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Abstract

The recently developed theory of partial actions of discrete groups on C*-algebras is extended. A related
concept of actions of inverse semigroups on C*-algebras is defined, including covariant representations
and crossed products. The main result is that every partial crossed product is a crossed product by a
semigroup action.

1991 Mathematics subject classification (Amer. Math. Soc): primary 46L55.

1. Introduction

The theory of C*-crossed products by group actions is very well developed. In [6,1,2],
Duncan and Paterson investigate C*-algebras of inverse semigroups as a generalization
of C*-algebras of discrete groups. In this paper we show that the theory of crossed
products also can be generalized to inverse semigroups. In Section 3 we define an
inverse semigroup action as a homomorphism from the inverse semigroup into the
inverse semigroup of partial automorphisms of a C*-algebra. A partial automorphism
is an isomorphism between two closed ideals of a C*-algebra. In Section 4 we define
C*-crossed products by actions of inverse semigroups.

Our development is based upon another generalization of group actions, the notion
of partial actions of discrete groups, defined by McClanahan [5] as a generalization
of Exel's definition in [3] . In the definition of partial actions we also use the inverse
semigroup of partial automorphisms instead of the automorphism group of the C*-
algebra. Of course we cannot talk about a homomorphism from a group into an inverse
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[2] C*-crossed products and inverse semigroups 33

semigroup; a partial action is an appropriate generalization. In Section 1 we give a
detailed discussion of partial actions.

It turns out that there is a close connection between partial crossed products and
crossed products by inverse semigroup actions. In Section 5 we explore this connec-
tion, showing that every partial crossed product is isomorphic to a crossed product by
an inverse semigroup action.

In [8] Renault investigates the connection between a locally compact groupoid and
its ample inverse semigroup. Paterson [7] shows that there is a strong connection
between the C*-algebras of locally compact groupoids and inverse semigroups. This
connection promises a connection between the groupoid crossed products of [9] and
inverse semigroup crossed products.

The research for this paper was carried out while the author was a student at Arizona
State University. The results formed the author's Master's thesis written under the
supervision of John Quigg. I would like to take the opportunity to thank Professor
Quigg for his help and guidance during the writing of this thesis.

2. Partial actions

In this section we discuss the notion of partial actions defined by McClanahan in
[5] which is a generalization of Exel's definition in [3] . The major new results are
Theorems 2.6, 2.9 and Corollary 2.11.

DEFINITION 2.1. Let A be a C*-algebra. A partial automorphism of A is a triple
(a, / , J) where / and J are closed ideals in A and a : I —>• J is a *-isomorphism. We
are going to write a instead of (a, / , J) if the domain and range of a are not important.

If (a, I, J) and (ft, K, L) are partial automorphisms of A then the product aft
is defined as the composition of a and ft with the largest possible domain, that is,
aft : ft~\I) -* A, aft(a) = a(ft(a)). It is clear that ft'\I) is a closed ideal of K.
Since a closed ideal of a closed ideal of A is also a closed ideal of A, the product
(aft, ft~\I), aft(ft~\I))) is a partial automorphism too.

A semigroup S is an inverse semigroup if for every s e 5 there exists a unique
element s* of S so that ss*s = s and s*ss* = s*. The map s \-> s* is an involution. An
element / e 5 satisfying f2 = / is called an idempotent of S. The set of idempotents
of an inverse semigroup is a semilattice. Our general reference on semigroups is
[4] . It is easy to see that the set PAut(A) of partial automorphisms of A is a unital
inverse semigroup with identity (i, A, A), where ( is the identity map on A, and
(a, I, J)* = ( « - ' , / , / ) .

DEFINITION 2.2. Let A be a C*-algebra and G be a discrete group with identity
e. A partial action of G on A is a collection {(as, Ds \, Ds) : s e G) of partial
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34 NSndor Sieben [3]

automorphisms (denoted by a or by (A, G, a) ) such that

(i) De = A;
(ii) as, extends asa,, that is, as, \a~l(Ds-i) = asa, for all s, t e G.

This is equivalent to McClanahan's definition in [5] , and we believe Proposition
2.3 and Lemma 2.4 below give evidence that our definition is an improvement of
McClanahan's.

PROPOSITION 2.3. If a is a partial action of G on A then

(i) ae is the identity map i on A;
(ii) ofj-i — a~l for alls e G.

PROOF. The statements follow from the following two identities:

i = ueot~x = aeea~x = aeaea~[ = ae

asas-\ = ass-\\Ds = ae\Ds = i\Ds.

LEMMA 2.4. If a is a partial action of G on A then a,(D, <DS) = D,D,S for all
s,t € G.

PROOF. By Proposition 2.3 (ii), a,(Dr,Ds) = a~\(D,-,Ds) = a~\(Ds) which is
the domain of <xs-\a,-\ and hence is contained in the domain D(s-I,-I>-I = D,s ofas-i,-i.
Since the range of a, is D,, we have a,(D,i Ds) C D,D,S for all s, t € G. Since a, is
an isomorphism, this implies

Dt-,DS C a;\D,Dls) = a, <(D,D,S) for all s,t e G.

R e p l a c i n g t b y t ~' a n d 51 b y r s g i v e s D , D , , c ct,(D, < Ds) f o r a l l j , ( € G .

LEMMA 2.5. If a is a partial action ofG on A thena,(D,-<DSl • • • DSJ = D,D,Sl • • •

D,Sn for all t, S\,... , sn e G.

PROOF. The statement follows from the following calculation using Lemma 2.4:

af(D,-.D,, • • • DJ = a,(D, ,DSl • • • D, ,DJ

= D,DISl D---D D,D,Sn
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THEOREM 2.6. If a is a partial action of G on A then the partial automorphism

aS] • • • otSii has domain Ds-\DS-IS-I • • • Ds-i...s-> and range DSl DS]Sl • • • DSr..Sr for all

Si , . . . ,Sn € G.

PROOF. The statement about the domain follows by induction from the following
calculation using Lemma 2.5:

domain aSl • • -aSn — a~] (domain aSl • • -aJn ,)

The other part now follows since the range of aSl • • • aSa is the domain of as-< • • • as-<.

DEFINITION 2.7. Let a be a partial action of G on A. A covariant representation
of a is a triple {n, u, H), where n : A -> B(H) is a non-degenerate representation
of A on the Hilbert space H and for each g € G, ug is a partial isometry on H with
initial space n(DH \)H and final space n{Dg)H, such that

(i) ugn(a)ug-t = n(ag(a)) forall a e Dgr,

(ii) us,h = usu,h forall h e n(D,iD,<s<)H.

Notice that by the Cohen-Hewitt factorization theorem n(Dg)H is a closed sub-
space of H and so the notations for the initial and final spaces make sense. It follows
from the conditions of the definition that if (n, u, H) is a covariant representation then
ue = \H (the identity map on H) and us i = u* for all s e G. Thus condition (3) in
McClanahan's definition [5] of a covariant representation is redundant.

Let nu be the universal representation of a C*-algebra A. If / is an ideal of A then
the double dual /** of /, identified with the strong operator closure of nu(I), is an
ideal of the enveloping von Neumann algebra A** of A, which is identified with the
strong operator closure of nu(A). As such, /** has the form pA** for some central
projection p in A**.

DEFINITION 2.8. Let a be a partial action of G on A. For s G G, ps denotes the
central projection of A** which is the identity of D**.

Let (n, u, H) be a covariant representation of (A, G,a). Since n is a non-
degenerate representation of A, n can be extended to a normal morphism of A**
onto n{A)". We will denote this extension also by n. Note that n(DSl • • • DSJH =
n(Ps, • • • Psn)H for all 5 ] , . . . ,sn e G, and usu* = n(ps) for all s e C .

THEOREM 2.9. Let {n, u, H) be a covariant representation. Then uSl • • • uSn is a

partial isometry with initial and final spaces

D,-.,-., • • • D^.S-')H and n(DSlDSlS2 • • • D,,...S,)H,
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for all Si,... , sn e G.

PROOF. Firstly we show that ugl • • • ugnu*n • ••«*, = x(pgl • • • pgr..gJ. This is clear

for n = 1. Applying induction and Lemma 2.5 we get

= ugl on(pg-,pg2---pgr..gii)ou*gi

= 7r(agl(pg;>pg2---pgr..gJ)

= n(pgl ••• pgv..g,,).

The statement about the initial and final spaces now follows from the fact that
n(DSl • • • DSn)H = n(ps, • • • pSn)H for all su ... , sn e G.

The following corollary will be needed in Section 5.

COROLLARY 2.10. If(n,u, H) is a covariant representation then

uSl...Snh = uS] • • -uSnh for all h € n{Ds-^Ds-:s-^ • • • Ds- ...S-<)H

and

Tt(a)uSr..Sii = n(a)uSl • • • USII for all a e DSl DS[Sl • • • DSl...Sn.

PROOF. The first statement follows by induction using Definition 2.7 (ii) and the
fact that

Ds-,D,-is-lr.s;l DD J - ,D J - . j ; V - -D , - , . . , r . .

By the first statement we have us-i...s-<n(a*) = us-t • • -us \n(a*), which implies the
second statement after taking conjugates.

COROLLARY 2.11. If(n, u, H) is a covariant representation, then

S — {w5| • • -USII : su . . . ,sn e G}

is a unital inverse semigroup of partial isometries ofH.

The situation is more delicate than it may appear at first glance: the following ex-
ample shows that a set of partial isometries with commuting initial and final projections
does not necessarily generate an inverse semigroup of partial isometries.
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EXAMPLE 2.12. Let a e (0, n/2) and

U =

be partial isometries on C3. A short calculation shows that U2, V2, UV, VU are all
partial isometries and so all the initial and final projections of U and V commute, but
(U V)2 is not a partial isometry. This example is a modification of an idea of Marcelo
Laca.

3. Action of an inverse semigroup

In this section we define an action of a unital inverse semigroup and a covariant
representation of such an action. The assumption of the identity of the semigroup is
for technical reasons. In the absence of an identity we can easily add one.

DEFINITION 3.1. Let A be a C*-algebra and 5 be a unital inverse semigroup with
identity e. An action of S on A is a semigroup homomorphism J K (ft, £,,, Es) :
S -* PAut(v4), with Ee = A.

Notice that ft. = ft"1 for all s € S so the notation Es. and Es makes sense. It can
be shown as in Proposition 2.3 that ft is the identity map t on A. Also if / e S is an
idempotent then so is ft, which means ft is the identity map on Ef, = Ef.

LEMMA 3.2. If ft is an action of the unital inverse semigroup S on A then ft (£,. Es)
= E,sfor all s, t e S.

PROOF. The proof follows from the following calculation:

fi,(E,,Es) = image(ftft) = image(fts) = Els.

There is an important inverse semigroup action associated with a partial action,
which we are going to use in Section 5.

PROPOSITION 3.3. Let a be a partial action of a group G on the C*-algebra A, and

let (n, u, H) be a covariant representation of a. Let S = {(agl • • -agii, ugl • • • ugn) :

gi,... , gn e G}. Then S is a unital inverse semigroup with coordinatewise multi-

plication. For s = (agl • • • aga,ugl--- ugr) e S let

Es = DglDglg2 • • • Dgi...g,, ft = agl • • - o g . : £ , . -+ Es.

Then /3 is an action of S on A.
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PROOF. By Corollary 2.11, S is a unital inverse semigroup with identity (ae, ue),
where e is the identity of G. It is clear that ft is a semigroup homomorphism with

E(ar.ur) — LJe
 = A.

DEFINITION 3.4. Let ft be an action of the unital inverse semigroup 5 on A. A
covariant representation of ft is a triple (7T, U, H) where n : A -> B(/ /) is a non-
degenerate representation of A on the Hilbert space H and v : S H-> B(/ /) is a
multiplicative map such that

(i) us.7r(a)iv = n{fts(a)) for all a € Es.;
(ii) uv is a partial isometry with initial space n(Es.)H and final space n(Es)H.

It is easy to show that ve = \H and vs, = v*.

PROPOSITION 3.5. Keeping the notation of Proposition 3.3, define v : S -»• B(H)
by vs = ug[ • • • ugn, where s = (agl • • • agi:, ugl • • • ugn). Then (n, v, H) is a covariant

representation of {A, S, ft). Conversely if(p, z, K) is a covariant representation of
(A, S, ft) then the function

w : G —>• B{K) defined by wg = z{ag, ug)

gives a covariant representation (p, w, K) of (A, G, a).

PROOF. It is clear that v is a semigroup homomorphism from S into an in-
verse semigroup of partial isometries on H. To check Definition 3.4 (i) let s =
((*„. • • - a , , us. • • -Ur, ) e S a n d a e Es. = De-<Dp-i. > • • • D.-1. . . . -1. U s i n g Defini-

tion 2.7 (i) and Lemma 2.5 we have

vsn(a)v!, = Adugl • • • ugn o n(a) = Adugl • • • ugnl o it o <xga(a)

— • • • = n o ag] • ••agii(a) = n(fts(a)).

By Theorem 2.9, vs has the desired initial and final spaces. For the second part of the
theorem let a € D?-i = £.,., where s = (ag, ug). Then

wgp(a)wg-< = zsp{a)zs* = p(fts(a)) = p(ag(a)),

a n d s o w sa t i s f ies D e f i n i t i o n 2 .7 ( i ) . T o c h e c k D e f i n i t i o n 2 .7 ( i i ) , le t g\,g2 e G,

h e P(Dg-\ Dg-'g-\)K a n d le t 5 = (aglg,, uglg,), st — (agl,ugl),s2 = (ag2,ug,) e S.

By Definition 2.2 (ii), aglg2(aglag2)* = aglag2(aglag2)*. By Definition 2.7 (ii) and
Theorem 2.9, uglg,(ugtug,)* = uglug2(uglug,)*. Hence s(S]S2)* = S]S2(S[S2)* and so
zszISls,r = zs,s2z(SlS,y. Since the final space of ziSlS,y is p(Dg-\Dg-\ )K, it follows
that zsh = z5ls2h. Thus

wHM;?h = z*h = Zs,s2h = zSlzS2h = wglwg2h
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as desired. It is clear that wg has the required initial and final spaces.

Notice that if in the previous theorem we let z = v, then the construction gives
w — u.

Not every unital inverse semigroup action arises from a partial action via the
construction of Proposition 3.3, as we can see in the next example.

EXAMPLE 3.6. Let 5 = {e, / } be the unital inverse semigroup that contains the
identity e and an idempotent / ^ e. Let A = C and fts be the identity map
( of A for all s e S. Suppose there is a partial action (A, G,a) and a cov-
ariant representation (n,u, H) of a so that S can be identified with the inverse
semigroup [(ctgl • • •agit,ugl • • • ugn) : gi,... ,gn e G] and f}s = agl • • • agn for all

5 = (agl • • -agn, ugi • • -ugj e S. Clearly e is identified with (i, lH), where \H is the

identity of B{H). Suppose / is identified with (ag] •••agii,ugl • • • ugj. By the defin-

ition of ^ j , for all g i , . . . , gn e G we have agl • • • agn = i. Since / is an idempotent

ugl • • • ugr is an idempotent too. Hence for all h e H we have

h = n{\){h) = 7i(Pf(lMh) = (ugl • • • ugin(l)ugl • • • ugj(h) = Ugl • • • ugn(h).

This means that ugl • • • ugn must be the identity of B{H). But this is a contradiction
since e and / are different elements of 5.

4. The crossed product

McClanahan [5] defines the partial crossed product A xa G of the C*-algebra A
and the group G by the partial action a as the enveloping C*-algebra of L = [x e
/ ' (G, A) : x(g) € Dg] with multiplication and involution

J 2 g ) l x*(g) = ag(x(g-]T).
heC

He shows that there is bijective correspondence (n, u, H) -o- {n x u, H) between
covariant representations of (A, G, a) and non-degenerate representations of A xa

G, where n x u is the extension of the representation of L defined by x (->•
£ £G n{x(g))ug. We are going to follow his footsteps constructing the crossed
product of a C*-algebra and a unital inverse semigroup by an action {}.

Let /5 be an action of the unital inverse semigroup S on the C*-algebra A. Define
multiplication and involution on the closed subspace

L = {x e / ' ( 5 , A) :x(s) e Es]

https://doi.org/10.1017/S1446788700000306 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000306


40 Nandor Sieben [9]

of/'(S, A) by

(x * y)(s) =J2PrWr.(x(r))y(t)], x*(s) =
rl—s

Notice that by Lemma 3.2, (x * y)(s) e Es. A routine calculation shows that
\\x*y\\ < 11*11 llyll,**? e L, \\x*y\\ < \\x\\\\y\\ and ||JC'|| = ||x [|, and so x* e L. We
are going to denote by a8s the function in L taking the value a at s and zero at every
other element of S. Notice that a, 5S *a,8, = Ps(fis.{as)a,)8s, and (a8s)* = ps.(a*)8s~.

PROPOSITION4.1. LisaBanach *-algebra.

PROOF. Let x, y,z e L and a e C. Routine calculations show that (x + y)* = x* +
y*, (ax)* = ax*,x** = x and (x*y)* = y**x*. We show that (x*y)*z = x*(y*z).
It suffices to show this for x = ar8r, y = as8s and z = a,8,. If {uk} is an approximate
identity for Es., then we have

(ar8r * as8s) * a,8, = pr(Pr.(ar)as)8rs * a,S,

= lim, Pr(PAar)ps(PAas)uka,))8rsl

= pr(Pr.(ar)Ps(PAas)a,))Zrs<

= arSr*ps(PAas)a,)Ssl

= ar8r * (as8s *a,8,).

DEFINITION 4.2. If (n, v, H) is a covariant representation of (A, S, fi) then define
•n x v : L -+ B(H) by (n x v)(x) = J2s

PROPOSITION 4.3. (n x v) is a non-degenerate representation of L.

PROOF. Routine calculations show that (n x v) is a *-homomorphism. If [ux] is
a bounded approximate identity for A, then {ux8e} is a bounded approximate identity
for L, since for a e Es we have limx MjiS,, * <2<55 = limx M^a^ = a^5, and limA a8s *
u-A8e = limx fisiP^1 (a)ux)8s = ps(P~l(a))8s = a8s. Since 7r is a non-degenerate
representation, (n x u)(«x<5(,) = 7T(MX) converges strongly to \B(H) and so (n x u) is
non-degenerate.
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DEFINITION 4.4. Let A be a C* -algebra and fi be an action of the unital inverse
semigroup S on A. Define a seminorm ||.||c on L by

||JC||C = sup{||(7r x V)(JC)|| : (n, v) is a covariant representation of (A, S,fi)}.

Let / = [x € L : \\x\\c = 0}. The crossed product A xp S is the C*-algebra obtained
by completing the quotient L/I with respect to ||.||c. We denote the quotient map of
L onto L/I by <S>.

For any covariant representation (n, v) of (A, S, fi), the associated representation
n x v of L factors through a non-degenerate representation of A xp S, which we also
denote by n x v.

The following lemma shows that the ideal / may be non-trivial:

LEMMA 4.5. If s < t in S, that is, s — ft for some idempotent f e S, then
<t>(aSs) — <t>(aS,)foralla e Es. In particular <t>(aSs) = <i>{a8e) ifs is an idempotent.

PROOF. It is clear that a e E,. If (n, v) is a covariant representation of (A, S, fi)
then

(JT x v)(aSf, — a8,) = n{a)VfV, — n{a)v, = 0,

which shows ®(a8s — aS,) = 0. The second statement follows from the fact that
s = se.

In spite of the above lemma, we identify aSs with its image in A Xp S.

COROLLARY 4.6. IfP is an action of a semilattice S on a C*-algebra A, then AxpS
is isomorphic to A.

PROPOSITION 4.7. Let{Y\, H) be a non-degenerate representation ofAx PS. Define
a representation n of A on H and a map v : S —> B(H) by

n(a) = T\(aSe), vs = s-lim^ n(uxSs)

where {ux} is an approximate identity for Es and s-limA denotes the strong operator
limit. Then (n, v, H) is a covariant representation of (A, S, /3).

PROOF, JZ is a non-degenerate representation, since {ukSe} is an approximate identity
for A Xp S whenever [ux] is an approximate identity for A.

We show that vs is well-defined. If h e n(Es.)H then h = U(aSe)k for some
a e Es. and k e H and a short calculation shows that
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since /3S.(MA) is an approximate identity for Es.. Note that the limit is independent
of the choice of [uk], since the expression h = U(aSe)k was. On the other hand, if
h ±n(Es.)H then

limA n(uA8s)h = lim, n(PAP

= limx 11(^^5, *

= lim,

But n(Es.)h = 0, so vsh = 0. Hence vs is well-defined. Clearly vs is a bounded
linear transformation, and if / is an idempotent then ly is the orthogonal projection
onto n(Ef)H. The following calculation shows that v* = vs.:

v* = s-limA n(ux8s)* = s-limx Tl(Ps.(ux.)Ss.) = vs..

For s, t e S let {usj and {u'^} be bounded approximate identities for Es and E,
respectively. Then

vsv, = lim Yl(us
xSs * u'^S,)

= vsl,

since the net {A(A*(MDM^)) with the product direction is an approximate identity for
jis{Es,E,) — Esl (using boundedness of {us

k} and [u'^}). Thus v is multiplicative. We
have v*vs = vs.vs = vs.s, which is the projection onto n(Es,s)H = n{ES.)H. Hence
vs is a partial isometry with initial space n(Es,)H, hence final space TT(ES)H (since

v*s = vS')-
The covariance condition is satisfied, since if a e Es. then

vsn(a)vs. = s-limAAJ Tl(ufl

= s- l im^ n(u^s(a)uxSss.) = Tl(ps(a)8e).

PROPOSITION 4.8. The correspondence (n, v, H) •<-> {n x v, H) is a bijection
between covariant representations of (A, S, /6) and non-degenerate representations
of A Xp S.

PROOF. This follows from computations similar to the end of the proof of [5,
Proposition 2.8].

The following example shows that, unlike in the partial action case, the crossed
product A Xp S is not the enveloping C*-algebra of L in general.

https://doi.org/10.1017/S1446788700000306 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000306


[12] C*-crossed products and inverse semigroups 43

EXAMPLE 4.9. Let S = {e, / } be the unital inverse semigroup that contains the
identity e and an idempotent / . Let A = <C and fis be the identity map of A for
all s e S as in Example 3.6. It is clear that L = l\S). Wordingham [10] shows
that the left regular representation of /' (5) on /2(5) is faithful and so the enveloping
C*-algebra cannot be the same as A x^ 5, which is isomorphic to C by Corollary 4.6.

The next two results describe two quite different crossed products associated with
an inverse semigroup itself.

PROPOSITION 4.10. Let S be a unital inverse semigroup, and let fis be the identity
map of C for all s e S. Then fis is an action of S on C, and <C Xp S is isomorphic to
the C*-algebra of the maximal group homomorphic image of S.

PROOF. For s e S let [s] = {t e S : fs = ft for some idempotent / } be
the associated element of the maximal group homomorphic image G. The formula
q>([s]) = Q>(8S) determines a homomorphism of C*(G) onto C x^ 5. The formulas
n(a) — ae and vs = [s] define a covariant representation of (C, S, fi) in C*(G) such
that Ti x v is an inverse of 4*.

PROPOSITION 4.11. Let Sbea unital inverse semigroup with idempotent semilattice
E. Define a semigroup action fi of S on C*(E) so that fis : Es* —> Es is determined
by fis{&f) = Ssfs., where Es is the closed span of the set {8/ : f < ss*} in C*(E).
Then C*(S) is isomorphic to C*(E) x$ S.

PROOF. The formula* (s) =ss*8s for s G S determines a homomorphism of C* (S)
to C*(E) Xp S. The canonical injections of E and 5 in C*(S) determine a covariant
representation (n, v) of (C*(E), S, fi) in C*(S) such that n x v is an inverse of * .

5. Connection between the crossed products

In this section we show that every crossed product by a partial action is isomorphic
to a crossed product by a suitably chosen inverse semigroup action.

LEMMA 5.1. Let (A, G, a) and (A, S, fi) be as in Proposition 3.3. Let(p, z, K)bea
covariant representation of {A, S, fi), and define a covariant representation (p, w, K)
of (A, G, a) by wg = z((xg, ug) as in Proposition 3.5. Then (p x z)(A x@ S) =
(p x w)(A xa G).

PROOF. One can easily check that

zs D ^
geC
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I f s = {ae. •••oig ,uK---ug) a n d a <E Es = Dg £>„.„, • • • £><,...„ , t h e n b y C o r o l l a r y

2 . 1 0 w e h a v e

p(a)zs = p(a)z(otg,, ugl) • • • z(agl, ugj = p(a)wgl •••wgn = p(a)wgr..gn,

showing the other inclusion.

THEOREM 5.2. Let a be a partial action of a group G on a C*-algebra A, and
let (n,u, H) be a covariant representation of (A, G,a) such that the representation
7ixuofAxaG is faithful. Define an inverse semigroup by

S = { ( a g ] • • • a g i : , u g l • • • u g j : g , , . . . , g n € G ]

and an action fi of S by f3s = agl • • • agn for s = (agl • • • agn, ugl • • • ugn), as in

Proposition 3.3. Then the crossed products A xa G and A Xp S are isomorphic.

PROOF. Let vs = ugl • • • ugn for s = (agl • • • agn, ugl • • • ug:i). We know from Pro-

position 3.5 that (it, v, H) is a covariant representation of (A, S,fi). Note that
(n xu)(AxaG) = (n x v)(A Xp S) by Lemma 5.1. It suffices to show that n x v is a
faithful representation of A xp S because then (n x v)~l o {n x u) : A xa G -*• A x^ 5
is an isomorphism. Consider another representation of A x p S, which by Proposition
4.8 must be in the form p x z for some covariant representation (p, z) of (A, S, ft).
By Proposition 3.5 the definition wg = z(ag,ug) gives a covariant representation
(p, w, K) of (A, G, a) and we have (p x w)(A xa G) = (p x z)(A xfi S), again
by Lemma 5.1. Since n x u is a faithful representation, there is a homomorphism 0
such that © o (n x u) = p x w. We are going to show that 9 o (n x v) = p x z,
which is going to prove that n x v is faithful. It suffices to check this on a generator
a8s, w h e r e s = (agl • • -aga, ugl • • • ugn) a n d a e Es = DglDglg, • • • Dgl...gii:

&((n x v)(a8s)) = &(n(a)vs) = (p x w) o (n x u)~l(n(a)ugl • • -ugn)

= (p x w) o (JT x M)-l(7r(a)M^r..j;;?) = (p x w)(a8gv..gJ

= p{a)wgt...gii = p{a)wgt •••wgn

= p(a)z(agl, ugl) • • • z(ocgii, ugj = p(a)zs

= (p x z)(a8s),

where we have appealed to Corollary 2.10 twice more.

EXAMPLE 5.3. Let A = C\ G = 1, Do = A, D^ = {(a,0) : a e A], £>, =
{(0,a) : a € A} and Dn = {(0,0)}forn € G \ { - l , 0 , 1}. Let a0 be the identity map,
ai be the forward shift ct\ (a, 0) = (0, a), and define an = a" for n ^ 0. Then A xaG
is isomorphic to the matrix algebra M2 ([3], [5, Example 2.5]).
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We construct a faithful representation n x u of the partial crossed product A xa G.
Let n be the representation of A on the Hilbert space H = C2 by multiplication
operators; that is, n(a\, a2)(h\, h2) = («i/*i, a2h2) for (au a2) e A and (hu h2) € H.
Let M, be the forward shift, M_, the backward shift on H, and let un be the constant
zero map for all n s G \ {—1, 0, 1}.

The unital inverse semigroup S generated by {(«„,«„) : n e G] contains six
elements 5 = {e, / , s, s*, s*s, ss*} where e = 1// is the identity of S, the zero element
/ of S is the constant zero map and s = (a,,*/,). Let Ee = A, Ef — {(0,0)},
Es. = Es.s = D^i and Es = Ess, = D\. Define the semigroup action ft of 5 as in
Proposition 3.3. Then fis is the forward shift, ft. is the backward shift and fi, is the
identity map for all other t e S. As we have seen in Theorem 5.2 the crossed product
A Xp S is isomorphic to the matrix algebra M2.

Notice that in the last example the semigroup S is isomorphic to the inverse
semigroup generated by [a,, : n e N) as well as to the inverse semigroup generated
by [un : n e N}. Based upon experience with group actions, it might seem natural
to expect that S is isomorphic to the inverse semigroup generated by the range of u
whenever it x u is a faithful representation of A xa G. Perhaps surprisingly this is
not the case. All three semigroups can be non-isomorphic as the following example
shows.

EXAMPLE 5.4. Let A = C[0, 1], G = 12, and Do = A, and let a, be the identity
map on D, = {x € A : x(l) = 0 } . We construct a faithful representation n x u
of the partial crossed product A xa G. Let n be the representation of A on the

Hilbert space L2[0, 1] x L2[0, 1] denned by n(f) = \J ° \ and let u0 = (l °

and U\ = I I. By [5, Propositions 3.4 and 4.2], n x u is faithful since Z2 is

amenable. The inverse semigroup generated by {u0, ut} is isomorphic to Z2. It is
clear that {a0, a\} is a semilattice, hence is definitely not isomorphic to the inverse
semigroup {w0, u\}. The inverse semigroup generated by {(a0, u0), (at, u\)} contains
three elements {(a0, uQ), (a,, M,), (C^, M0)}.

Although every partial crossed product is isomorphic to a crossed product by an
action of a unital inverse semigroup, this semigroup action may not be unique up to
isomorphism. For all we know different faithful representations n = n x u of the
crossed product A xaG could generate essentially different semigroup actions. If we
want to talk about a canonical semigroup action associated with A xa G then we can
choose n to be the universal representation of A xa G.
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