yadav, Rajendra Nagar, and Suril V. Shah, were involved in conceptual-
ising the problem, discussing solutions, and writing the paper. At the same time, Sudhir Pratap Yadav carried out data collection
and experiments.

Financial support. This work was done in collaboration with IIT Jodhpur and the iHub Drishti Foundation, IIT Jodhpur.

Competing interests. The author(s) declare none.

Data availability statement. The data and code supporting this study’s findings are openly available at https://github.com/
sudhirpratapyadav/sac-cql-si; further inquiries can be directed to the corresponding author/s.

References
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. Riedmiller, “Playing atari with deep

reinforcement learning,” (2013). arXiv preprint arXiv: 1312.5602, 2013.
[2] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakrishnan and V.

Vanhoucke, “Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation, (2018). arXiv preprint
arXiv: 1806.10293, 2018.

[3] C. Devin, A. Gupta, T. Darrell, P. Abbeel and S. Levine, “Learning Modular Neural Network Policies for Multi-Task and
Multi-Robot Transfer,” In: International Conference on Robotics and Automation (ICRA), (2017) pp. 2169–2176.

[4] S. Gu, E. Holly, T. Lillicrap and S. Levine, “Deep reinforcement learning for robotic manipulation,” (2016). arXiv preprint
arXiv: 1610.00633 1, 2016.

[5] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel and S. Levine, “Composable Deep Reinforcement Learning for Robotic
Manipulation,” In: International Conference on Robotics and Automation (ICRA), (2018) pp. 6244–6251.

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://github.com/sudhirpratapyadav/sac-cql-si
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1610.00633
https://doi.org/10.1017/S0263574724000389

Robotica 1729

[6] M. Gualtieri, A. ten Pas and R. Platt, “Category level pick and place using deep reinforcement learning,” Computing
Research Repository (2017). arXiv preprint arXiv: 1707.05615.

[7] L. Berscheid, P. Meißner and T. Kröger, “Self-supervised learning for precise pick-and-place without object model,” Robot
Automa Lett 5(3), 4828–4835 (2020).

[8] A. Lee, C. Devin, Y. Zhou, T. Lampe, K. Bousmalis, J. Springenberg, A. Byravan, A. Abdolmaleki, N. Gileadi and D. Khosid,
“Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes.” In: Conference on Robot Learning, (2021).

[9] J. Bao, G. Zhang, Y. Peng, Z. Shao and A. Song, “Learn multi-step object sorting tasks through deep reinforcement learning,”
Robotica 40(11), 3878–3894 (2022).

[10] X. Wu, D. Zhang, F. Qin and D. Xu, “Deep reinforcement learning of robotic precision insertion skill accelerated by
demonstrations,” In: International Conference on Automation Science and Engineering (CASE), 1651-1656, (2019).

[11] A. Yasutomi, H. Mori and T. Ogata, “A Peg-in-Hole Task Strategy for Holes in Concrete,” In: International Conference on
Robotics and Automation (ICRA), (2021) pp. 2205–2211.

[12] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. Ojea, E. Solowjow and S. Levine, “Deep Reinforcement Learning for Industrial
Insertion Tasks with Visual Inputs and Natural Rewards,” In: International Conference on Intelligent Robots and Systems
(IROS), (2020) pp. 5548–5555.

[13] B. Nemec, L. Žlajpah and A. Ude, “Door Opening by Joining Reinforcement Learning and Intelligent Control,”
In: International Conference on Advanced Robotics (ICAR, (2017) pp. 222–228.

[14] Y. Chen, C. Zeng, Z. Wang, P. Lu and C. Yang, “Zero-shot sim-to-real transfer of reinforcement learning framework for
robotics manipulation with demonstration and force feedback,” Robotica 41(3), 1015–1024 (2023).

[15] X. Sun, H. Naito, A. Namiki, Y. Liu, T. Matsuzawa and A. Takanishi, “Assist system for remote manipulation of electric
drills by the robot WAREC-1R using deep reinforcement learning,” Robotica 40(2), 365–376 (2022).

[16] A. Apolinarska, M. Pacher, H. Li, N. Cote, R. Pastrana, F. Gramazio and M. Kohler, “Robotic assembly of timber joints
using reinforcement learning,” Automat Constr 125, 103569 (2021).

[17] M. Neves and P. Neto, “Deep reinforcement learning applied to an assembly sequence planning problem with user
preferences,” Int J Adv Manuf Tech 122(11-12), 4235–4245 (2022).

[18] P. Kulkarni, J. Kober, R. Babuška and C. D. Santina, “Learning assembly tasks in a few minutes by combining impedance
control and residual recurrent reinforcement learning,” Adv Intell Syst 4(1), 2100095 (2022).

[19] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik and S. Levine, “Combining Self-Supervised Learning and
Imitation for Vision-based Rope Manipulation,” In: International Conference on Robotics and Automation (ICRA), (2017)
pp. 2146–2153.

[20] R. Lee, D. Ward, A. Cosgun, V. Dasagi, P. Corke and J. Leitner, “Learning arbitrary-goal fabric folding with one hour of
real robot experience (2020). arXiv preprint arXiv: 2010.03209.

[21] A. Gupta, J. Yu, T. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin and S. Levine, “Reset-Free Reinforcement Learning
via Multi-Task Learning: Learning Dexterous Manipulation Behaviors Without Human Intervention,” In: International
Conference on Robotics and Automation (ICRA), (2021) pp. 6664–6671.

[22] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine and K. Hausman, “Scaling Up
Multi-Task Robotic Reinforcement Learning,” In: Conference on Robot Learning (CoRL), (2021).

[23] S. Sodhani, A. Zhang and J. Pineau, “Multi-Task Reinforcement Learning with Context-based Representations,”
In: International Conference on Machine Learning, (2021) pp. 9767–9779.

[24] Y. Teh, V. Bapst, W. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell, N. Heess and R. Pascanu, “Distral: Robust Multitask
Reinforcement Learning,” In: Advances in Neural Information Processing Systems, (2017).

[25] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman and C. Finn, “Gradient surgery for multi-task learning,” Adv Neur Infor
Pro Syst 33, 5824–5836 (2020).

[26] I. Goodfellow, M. Mirza, D. Xiao, A. Courville and Y. Bengio, “An empirical investigation of catastrophic forgetting in
gradient-based neural networks,” (2013). arXiv preprint arXiv: 1312.6211, 2013.

[27] A. Mallya and S. Lazebnik, “Packnet: Adding Multiple Tasks to a Single Network by Iterative Pruning,” In: Computer
Vision and Pattern Recognition, (2018) pp. 7765–7773.

[28] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Trans Patt Anal Mach Intell 40(12), 2935–2947 (2017).
[29] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-

Barwinska, D. Hassabis, C. Clopath, D. Kumaran and R. Hadsell, “Overcoming catastrophic forgetting in neural networks,”
Proceed Nat Acad Sci 114(13), 3521–3526 (2017).

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang and W. Zaremba, “OpenAI gym,” Comp Res
Reposit (2016). arXiv preprint arXiv: 1606.01540.

[31] M. Wołczyk, M. Zajac, R. Pascanu, Ł. Kuciński and P. Miłoś, “Continual world: A robotic benchmark for continual
reinforcement learning,” Adv Neur Infor Pro Syst 34, 28496–28510 (2021).

[32] M. Caccia, J. Mueller, T. Kim, L. Charlin and R. Fakoor, “Task-agnostic continual reinforcement learning: In praise of a
simple baseline,” (2022). arXiv preprint arXiv: 2205.14495, 2022.

[33] T. Haarnoja, A. Zhou, P. Abbeel and S. Levine, “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor,” In: International Conference on Machine Learning, (2018) pp. 1861–1870.

[34] R. French, “Catastrophic forgetting in connectionist networks,” Trends Cogn Sci 3(4), 128–135 (1999).
[35] F. Zenke, B. Poole and S. Ganguli, “Continual Learning through Synaptic Intelligence,” In: International Conference on

Machine Learning, (2017) pp. 3987–3995.
[36] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar and S. Levine, “Cog: Connecting new skills to past experience with offline

reinforcement learning,” (2020). arXiv preprint arXiv: 2010.14500.

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://arxiv.org/abs/1707.05615
https://arxiv.org/abs/2010.03209
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2205.14495
https://arxiv.org/abs/2010.14500
https://doi.org/10.1017/S0263574724000389

1730 Sudhir Pratap Yadav et al.

[37] A. Kumar, A. Zhou, G. Tucker and S. Levine, “Conservative q-learning for offline reinforcement learning,” Adv Neur Info
Pro Syst 33, 1179–1191 (2020).

[38] H. Van Hasselt, A. Guez and D. Silver, “Deep reinforcement learning with double Q-learning,” Proceed AAAI Conf Arti
Intell 30(1), (2016). doi: 10.1609/aaai.v30i1.10295

[39] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” (2014). arXiv preprint arXiv: 1412.6980.
[40] C. Erwin and B. Yunfei. PyBullet, a Python Module for Physics Simulation for Games, Robotics and Machine Learning

(PyBullet, 2016).

Cite this article: S. P. Yadav, R. Nagar and S. V. Shah (2024). “Learning vision-based robotic manipulation tasks sequentially
in offline reinforcement learning settings”, Robotica 42, 1715–1730. https://doi.org/10.1017/S0263574724000389

https://doi.org/10.1017/S0263574724000389 Published online by Cambridge University Press

https://doi.org/10.1609/aaai.v30i1.10295
https://arxiv.org/abs/1412.6980
https://doi.org/10.1017/S0263574724000389
https://doi.org/10.1017/S0263574724000389

	Learning vision-based robotic manipulation tasks sequentially in offline reinforcement learning settings
	Introduction
	Related work
	1.1.1 Single-task RL
	1.1.2 Multitask RL
	1.1.3 Online continual RL
	1.1.4 Catastrophic forgetting

	Learning image-based robotic manipulation tasks sequentially
	RL formulation for learning image-based robotic manipulation tasks
	Sequential learning problem and solution

	Integrating sequential task learning with offline RL
	SAC-CQL algorithm for offline RL
	Applying synaptic intelligence in offline RL

	Experiments, results, and discussion
	Experimental setup
	Object space
	Tasks definitions
	Data collection

	Empirical results and analysis
	4.2.1 Task accuracy
	4.2.2 Forgetting
	4.2.3 Forward transfer
	4.2.4 Training time

	Conclusion and future work

