
CONFORMAL MAPS WITH LEAST DISTORTION 

H. G. HELFENSTEIN 

1. Introduction. Our problem is related to the construction of geographical 
maps as follows. The reason for using conformai geographical maps is that the 
scale (viz., the ratio of two corresponding line-elements) does not depend on 
the direction of these line-elements. In an ideal map the scale, being respon­
sible for the preservation of shape, would also be independent of the points 
where the line-elements begin. Since this is impossible, except for developable 
surfaces, one tries to construct maps whose scales are "as constant as possible/' 
According to the precise meaning of this expression several "best" maps are 
possible. Tchebycheff (1) studied the case in which the maximum deviation 
of the scale from a certain constant is minimized. We shall consider here the 
problem of minimizing the mean quadratic deviation of the scale from a 
constant. In order to linearize this problem we have to use, as Tchebycheff did 
also, the logarithm of the scale instead of the scale itself. We prove the exis­
tence of a best map in this sense for a simply connected domain on an arbi­
trary surface. In addition we give some explicit formulae for computing it. 

The definition of the mean quadratic error depends on the choice of the para­
meters on the surface. We use a "normal" system of isothermic coordinates 
mapping the given surface on the interior of the unit circle of a complex plane. 
Then our problem reduces to that of the best approximation of a given function 
by harmonic functions. 

2. Notation. Let D b e a finite, simply connected domain with more than 
one boundary point on a surface 5 which is sufficiently "smooth." Assume that 
we can find an isothermic system of parameters mapping D o n a plane schlicht 
domain Dr which in turn can be transformed conformally on the interior of 
the unit circle U of a complex s-plane. If z = x + iy, then x and y are again 
isothermic parameters on D which we call a normal system. It is uniquely 
determined if we let an arbitrary point M of D correspond to the point z = 0 
and an arbitrary direction through M to the direction of the positive x-axis. 
The line-element of D becomes in the x, y system : 

ds = - T T V ( ^ 2 + dy2) = ~Mr » 

where 7(2) is a real positive function. Every other conformai map of D can be 
obtained as a regular analytic function w = u + iv = f(z) defined in U whose 
derivative must not vanish. In order to fix the image of U with respect to 
congruent transformations we require that 

0 ) /(0) = 0, arg/ ' (0) = 0. 
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We can prescribe also the value of the scale in the fixed point M: 

(2) l^°)l-^ô)-
The distortion in a point x, y now becomes: 

(3) m = ^=\f'(z)\^=\f'{z)\y(z). 

Since / ' (z) 7^ 0 and y > 0 we can put 

(4) 91 log/'(s) = log | f (S)| = *(*> 30, 

log 7(2) = *>(«)> 

whereupon (3) takes the form 
(5) m = e*+*, 

<l> being a harmonic function in U. The smoothness of D is now specified as 
follows: The function <p(x, y), which is determined by D, shall be at least twice 
differentiate with the derivatives bounded in \z\ < 1. 

If m is to be as constant as possible in U then the same must be true for 
0 + <p. We shall therefore determine a harmonic function <j> and a constant 
C such that 

(6) / = f f(4>+ <P~ Cfdxdy 

becomes a minimum subject to the above mentioned side conditions for/(z). 
In particular (2) reads as follows: 

(7) log|/'(0)| = 0(0) = log-
7(0) • 

3. Existence theorem. If <p(z) = <p(R, 6) belongs to the class C(2) in \z\ < 1, 

(a) There exists a function <t>(R,0) harmonic in \z\ < 1 with 

*(0) = l0Sw 
and a constant C which minimize the in itegral (6). 

(b) If 

<t>(R, 0)-C = 
CO 

fc=—co 

-*** 5 

then bk -= AkR\ 

where A* = 
x «/o «/o 

-iffy 

and 

C = \°zzn^-A°-
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(c) The mapping function subject to conditions (1) and (2) is given by 

Proof. Introduce polar coordinates by 

x = R cos 0, y = R sin 0, 

and expand in Fourier Series 

(8) v = Z «*(*) e1'*'. «*(*) = Ô <pe-ik,de, 

fe = 0, ± 1 , ± 2 , . . . , 

(9) « + <p - C = É C*(*) ea"*. 

Since these functions are real we have 
(10) a-k = aky C-fc = Ck 

for every k ; since they are one-valued we get 

(11) ak(0) = 0, Ck(0) = 0 

for & 5̂  0, and 

(12) a0(0) = ?(0), C0(0) = *(0) + ^(0) - C. 

Combining (8) and (9) we obtain 
+oo 

(13) 4> = £ [C*(#) ~ «*(*)] e'*9 + C, 
—oo 

and integrating the condition V 2 <t> = 0 under the side conditions (10)—(12), 
we find, for k > 0, 

(14) Ck(R) = AkR
k + a*(P), C_*(P) = C7(R) 

where the sequence of the constants of integration Ak (k = 0, 1,2, . . .) is to be 
determined by our minimum postulate. 

We use now the following identity which is true for every pair of complex 
numbers P and Q: 

|P |2 + PQ + PQ = |P + <2|2 - |Q|2. 

Applying it to 

p = véVïï • Q=V2(*+^S!^R) Rk+ldR> 
we obtain from (14) : 

£\Ck(R)fRdR = j V 2 ^ + 1} + V2(k + 1) j\(R) Rk+1dR\ 
(15) I r i 12 ri 

- 2 ( f c + l ) ak(R) Rk+1dR\ + \ak(RY\RdR. 
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The completeness relation yields now for the integral (6) : 

(16) I = 2TT f \C0(R)\2RdR + 4:irY, f \Ck(R)\2RdR, 
Jo k=l «/0 

where the interchange of summation and integration will be justified later. 
Taking into account (15), (16) assumes the form: 

/ = 2x 4§ + V2 f o0(R) RdR _ 4 , 

(17) + 2 

+ 4;r 

^ f a?(i?) 
i /O 

4̂* 
V2(£ + 1) 

+ V2(k + 1 

I r 1 

r a0(£) 
I «/o 

) f «*(*) 
«Jo 

RdR 

Rk+1dR 

- 2{k + 1) J f ak(R) Rk+1dR\ + j \ak(R)\2RdRj. 

Here the unknown constants appear only within squares. Consequently I 
assumes its minimum for the following values of the constants: 

(18) Ak = - 2(k + 1) f ak(R) Rk+1dR, k = 0, 1, 2 , . . . , 
J 0 

or, according to (8) : 

(19) Ak = - - - ± - f f <p(R,6)(Re-
ie)kRdRde. 

Combining (11), (12), and (14) one recognizes that the constant C is also 
completely determined : 

C = 0(0) - A0 = log - f - r + - f f \(R, B) R dR dB. 
y [y) IT Jo Jo 

From equations (13) and (18) one concludes that 
CO 

0 = log -£r r + 2 2 #*(4* cos £0 - i l l ' sin JM), 

where 4 / = ^ Ak and il*'7 = 3 Ak. 
From this expression one finds the conjugate harmonic function in the usual 
way, taking into account (1) and (2) in order to determine the constants of 
integration. This finally leads to 

(20) f{z) = vk)fcxp(2iA*tk)dL 

4. Convergence. The convergence of the power series 

(21) É Akz
h in \z\ < 1 

1 

follows from known estimates of the Fourier coefficients. If <p is h-l times 
differentiate with respect to 0 and possesses a piecewise continuous derivative 
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of order h with a bound Mhl then ft-times repeated integration by parts of (8) 

y i e l d S : \at(R)\ < Mjk\ 

Combining this with (18) we have 

(22) \Ah\ < 2 MjkK 

For \z\ < r0 < 1 the series Z ) ^ ^ is therefore majorized by X^2M0r0
fc which is 

independent of z. The boundness of <p is thus seen to be sufficient for the circle 
of convergence of (21) to contain U. 

If h = 2 (as previously assumed) then (21) is also uniformly convergent on 
the boundary of U (which of course cannot prevent the function f(z) from 
possibly having a singularity on the boundary). 

From (14) and (22) with h = 1 one concludes the uniform convergence of 

É \Ck(R)\\ 0<R<1, 
i 

which has been used in the interchange of summation and integration in (16). 

5. Mean value theorem. For every integer k > 0 the mean value of the func­
tion v(R, B)Rk e±ik9 on the unit circle \z\ < 1 is numerically equal but opposite in 
sign to the mean value of (t>(R, 6)Rk e±ikQ. 

Proof. Equation (13) yields: 

1 C2ir 

Ck(R) - ak(R) = --- * (£ , 0) e-^dd, k = 0, ± 1 , ± 2 , . . . 

hence we have from (14) and (19) 

AkR
k = - Rk^~- f f \(r, 6) rke~ik9r dr dd = --- f '«(22, d) e"ttBd0 

(* > 0). 

Multiplying this last equation by Rk+l and integrating with respect to R from 

0 to 1 we obtain the required result. 

6. Determination of the power series of the mapping function. The co­
efficients of the power series 

oo 

(23) m = - - ;~E cnZ
n 

y\y) n=i 

can be determined by differentiating twice both (20) and (23). 
(24) jMf(z) = e x p ( 2 Ë A J) = £ nCnz

n~\ 
fJ> \ 1 / 1 

and 
/ oo \ oo oo 

2exp[2ZlAkz
k)-YlkAkz

k-1= 2 > ( n - 1) Cnz
n'2. 

\ 1 / 1 1 
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Substituting the first factor from (24) we get 

2(Ç n Cnzn-1)(itkAkz
k-1) - £ » ( » - 1) Cy~\ 

Equating corresponding coefficients we obtain 

2j^AmCn = j ( j - 1)C„ 

where on the left m and n take the values 1, 2, . . .7 — 1, their sum being 
always j . Hence ._x 

Ci = ](j - 1 ) ? / ( • ? ' "" ^ ^>'->C" i = 2, 3, 

Together with C\ — 1 this recursion formula determines all the C/s from the 
Ak's. 

7. An integral representation of log/ '(z). Instead of using a series we can 
express our mapping function also by an integral. 

Starting from (20) 

log\^f(z)\=2±Akz\ 
L M J k=i 

we replace on the right the ^4 '̂s by their values (19) and interchange formally 
summation and integration: 

log|^-°-V(z) 1 = - - f1 f % ( 2 î , 0 ) Ê (* + l)(zRe-ie)kRdRdd. 

Putting q = z R e~id the series on the right is obtained by differentiating the 
geometric series 

tr1 

with respect to q. Hence 

(25) iog[«/'(*)] = \ j ; f\(R, e{i - j^^j^ny] * «« "• 
For |z| < r0 < 1 and i ? < 1 we have \q\ < r0 < 1; consequently the above 
series is uniformly convergent. For \z\ < 1 the double integral in (25) is a 
proper integral of a continuous function; for \z\ = 1, however, it does not exist 
in general, not even as an improper integral for in this case 

|1 - zRe-ie\ = \z - Rei9\. 

Equation (25) may be transformed in the following way: Let 

e" = f, <p(R,0) = * ( 2 î , r ) . 

Then, since the function f ^{R, f) is defined continuously for 0 < R < 1 and 

|f I = 1, we can form the expression 
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where the path of integration is the unit circle of the f-plane. For |/| < 1 
this function is analytic in /, and we have 

Transforming the integral in (24) and using (25) and (26) we obtain 

(28) l o g [ * f / ' ( . ) ] = 4 fQ [ f (*, 0) - df- (R, ZR)] R dR. 

One of the integrations is now relegated to the complex integration (26), which 
may be simpler. 

For instance, let us make the further assumption about \f/, that f \p(Rf f) 
can be extended into the interior of the unit circle of the f-plane as a regular 
analytic function of f. Then the integration in (26) can be carried out by 
Cauchy's formula and yields: 

x(R,t) = t*(R,t). 

Hence we have from (28) : 

(29) l o g [ ^ ° - V ( s ) J = 4 j Q [* (* , 0) - *(R, zR) - zR | * (R, zR) J R dR. 

It is remarkable that the minimum value of / can be expressed by means of 
the function (26). 

Let 
oo 

x(R, t) = £ h(R) t\ 

Then it is easily seen from (17) that 

( 3 0 ) J„,to = 2Tr{j*\b1(R)\2RdR - 2 | j\1(R)RdR\\ 

oo ( / »1 I /»1 I 2\ 

+ 4 7 r Z < \bk+1(R)\2RdR- 2(* + l ) bk+1(R) Rk+1dR\ \ . 
]c=l \ Jo I Jo \ J 

8. Example. If the function <p does not depend on 6 the above-mentioned 
condition about the extension of Ç\p is satisfied. Hence (29) is applicable and 
yields 

(3D I o g [ ^ / ' ( . ) ] - 0 , / W - ^ ) ' « -

Let now D b e a circular domain on a sphere. Using stereographic projection 
from one of the endpoints of the diameter perpendicular to the circle's plane, 
the line-element, and therefore also the function <p, obviously do not depend 
on 6. Consequently equation (31) holds, which means (assuming the scale to 
be 1 at the centre) : For a circular domain on a sphere the conformai mapping 
with least distortion is its symmetrical stereographic projection. 
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9. Unsolved problems. In conclusion we mention three natural questions 
which we leave unanswered. 

I. We have not studied the problem of the best choice of the point M on the 
surface ("the centre of the map") whose image is z = 0. Another choice M\ 
instead of M would lead to another normal isothermic system Z\ — %\ + iyi, 
mapping D again on the unit circle. Consequently 

Zl = L(z) = eiT ^~~ , 0 < r < 2TT, \a\ < 1, 
az — 1 

where L(z) is a linear function mapping the unit circle onto itself. Mi has in 
the old system the coordinates z = L~l (0) = a. For the line-element of D we 
have 

= JM = J*i] = !£'(*)! \dz\ 
y(z) 7 i ( iô ~yi[L{z)] ' 

and therefore 

7i(*i) = \L'(z)\y(z), ^i(«i) = log7i(«i) = log \L'(z)\ + <p(z). 

Substituting this in Imin(30) we obtain a function of the complex quantity a, 
which we have to minimize by a suitable choice of a. The existence of such a 
minimum (under the side condition \a\ < 1) seems difficult to prove in general. 

II. For which regions D will our map become a schlicht domain? A general 
answer to this question is difficult; we can hope that for not too large regions 
which are not too much curved our map will be schlicht, and perhaps more 
precise sufficient conditions can be found. 

III . Conformai mapping in the large: Given two conformally equivalent 
closed surfaces find the mapping with least distortion (in some sense). Since 
the family of all the conformai mappings in this case depends on a finite 
number of parameters our problem reduces to a minimum problem instead of a 
variational problem. But even so the existence of a best map is not obvious. 
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