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Abstract
Robots with multi-sensors always have a problem of weak pairing among different modals of the collected infor-
mation produced by multi-sensors, which leads to a bad perception performance during robot interaction. To solve
this problem, this paper proposes a Force Vision Sight (FVSight) sensor, which utilizes a distributed flexible tac-
tile sensing array integrated with a vision unit. This innovative approach aims to enhance the overall perceptual
capabilities for object recognition. The core idea is using one perceptual layer to trigger both tactile images and
force-tactile arrays. It allows the two heterogeneous tactile modal information to be consistent in the temporal and
spatial dimensions, thus solving the problem of weak pairing between visual and tactile data. Two experiments are
specially designed, namely object classification and slip detection. A dataset containing 27 objects with deep presses
and shallow presses is collected for classification, and then 20 slip experiments on three objects are conducted.
The determination of slip and stationary state is accurately obtained by covariance operation on the tactile data.
The experimental results show the reliability of generated multimodal data and the effectiveness of our proposed
FVSight sensor.

1. Introduction
Vision and tactile are the two most widely used perception modalities during robot interaction [1]. In
real life, humans see the global information of things through eyes and touch the local features of objects
through skin. The pairing of two organs can help humans to perceive the external environment. In the
field of robotics, researchers have used electronic tactile sensors to simulate human tactile mechanisms,
such as resistive sensors [2], capacitive sensors [3], inductive sensors [4], and fiber sensors [5]. However,
traditional tactile sensors tend to be localized and sparse for the perception of object features due to
hardware limitations. Therefore, adding a vision unit to the tactile system has become a hot way in the
tactile research.

Advances in image recognition and deep learning techniques have allowed machine vision to help
visualize tactile information. The quality of tactile features can be improved by vision. For example,
marking vectors in tactile images to represent the magnitude and direction of force [6], and embedding
vision sensors inside the fingers of robots for sensing the bending state of the fingers [7]. The com-
bination of vision and tactile sensation has greatly contributed to the development of tactile sensors.
Currently, the representative sensor is GelSight [8]. This sensor has been developed with various func-
tions. Reference [9] perceives the normal, shear, and torsional forces on the contact surface by analyzing
the image sequence of GelSight for slip detection. In ref. [10], W. Yuan et al. used GelSight for different
object hardness detection based on deep learning. In ref. [11], GelSight Wedge sensor was proposed
for high-resolution 3D reconstruction of tactile images. Based on a series of studies, a new optical sen-
sor GelTip [12] was proposed. This sensor is shaped as a finger and has a full range of tactile sensing
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Figure 1. Laboratory scene of the sensor. FVSight is fixed to the end of the UR3 robot arm. On the
table are the experimental objects.

capabilities. And it can capture high-resolution tactile images. Similarly, GelSlim [13] implemented
a more compact tactile system than GelSight. E. Donlon et al. redesigned the optical path from light
source to camera, combining light guide and mirror to reduce the thickness of the finger. In ref. [14],
GelSlim3.0 can measure the shape of contact objects, estimate 3D contact force distribution, and detect
slip. Although existing tactile sensors can achieve many powerful functions, there is a problem in the
object perception process: weak pairing between multimodal information.

In ref. [15], authors proposed a classification method for the fusion of visual and tactile senses and
validated it on the recognition of cloth textures. The dataset is obtained from tactile images acquired by
GelSight and camera images captured by an external camera. There is a problem here: GelSight extracts
the local features of clothes. The camera extracts the global features of clothes. And the extraction
process of both is separated. This leads to a spatial and temporal mismatch between the tactile images
and the camera images. Similarly, reference [16] validated a visual and tactile fusion approach for object
classification on three datasets: GelFabric, LMT, and Vitac. All three datasets contain external image
information and local tactile information of different objects. The same weak pairing exists between
these two modal information. Inspired by this problem, we hope to make a sensor that can solve the
problem of weak pairing between visual and tactile information.

To achieve this goal, we replaced GelSight’s gel layer with a flexible force-tactile sensing array.
Two heterogeneous tactile modal information can be collected in the same spatial region and in the
same time span when the sensor presses an object. The sensor was firstly proposed in ref. [17], named
FVSight. In this paper, we calibrate the parameters of FVSight, enrich the object recognition experi-
ments, and explore the slip detection function. The laboratory scenario of sensor is shown in Fig. 1. The
contributions of this paper are as follows:

• Integrated spatiotemporal synchronization: Traditional tactile sensors often collect tactile
information by contacting the local surface of an object, resulting in a weak spatial pairing
with globally acquired visual information. To address this issue, FVSight ensures a congruence
between the visual contact area and the tactile contact area when pressing the measured object.
This approach establishes spatial coherence, aligning the perception areas of tactile images and
force-tactile arrays. Furthermore, conventional tactile sensors typically acquire tactile and visual
information independently, leading to temporal discrepancies in the data collection process. To
overcome this limitation, FVSight simultaneously captures tactile image information and force-
tactile array data upon pressing the object, achieving temporal synchronization of both visual
and tactile modal information of the object.
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• Sensory layer innovation: Traditional tactile sensors such as GelSight, GelTip, GelSlim, etc.
can only collect one type of tactile modality information through the sensory layer. FVSight
is able to collect two types of heterogeneous tactile modality information simultaneously with
force-tactile arrays in the sensory layer. This ensures that the tactile image and force-tactile array
information are paired spatially and temporally.

• Experimental validation: Through the fusion of vision and tactile, the multimodal tactile sensor
has demonstrated enhanced efficacy in object classification experiments, effectively addressing
the challenge of weak pairing between the two modalities. Moreover, the sensor has exhib-
ited exceptional performance in slip detection experiments, thereby expanding its potential
applications in human-computer interaction scenarios.

The rest of this paper is organized as follows. In Section 2, we present the work related to the content
of the paper. Section 3 presents the calibration experiments and parameters of the sensor. In Section 4,
we present the object classification experiment. In Section 5, we present the slip detection experiment.
Finally, the conclusions are given in Section 6.

2. Related work
2.1. Fusion of vision and tactile sensing
For robots, vision-based tactile sensors are more effective than sensors that rely on vision or tactile
sensations alone [18]. Traditional array piezoresistive sensor technology is well established. In ref. [19],
a flexible tactile sensor array with a spatial resolution of 3.5 mm was proposed. This sensor can detect
the three-axis contact force when grasping different objects. However, the hysteresis of resistive sensor
and the number of contacts limit the sensing range and accuracy. On top of this, the addition of vision
enables the analysis of higher-resolution 3D force distribution from tactile images [20]. Vision-based
tactile sensors that provide accurate tactile feedback are also used on robotic arms. The robot hand uses
a camera to acquire global images of objects during approach and a tactile unit to acquire local tactile
features during contact with objects [21]. The combination of vision and tactile sensation visualizes the
approach-contact process of object perception.

The sensory layer technology is the most complex when it comes to sensor fabrication. Elastomeric
materials and reflective layer materials rely on specialized equipment and are expensive. In this paper,
a soft and low-cost canvas is used as the surface of sensory layer. The canvas is laminated to the tactile
array to form a kind of flexible electronic skin. This is similar to the integration of 10 stretchable resistors
inside the e-skin sensor mentioned in ref. [22]. This electronic skin can output an array of forces and
also capture the deformation produced by objects. Based on vision we can capture a tactile image of this
deformation.

2.2. Object recognition
Visual-tactile fusion has excellent performance in object recognition. sun et al. developed a learning
framework based on visual-tactile fusion [23]. This framework utilizes a visual feature histogram and
two different tactile models for object recognition tasks. In ref. [24], a multi-input network jointly trained
visual and tactile features and demonstrated that object recognition with the combination of two modal
information is far more effective than relying on only one modal information. In ref. [25], a 3∗3 tactile
array was mounted on a bionic finger to classify items with seven different textures. The classification
results achieved 99.21% accuracy on the SVM model. The KNN classifier mentioned in the paper [26] is
also a classical model that is commonly used as a comparison algorithm. In addition, Chen Z et al. [27]
develop a series of Gaussian elastic matching kernels to deal with the problems of time shift and nonlin-
ear representation. On the basis of KSC, H. Liu et al. [28] propose a joint kernel sparse coding (JKSC)
model to solve the multifinger tactile sequence classification problem. And it verifies better performance
than KSC. P. Xiong et al. [29] propose a method to convert multimodal sparse codes obtained using a
unified dictionary into shared labels, enhancing the fusion of multimodal information. Meanwhile, in
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the field of object recognition, reference [30] proposes a novel few-sample learning method with a cou-
pled dictionary learning framework, which can effectively perceive unknown objects under few-sample
learning. Reference [31] proposes a deeply supervised subspace learning method to help robots perceive
the properties of objects during noncontact human-robot interaction.

2.3. Slip detection
Slip refers to the relative motion that occurs between two rough surfaces, which then generates a high-
frequency signal [32]. Slip detection is amplifying and capturing this signal. Tactile sensing is an
important part of slip detection. In ref. [33], J. W. James et al. used the T-MO sensor to grasp 11 different
objects. The experiment was divided into two pieces: adding weight during grasping to destabilize and
using slip detection to stabilize the grasp at the first contact with objects. This verifies that the sensor
relies on slip detection to stabilize grasping in an unstructured environment. Similarly, these authors
also used TacTip to measure positions of the internal pins embedded in their skin to determine whether
slippage is generated [34]. There are also many models for slip detection. Reference [35] proposed a
ConvLSTM model that uses spatiotemporal tactile features learned from a tactile sensor to detect the
direction of slip. Reference [36] proposed a deep neural network for slip detection. The objects trained
during the experiments are unknown. Furthermore, in ref. [37], a force mediation strategy for precision
grasping is proposed. This strategy is independent of the properties and surface features of objects and
is applicable to a variety of grasps. Part of this work is to compute the magnitude signal of slip using
the covariance matrix of the tactile data. This gives the idea of slip detection in this paper.

3. FVSight sensor design
3.1. Measuring circuit for the force-tactile array
The distributed force-tactile array in FVSight can be modeled as a matrix array with variable resistance
of 4∗4. It is necessary to pay attention to the electrical short-circuit phenomenon between any two elec-
trodes when measuring the analog voltage values at each junction. Therefore, it is necessary to isolate
the signal by a switching circuit, which is designed as shown in Fig. 2 (a).

When the sensor works, one row is selected by the multi-channel analog switcher S1 (CD4066) and
connected to the power supply. The resistors of other rows are in a high-impedance state. The voltage
of each column is equal to the input voltage, and each column is independent of each other. Then, the
STM32 microcontroller equipped with a 16-bit ADC chip scan sampling the analog voltage value of the
active row, where the force measurement circuit of a single node is shown in Fig. 2 (b). The relationship
between the output voltage Uout and the measurement resistance is expressed in equation (1).

Uout ≡ VCC × R

R1 + R
(1)

where R1 indicates the resistance value of a junction of the force-tactile unit. After measuring all the
resistive units in this line, the microcontroller uses S1 to connect the next line to the power supply and
obtains the analog voltage value at each junction in the line. This can be cycled four times to obtain the
analog voltage value of the entire force-tactile array of 16 junctions, thus obtaining the contact force-
tactile distribution between the object under test and the flexible tactile film. In the circuit, the power
supply VCC is provided by the AMS-1117 voltage regulator chip with a value of 3.3V, and R is used as
a voltage divider resistor with a size of 10 k�.

3.2. Calibration of the force-tactile array
Figure 3(a) shows the calibration device performing a static force calibration experiment on the tactile
sensing array. The device applies a force in a vertical direction to one contact in the tactile array, and
the force is measured ranging from 0 to 50 N. During the experiment, the value of the force is recorded
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Figure 2. Distributed force-tactile sensing array measuring circuit. (a) Force-tactile sensor array
measurement circuit. (b) Single node measurement circuit.

along with the induced voltage of the array. The value of voltage is then converted to the value of force.
The magnitude of force varies uniformly at a rate of 1n/s. We performed two experiments on the tactile
array, pressing and unloading. The curves of the force values with time during these two processes are
shown in Fig. 3(b).

The experimental results show that the sensor has a high sensitivity in the small pressure range and is
suitable for the detection of moderate contact force in strength. Also, the maximum difference between
the longitudinal coordinates of the press curve and the unload curve is compared. The presence of low
hysteresis in the haptic array does not have an impact on our experiments.

Additionally, the perceptual layer of FVSight was equipped with standardized weights of 20, 50, 100,
and 200 g, as illustrated in Fig. 4(a). The corresponding force-tactile values are depicted in Fig. 4(b).
Placing various masses on distinct contacts of the perceptual layer resulted in force-tactile values cor-
responding to their respective weights. This validation underscores that the different contacts of the
perceptual layer exhibit uniform sensitivity to stress.

3.3. Parameters of the FVSight
The hardware part of sensor includes a camera, a flexible force-tactile sensing array, RGB light beads,
and a housing. The housing of the device is made of epoxy resin print and has an overall rectangular
shape. The camera is mounted on the top of the device, and the shooting view can cover all the sensing
layer. RGB light beads provide three channels of light source to enrich the characteristics of the image.
The flexible force-tactile sensing array is wrapped with canvas using force-tactile array as shown in
Fig. 5(b). The sensing layer not only acquires the stress generated when objects touch but also records
the information of canvas deformation. The installation position of each part of the sensor is shown
in Fig. 5(a). The device is securely attached to the robot arm using a hot-melt adhesive, allowing it
to be easily installed on all robot arm setups with flat surfaces. This makes it especially well-suited
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Figure 3. Force calibration experiment. Experimentally observe the change of force in two processes
of tactile array pressing and unloading.

Figure 4. Standard weight experiment. Weights of different masses are placed on different contacts in
the perceptual layer.
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Table I. Real-world FVSight model parameters.

Component Expt. Symbol Value
Camera (a) Resolution 1280∗720 (p)

(b) Frame Rate 30 (fps)
(c) Monitoring Angle 45◦

Tactile Array (a) Measuring Range 0.5∼50 (kg)
(b) Sensing Diameter 80∗80 (mm)
(c) Resolution 0.2 (n)

Canvas (a) Material 100% Linen

Led (a) Luminous Angle 180◦

(b) Power Rating 3 (w)

FVSight (a) Size 90∗90∗120 (mm)
(b) Hardness 90 (shore D)
(c) Weight 450 (g)

Microcontroller (a) Sensing Speed 1000 (Hz)

Figure 5. Overall sensor structure and sensing layer. (a) Distribution of sensing units inside the device.
(b) The circuit array inside the sensing layer with resistive units.

for mounting on robotic arms used in industrial applications, such as object sorting or detecting object
movements in assembly lines. The detailed parameters of the sensors are shown in Table I.

4. Methods and results of object classification experiment
Experimental data are obtained from 27 different items, as shown in Fig. 6. Twelve sets of tactile image
information and force-tactile array information are collected for each item, of which 10 sets are deep
presses and 2 sets are shallow presses. A partial sample of the data is shown in Fig. 7. The authors in ref.
[17] detail the production method of VicTac Item Dataset, and add new algorithm models for validation
in this paper. It is crucial to emphasize that, throughout the experiment, all objects were consistently
positioned and oriented identically. Moreover, the parameters for each press executed by the robotic arm
were standardized. The experimental procedure is shown in Fig. 8. Firstly, the data of different objects are
labeled, and then, the deep pressure dataset is divided into two parts: training set and test set, with a ratio
of 9:1. The tactile array information is a sequence of 16 stress values containing shape information and
depth information. The visual information is extracted from the center part of 256∗256 tactile images,
parsed into 512-dimensional feature information using the VGG algorithm, and then downscaled using
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Figure 6. Object set. The photos were taken by cell phone camera. The dataset includes 27 different
features of household items.

Figure 7. FVSight data when pressing on different kinds of experimental samples. The RGB image rep-
resents the haptic image, and the histogram represents the force-tactile array information of 16 contacts.
The array distribution values generated by different sample contact perception layers are related to the
shape of the sample and the depth of the press. From left to right and top to bottom, they are earphone,
shaver, glue, batteries, toy, and spoon.

the PCA algorithm. Then the test set and training set of depth presses in a single tactile or visual modality
are used for classification experiments using four algorithms: KSC, JKSC, KNN, and SVM. Finally, the
multimodal depth press data are fused using four algorithms for classification experiments, the formula
for calculating the accuracy of object classification is shown in equation (2):

Accuracy ≡ #of correctly training samples

#of training samples
(2)

That is, we use the data of a single known item in the test set to compare with all the data of the
unknown items in the training set arbitrarily and take out the training set data with the highest similarity.
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Figure 8. The process of training the dataset collected by FVSight. Firstly, the acquired tactile image
information is parsed into n-dimensional vectors by VGG and PCA algorithm, and the tactile array
information is averaged into 16-dimensional vectors, then the vector information of the two modalities
is spliced into (n + 16)-dimensional vectors, which are divided into two parts: training set and test set.
Finally, the test set gets the prediction labels after the classifier model, and the classification results are
obtained after comparing with the reference labels of the training set.

If the labels of the two data agree, the classification is considered correct this time. Since there is a bit
of uncertainty in the classification algorithm, the final result is the average of 10 experiments. After
doing the depth-pressing experiment, we added the noise data, that is, shallow-pressing data, to do the
comparison test. The method is the same as the original experiment. And the dataset in the comparison
experiment is divided into two parts, the training set and the test set, with a ratio of 11:1.

4.1. Kernel sparse coding model
The KSC model [27] is used in this experiment for unimodal sample data. This algorithm is mainly used
to find the coding vectors of the sample data so that the samples are represented as a linear combination
of these coding vectors and the training samples after high-dimensional mapping. This model is:

min
X

T/V∑
t/v=1

∥∥�
(
S(t/v)

) − �
(
ς (t/v)

)
χ t/v

∥∥2

F
+ λ‖χ‖1 (3)

where S(t/v) = [
S(t1/v1) . . . S(tn/vn)

] ∈ Rd×n are the test samples of tactile sequence or image data, ς (t/v) =[
ς(t1/v1) . . . ς (tn/vn)

] ∈ Rd×n are the training samples of tactile sequences or image data, �( · ) is the implicit
mapping function, χ t/v is the encoding parameter which is obtained using Kernel Orthogonal Matching
Pursuit under row zero parametric constraints, λ is the penalty weight, and by this model we can classify
the test sample S(t/v) according to the residue:

r(t/v)
c =

T/V∑
t/v=1

{
−2κT

(
S(t/v), ςc

(t/v)
)
χ (t/v)

c + χ (t/v)T

c κ
(
ςc

(t/v), ςc
(t/v)

)
χ (t/v)

c

}
(4)

where ςc
(t/v) is the cth unimodal object class, χ (t/v)

c is the coefficient associated with the cth class, and
the label c∗ of the test sample is determined by the smallest reconstruction error class, and whether the
object recognition is correct this time can be obtained by comparing the labels of the test sample with
the training sample, which is given by:

c∗ = arg min
c∈{1,...,C}

r(t/v)
c (5)
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4.2. Joint kernel sparse coding model
The JKSC model is used in this experiment for multimodal sample data. The core idea of JKSC is
similar to KSC, so the algorithm model is basically the same. On the basis of KSC, [28] gives a method
for classifying multimodal information, the residue is:

r(t,v)
c =

T∑
t=1

{
−2κT

(
S(t), ςc

(t)
)
χ (t)

c + χ (t)T

c κ
(
ςc

(t), ςc
(t)
)
χ (t)

c

}

+
V∑

v=1

{
−2κT

(
S(v), ςc

(v)
)
χ (v)

c + χ (v)T

c κ
(
ςc

(v), ςc
(v)

)
χ (v)

c

}
(6)

Similarly, we can calculate the sum of reconstruction errors based on multimodal information, and
then use r(t,v)

c to determine the labels of objects in the test set. Based on the comparison with the labels
of objects in the training set, the results of object classification can be obtained. Among them, JKSC
and KSC calculate the distance by kernel formula, KSC is applicable to classify objects under unimodal
data, and JKSC classifies objects under multimodal data by combining multiple KSC.

4.3. K nearest neighbors model
KNN is an algorithm to determine the class of unknown samples by finding the nearest K training
neighbor vectors with the distance between unknown samples and all known samples as a reference,
which means that the KNN algorithm only relies on the class of the nearest one or more samples to
determine the class of the unknown samples in the classification decision. And this method does not
require estimation parameters and is suitable for multi-classification problems. In this experiment, we
choose to select the Euclidean distance as the distance function, and the Euclidean distance between the
training and test vectors is:

d(x, y) =
√√√√

n∑
i=1

(
x(t,v)

i − y(t,v)
i

)2 (7)

where x is the test set feature vector and y is the training set feature vector. The test vector is classified
by setting a suitable value of positive integer K and by finding the minimum distance between x and y.
The classification effect is achieved by finding the minimum distance between x and y.

4.4. Support vector machine model
SVM is a binary classification model, which maps feature vectors to some points in space and then
draws an optimal line or a hyperplane that maximizes the margin between two categories for sample
space partitioning. This algorithm is suitable for small and medium data samples, nonlinear and high-
dimensional classification problems. The training dataset labeled in the experiments in this paper is as
follows: (

x(t,v)
1 , y1

)
, . . . ,

(
x(t,v)

n , yn

)
, x(t,v)

i ∈ R, yi ∈ (−1, +1) (8)

where x((t,v)
i is the feature vector representation of the tactile sequence and the tactile image, and yi is

the category label of the support vector point x(t,v)
i (negative or positive), the optimal hyperplane can be

defined as:

wxT + b = 0 (9)

where w is the weight vector, x is the input feature, b is displacement, which determines the distance of
the hyperplane from the origin, and these parameters satisfy the following equation:

wxT
i + b ≥ +1 if yi = 1 (10)

wxT
i + b ≤ −1 if yi = −1 (11)
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Table II. Experimental results of object classification.

Press Type Feature Algorithm Accuracy (%)
KSC 88.39

Force KNN 83.54
SVM 90.00

KSC 95.31
Deep Pressure Image KNN 90.95

SVM 92.00

JKSC 98.89
Force + Image KNN 91.35

SVM 95.00

Table III. Experimental results of object classification with interference data.

Press Type Feature Algorithm Accuracy (%)
KSC 72.67

Force KNN 69.70
SVM 78.00

KSC 76.63
Deep and shallow pressure Image KNN 75.76

SVM 84.00

JKSC 85.79
Force + Image KNN 76.09

SVM 87.00

The purpose of training the SVM model is to find the most suitable w and b that maximize the
distance 1

‖w‖2 between the division hyperplane and any point on the marginal hyperplane on both sides
of it, so that the model can better distinguish the feature information of the differently labeled items and
divide the differently labeled items by the hyperplane to train the dataset to obtain the accuracy of object
recognition.

4.5. Results analysis
The experimental results of object classification are shown in Table II and Table III. Firstly, we put
force-tactile information and tactile image information into the classifier model separately. Importing
force-tactile array information, the accuracy is 88.39% under the KSC model, 83.54% under the KNN
model, and 90% under the SVM model. Importing the tactile image information, the accuracy is 95.31%
under the KSC model, 90.95% under the KNN model, and 92% under the SVM model. Both modal
data achieve more than 83% accuracy and it is not difficult to find that the tactile image reliability is
stronger. Then, we combined the image information and the tactile information into the classifier model
for classification, and the accuracy was 98.39% under the JKSC model, 91.35% under the KNN model,
and 95% under the SVM model. Obviously, the accuracy under each model is improved significantly,
which also proves that multimodal data fusion is more accurate than unimodal information in object
recognition.

Subsequently, we added the shallow press data to re-run the classification experiments. Relying on
force-tactile information for classification, the accuracy decreased by 11–16%. Relying on tactile image
information, the accuracy decreased by 8–19%. Fusing the data from both, the accuracy decreased by 8–
15%. The effect of shallow pressure data can be clearly seen in the comparison of the two experimental
results. Also, the above experimental results verify the effectiveness of the sensor for object perception.
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Figure 9. Slip process. Three distinct shapes of objects – specifically, a ball, a cuboid, and a cylinder
– were selected as entities for sliding experiments. The force-tactile data collected during the sliding
process were used as input for the covariance model to calculate the sliding outcomes.

Figure 10. Force-tactile data during object sliding. The change of force-tactile data of three different
objects throughout the sliding process.

5. Methods and results of slip detection experiment
In order to enrich the functionality of the sensor, we use FVSight to detect the slip state of object based
on the existing hardware. The sensor is mounted on UR3 robot arm. The robot arm movement drives a
slight slip between the sensor and the object. Slip under vision can be observed by eyes, while slip under
tactile sensation needs to be observed by algorithm. We control the robot arm so that FVSight presses
the object with a force of 5 N. The initial state is stationary, then it moves laterally at a fixed speed and
direction and then comes to rest. The experimental process is shown in Fig. 9. The whole process is
repeated 20 times. Slip data were collected for each of the three objects. The experimental procedure
ensured uniformity across all objects, covering the entire sequence from initial rest, through slipping, to
returning to a resting state. Finally, the slip data and the stationary data are imported into the algorithm
to determine whether slip occurs. Figure 10 illustrates the force-tactile data for different object-sliding
processes.

5.1. Slip detection principle
We assume that the process of object slipping is discrete. The force-tactile sequence under each moment
during the contact between the sensor and the object is F(t) = (f1, , , f16), where fi is the stress value of
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Table IV. Experimental results of data under slip and no slip.

Object Class: Slip Class: No slip Accuracy (%)
Ball 20/20 0/20 100
Cuboid 20/20 0/20 100
Cylinder 19/20 1/20 95

the ith contact of the tactile array. The derivative of the ith contact force at any two adjacent moments
is defined as:

di(tn) = fi(tn) − fi(tn−1) (12)

Ideally, when no slip is generated between the object and the tactile array, di(tn) = 0. In practice, there
is noise in the data from real sensors. We assume that the steady state di(tn) obeys a zero-mean Gaussian
distribution. If a slip occurs, di(tn) = 0 becomes an indeterminate value. We save the derivative values
of 16 contact forces for the whole slip process in a new matrix χ .

χ (tn) =

⎡
⎢⎢⎣

d1(t1) . . . d16(t1)
...

. . .
...

d1(tn) . . . d16(tn)

⎤
⎥⎥⎦

n×16

, χ ∈ Rn×16 (13)

Then, define the covariance matrix φ of the data:

φ(tn) = χ (tn)χ (tn)
T , φ ∈ Rj×j (14)

This covariance matrix contains information about whether the object slips or not. If no slip is gen-
erated, di(tn) obeys a zero-mean Gaussian distribution and φ(tn) can be viewed as a diagonal matrix. If
slip is generated, φ(tn) can be seen as an offset in the base of diagonal matrix. The magnitude of offset
is the amount of displacement of slip. Combining the above derivation, φ(tn) can be written as:

φ(tn) = τ + ε (15)

where τ is a j × j diagonal matrix representing the steady state. ε is a j × j matrix with diagonal 0,
representing the slip distance. If ‖ε‖∞ is approximated by 0, ε is approximated by a 0 matrix. It is
known that ‖ε‖∞ is equal to the maximum sum of rows of the matrix. We can calculate the value of
‖ε‖∞ for the whole slip process, and the slip is judged to be generated when the value is greater than
β. The value of β affects the experimental results. In this paper, we determine the value of β by a prior
slip.

5.2. Results analysis
The experimental results are shown in Table IV. Overall, the success rate of slip detection is very high.
A slip detection failure is observed specifically for the cylinder, potentially attributed to the delayed
response of force information resulting from the unrecovered deformation of the flexible tactile array.
This results in a small covariance matrix difference of the slip data in two consecutive time points. This
failure can be avoided by increasing the AD sampling speed. There is some noise in the data of the object
at rest. However, this noise does not affect the results.

We select three representative data sets from the slip test results of three different objects for presenta-
tion. Figure 11 shows the relationship between ‖ε‖∞ and the slip signal. At moment t, it is sliping when
‖ε‖∞ >= β. When ‖ε‖∞ < β, it is stationary. If the slip signal consistently exceeds the specified thresh-
old β over a period of time, then trigger slip has occurred. It is worth noting that there are intermittent
situations where the slip signal briefly drops to zero during the slip process. This phenomenon is mainly
influenced by the inherent unpredictability of the sensor slip vibration. The final results show that this
slip detection algorithm is effective. FVSight has excellent performance in the field of slip detection.
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Figure 11. Sample slip detection. Slip detection is considered successful when the slip signal consis-
tently surpasses the threshold β over multiple consecutive time periods.

6. Conclusion
In order to solve the problem of weak pairing between multimodal data that exists in conventional robots
for object perception, this work introduces a multimodal tactile sensor based on a distributed flexible
tactile sensing array and a vision unit. The core idea is to use one perception layer to trigger two hetero-
geneous tactile modal information, so that the vision-tactile information can be matched spatially and
temporally. Meanwhile, object recognition and slip detection experiments are conducted. The integration
of sparse coding principles enhances feature extraction, while classical classifiers help to achieve robust
classification. Validation of the classification methodology is performed on a dataset comprising 27
objects, revealing a significant enhancement in classification through multimodal fusion. Furthermore,
the covariance operator method is employed to enhance slip correlation within array information. The
slip detection ability of the sensor is verified on three different objects. This study provides a detailed
description of the application of these algorithms to improve object classification and slip detection.

In future work, we want to refine FVSight and optimize the tactile resolution of the perceptual
layer. A high degree of pairing can be achieved for multimodal recognition of some precision textures.
Simultaneously, a high-performance algorithm can be devised to effectively integrate visual and hap-
tic information, enabling FVSight to be deployed in object recognition and slide detection processes,
thereby achieving superior results. Finally, the sensor can also be extended in the research fields of
cross-modal generation, motion prediction, and tactile recurrence.
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