ON NUMERICAL RANGES OF GENERALIZED DERIVATIONS AND RELATED PROPERTIES

SEN-YEN SHAW

(Received 28 February 1982; revised 11 November 1982)

Communicated by G. Brown

Abstract

This paper is concerned with the numerical range and some related properties of the operator $\Delta \mid \mathcal{S}$: $T \to AT - TB$ ($T \in \mathcal{S}$), where A, B are (bounded linear) operators on the normed linear spaces X and Y, respectively, and S is a linear subspace of the space $\mathcal{L}(Y,X)$ of all operators from Y to X. S is assumed to contain all finite operators, to be invariant under Δ , and to be suitably normed (not necessarily with the operator norm). Then the algebra numerical range of $\Delta \mid S$ is equal to the difference of the algebra numerical ranges of A and B. When X = Y and $S = \mathcal{L}(X)$, Δ is Hermitian (resp. normal) in $\mathcal{L}(\mathcal{L}(X))$ if and only if $A - \lambda$ and $B - \lambda$ are Hermitian (resp. normal) in $\mathcal{L}(X)$ for some scalar λ ; if X := H is a Hilbert space and if S is a C^* -algebra or a minimal norm ideal in $\mathcal{L}(H)$, then any Hermitian (resp. normal) operator on S is of the form $\Delta \mid S$ for some Hermitian (resp. normal) operators A and B. AT = TB implies $A^*T = TB^*$, provided that A and B^* are hyponormal operators on the Hilbert spaces H_1 and H_2 , respectively, and T is a Hilbert-Schmidt operator from H_2 to H_1 .

1980 Mathematics subject classification (Amer. Math. Soc.): 47 A 12, 47 B 15, 47 B 47. Keywords and phrases: algebra numerical range, derivation, Hermitian and normal operators, hyponormal operator, normed operator ideal, Schatten p-class, C*-algebra, Hilbert-Schmidt operator.

0. Introduction

Let **X** be a complex normed linear space and let $\mathcal{L}(\mathbf{X})$ be the algebra of all (bounded linear) operators on **X**. The spatial numerical range of an operator A on **X** is given by $W(A; \mathcal{L}(\mathbf{X})) := \{f(Ax); (x, f) \in \pi(\mathbf{X})\}$, where $\pi(\mathbf{X})$ denotes the set of all pairs $(x, f) \in \mathbf{X} \times \mathbf{X}'$ such that ||x|| = ||f|| = f(x) = 1. The algebra numerical range of A in $\mathcal{L}(\mathbf{X})$ is given by $V(A; \mathcal{L}(\mathbf{X})) := \{F(A); (I, F) \in \pi(\mathcal{L}(\mathbf{X}))\}$, where I is the identity operator. It is known that $V(A; \mathcal{L}(\mathbf{X}))$ is compact

^{© 1984} Australian Mathematical Society 0263-6115/84 \$A2.00 + 0.00

and is the closed convex hull of $W(A; \mathcal{L}(\mathbf{X}))$. When $\mathbf{X} = \mathbf{H}$ is a Hilbert space with inner product \langle , \rangle , $W(A; \mathcal{L}(\mathbf{X}))$ reduces to the classical numerical range $W(A) := \{\langle Ax, x \rangle; x \in \mathbf{H}, ||x|| = 1\}$ (see [4] for details).

If B is an operator on another normed linear space Y, then the generalized derivation $\Delta = \Delta_{A,B}$, defined by $\Delta(T) := AT - TB$, is an operator on the space $\mathcal{E}(Y, X)$ of all operators from Y to X. In this paper, we consider the numerical ranges of restrictions of Δ to certain invariant subspaces \mathbb{S} and some consequences. First, the algebra numerical range of $\Delta \mid \mathbb{S}$ is shown to be the difference of $V(A; \mathcal{E}(X))$ and $V(B; \mathcal{E}(Y))$, provided that \mathbb{S} contains all finite-rank operators and is suitably normed. Then it is applied to determine when Δ or $\Delta \mid \mathbb{S}$ is Hermitian or normal, and to derive a Fuglede-Putnam theorem for hyponormal operators. The results will extend some theorems of Kyle [8], Sourour [13] and Berberian [3], respectively.

1. The numerical range

We will assume that S is a linear subspace of $\mathcal{L}(Y, X)$ equipped with a norm $\|\cdot\|$ (possibly different from the operator norm $\|\cdot\|$) such that the following conditions are satisfied:

(1) $A \otimes \subset S$ and $S \otimes B \subset S$; (2) If $D \in \mathcal{L}(X)$, $T \in S$, $E \in \mathcal{L}(Y)$ and $DTE \in S$, then $|||DTE||| \leq ||D|| |||T||| ||E||$; (3) $||T|| \leq |||T|||$ for all T in S, and the equality holds whenever T has rank one; (4) S contains all finite rank operators from Y to X.

It follows from (1) that δ is an invariant subspace of $\Delta = \Delta_{A,B}$, and from (2) that the restriction $\Delta | \delta$ of Δ is a bounded linear operator on $(\delta, |||\cdot|||)$. We consider the numerical range of $\Delta | \delta$.

THEOREM 1.1. For operators $A \in \mathcal{L}(\mathbf{X})$ and $B \in \mathcal{L}(\mathbf{Y})$ let $(\mathbb{S}, |||\cdot|||)$ be the normed linear space as mentioned above. Then

$$(*) V(\Delta|S; \mathcal{E}(S)) = V(A; \mathcal{E}(X)) - V(B; \mathcal{E}(Y)).$$

PROOF. We first prove that the left side is contained in the right side. So, let λ be an arbitrary element of $V(\Delta|\mathbb{S}; \mathcal{L}(\mathbb{S}))$. Then $\lambda = f(\Delta|\mathbb{S})$ for some $f \in (\mathcal{L}(\mathbb{S}))'$ such that $||f|| = f(I_{\mathcal{L}(\mathbb{S})}) = 1$, where $I_{\mathcal{L}(\mathbb{S})}$ denotes the identity operator in $\mathcal{L}(\mathbb{S})$. It is clear that the set \mathfrak{M} (resp. \mathfrak{N}) of all $D \in \mathcal{L}(\mathbf{X})$ (resp. $E \in \mathcal{L}(\mathbf{Y})$) such that $D\mathbb{S} \subset \mathbb{S}$ (resp. $\mathbb{S}E \subset \mathbb{S}$) is a linear subspace of $\mathcal{L}(\mathbf{X})$ (resp. $\mathcal{L}(\mathbf{Y})$) containing $I_{\mathcal{L}(\mathbf{X})}$ and A (resp. $I_{\mathcal{L}(\mathbf{Y})}$ and B). Define a linear functional E on \mathbb{M} by E (E) and a linear functional E on \mathbb{M} by E (E) where E and E stand for the left multiplication by E and the right multiplication by

E, respectively. Now the Hahn-Banach theorem guarantees the existence of \hat{F} in $(\mathfrak{L}(\mathbf{X}))'$ and \hat{G} in $(\mathfrak{L}(\mathbf{Y}))'$ such that $\hat{F}|\mathfrak{M}=F,\|\hat{F}\|=\|F\|,\,\hat{G}|\mathfrak{N}=G$ and $\|\hat{G}\|=\|G\|$. Since $\hat{F}(I_{\mathfrak{L}(\mathbf{X})})=F(I_{\mathfrak{L}(\mathbf{X})})=f(I_{\mathfrak{L}(\mathbf{S})})=1$ and since $|F(D)|\leqslant \|f\|\|L_D\|\S\|=\sup\{|\|DT\|\|;\,T\in\mathbb{S},\,|\|T\|\|=1\}\leqslant \|D\|$ for all D in \mathfrak{M} , we have that $\|\hat{F}\|=\|F\|\leqslant 1=\hat{F}(I_{\mathfrak{L}(\mathbf{X})})\leqslant \|\hat{F}\|$, that is, $(I_{\mathfrak{L}(\mathbf{X})},\,\hat{F})$ belongs to $\pi(\mathfrak{L}(\mathbf{X}))$. Similarly, we have $(I_{\mathfrak{L}(\mathbf{Y})},\,\hat{G})\in\pi(\mathfrak{L}(\mathbf{Y}))$. Hence

$$\lambda = f(\Delta | \mathbb{S}) = f(L_A | \mathbb{S}) - f(R_B | \mathbb{S})$$
$$= F(A) - G(B) = \hat{F}(A) - \hat{G}(B)$$
$$\in V(A; \mathcal{L}(\mathbf{X})) - V(B; \mathcal{L}(\mathbf{Y})).$$

To prove the other inclusion, it suffices to show that

$$V(\Delta|S; \mathcal{L}(S)) \supset W(A; \mathcal{L}(X)) - W(B; \mathcal{L}(Y))$$

since the closed convex hull of the set on the right side is $V(A; \mathcal{L}(\mathbf{X})) - V(B; \mathcal{L}(\mathbf{Y}))$, by an elementary proof. So, let $\alpha = g(Ax)$ with $(x, g) \in \pi(\mathbf{X})$ and let $\beta = h(By)$ with $(y, h) \in \pi(\mathbf{Y})$. Using the usual notation $x \otimes h$ for the rank-one operator: $z \to h(z)x$ ($z \in \mathbf{Y}$), we define the linear functional P on $\mathcal{L}(S)$ by

$$P(\Omega) := g([\Omega(x \otimes h)]y) (\Omega \in \mathcal{L}(S)).$$

Clearly we have $P(I_{\mathcal{E}(S)}) = 1$ and, by (3) and (4),

$$|P(\Omega)| \leq ||g|| ||\Omega(x \otimes h)|| ||y|| \leq |||\Omega(x \otimes h)|| \leq ||\Omega|| ||x \otimes h|| |$$

= $||\Omega|| ||x \otimes h|| = ||\Omega||,$

that is, $(I_{\mathcal{E}(S)}, P) \in \pi(\mathcal{E}(S))$. Hence $V(\Delta | S; \mathcal{E}(S))$ contains the number

$$P(\Delta | S) = g(A(x \otimes h)y - (x \otimes h)By)$$

= $g(Ax)h(y) - g(x)h(By) = \alpha - \beta$.

The proof is complete.

REMARK. Conditions (3) and (4) are used only in proving the direction " \supset ", therefore the inclusion " \subset " will hold for any subspace satisfying (1) and (2). That (4) is essential for the direction " \supset " is easily seen from the example where $\mathbf{X} = \mathbf{Y} = C^2$, $A = B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $S = \text{span}\{A\}$ and $||| \cdot ||| = || \cdot ||$.

The following are some examples of qualified subspaces $(5, ||| \cdot |||)$:

(a) Components in $\mathcal{L}(Y, X)$ of all the operator ideals on Banach spaces, as studied in Chapter 1 of [9], such as the classes of finite operators, approximate operators, compact operators, weakly compact operators, completely continuous

operators, unconditionally summing operators, separable operators, Kato operators and Pelczynski operators.

- (b) Components in $\mathcal{L}(\mathbf{Y}, \mathbf{X})$ of all the normed operator ideals on Banach spaces, as studied in Chapter 6 of [9], such as nuclear operators, integral operators, absolutely summing operators and Hilbert operators. (Compare the assumptions on $(5, ||\cdot|||)$ with Definitions 6.1.1, 6.2.2 and Propositions 6.1.4, 6.1.5 of [9].)
- (c) The Schatten p-class $C_p(\mathbf{H}_2, \mathbf{H}_1)$ $(1 \le p < \infty)$ or approximable operators from a Hilbert space \mathbf{H}_2 to another Hilbert space \mathbf{H}_1 , that is, operators T such that $||T||_p := [\operatorname{trace}(T^*T)^{p/2}]^{1/p} < \infty$, (see [9, page 216]). In the case where p = 1 these are the operators of trace class (nuclear operators), and p = 2 yields the Hilbert space of Hilbert-Schmidt operators (see [2, Chapter 12]).

COROLLARY 1.2. For any $A \in \mathcal{L}(X)$ and $B \in \mathcal{L}(Y)$,

$$V(\Delta; \mathfrak{L}(\mathfrak{L}(\mathbf{Y}, \mathbf{X}))) = V(A; \mathfrak{L}(\mathbf{X})) - V(B; \mathfrak{L}(\mathbf{Y})).$$

This contains Kyle's result [8] (for the case X = Y) as a special case.

COROLLARY 1.3. Let A and B be any operators on Hilbert spaces \mathbf{H}_1 and \mathbf{H}_2 , respectively, and let $C_p(\mathbf{H}_2, \mathbf{H}_1)$ be normed with $\|\cdot\|$ or $\|\cdot\|_p$. Then

$$V(\Delta \mid C_p(\mathbf{H}_2, \mathbf{H}_1); \mathcal{L}(C_p(\mathbf{H}_2, \mathbf{H}_1))) = W(A)^{-} - W(B)^{-}.$$

Thus Corollary 1.3 becomes a numerical range analogue of Fialkow's [5] formula for spectra: $\sigma(\Delta \mid C_n(\mathbf{H})) = \sigma(A) - \sigma(B)$.

We end this section by deriving from Theorem 1.1 the following known property, which will be of use in Section 2.

COROLLARY 1.4. If AT = TB holds for all rank-one operators T in $\mathcal{L}(Y, X)$, then $A = \lambda I_{\mathcal{L}(X)}$ and $B = \lambda I_{\mathcal{L}(Y)}$ for some scalar λ .

PROOF. Take S to be the space of all finite rank operators. Then $\Delta | S = 0$ and so $V(A; \mathcal{L}(\mathbf{X})) - V(B; \mathcal{L}(\mathbf{Y})) = V(\Delta | \mathcal{L}(\Sigma)) = \{0\}$, or equivalently, $V(A; \mathcal{L}(\mathbf{X})) = V(B; \mathcal{L}(\mathbf{Y})) = \{\lambda\}$ for some scalar λ . It follows that $V(A - \lambda I_{\mathcal{L}(\mathbf{X})}; \mathcal{L}(\mathbf{X})) = \{0\}$ and

$$||A - \lambda I_{\mathcal{E}(\mathbf{X})}|| \le e \max\{|\mu|; \mu \in V(A - \lambda I_{\mathcal{E}(\mathbf{X})}; \mathcal{E}(\mathbf{X}))\} = 0$$

(see [4, page 34]). Hence $A = \lambda I_{\mathcal{E}(X)}$, and similarly $B = \lambda I_{\mathcal{E}(Y)}$.

2. Hermitian and normal derivations

An operator A on a normed linear space X is said to be Hermitian if its numerical range is contained in the real line and it is normal if A = H + iK for some commuting Hermitian operators H and K. In this section we try to answer partly the question about when the operator $\Delta \mid S$ is Hermitian or normal.

First, from the formula (*) comes immediately the following

COROLLARY 2.1. Let $(\S, |||\cdot|||)$ be as assumed in Theorem 1.1. Then $\Delta |\S|$ is Hermitian in $\mathcal{L}(\mathcal{L}(\mathbf{Y}))$ if and only if $A - \lambda I \in \mathcal{L}(\mathbf{X})$ and $B - \lambda I \in \mathcal{L}(\mathbf{Y})$ are Hermitian for some scalar λ .

Kyle [8] has proved that when X = Y is a Banach space and when A = B, Δ is normal if and only if A is normal in $\mathcal{L}(X)$. We shall extend this result under various situations. The statement for the most general situation is as follows.

THEOREM 2.2. Let $A \in \mathcal{L}(\mathbf{X})$ and $B \in \mathcal{L}(\mathbf{Y})$ be of the forms A = H + iK and B = M + iN, where H, K, M and N are Hermitian operators. Suppose that $(5, |||\cdot|||)$ satisfies $HS \subset S$, $KS \subset S$, $SM \subset S$, $SN \subset S$ and conditions (2), (3), (4). Then $\Delta \mid \Sigma$ is normal if and only if both A and B are normal.

PROOF. $\Delta_{A,B}$ can be written as $\Delta_{H,M} + i\Delta_{K,N}$, where $\Delta_{H,M}$ and $\Delta_{K,N}$ and their restrictions to S are Hermitian, by Corollary 2.1. Now, from the easily verified identity

$$\Delta_{H,M}\Delta_{K,N} - \Delta_{K,N}\Delta_{H,M} = \Delta_{HK-KH,MN-NM}$$

we see that $\Delta \mid S$ is normal if and only if (HK - KH)T = T(MN - NM) for all T in S. Since S contains all finite rank operators, the latter condition is, by Corollary 1.4, equivalent to that $HK - KH = \lambda I_{\mathcal{E}(X)}$ and $MN - NM = \lambda I_{\mathcal{E}(Y)}$ for some scalar λ . But this is possible only when $\lambda = 0$, that is, A and B are normal (see [10, page 332]).

It follows that for $\Delta \mid S$ to be normal it is sufficient that A and B are normal. That this is also necessary in case X and Y are Hilbert spaces is already contained in the above theorem.

COROLLARY 2.3. Let \mathbf{H}_1 and \mathbf{H}_2 be Hilbert spaces. For $A \in \mathcal{L}(\mathbf{H}_1)$ and $B \in \mathcal{L}(\mathbf{H}_2)$ let $S \subset \mathcal{L}(\mathbf{H}_2, \mathbf{H}_1)$ be a subspace satisfying conditions (1)–(4) (for example, $C_p(\mathbf{H}_2, \mathbf{H}_1)$ with norm $\|\cdot\|_p$ or operator norm $\|\cdot\|$). Then $\Delta \mid S$ is normal if and only if both A and B are normal.

REMARK. When A and B are normal operators on a Hilbert space \mathbf{H} , Δ and $\Delta \mid C_2(\mathbf{H})$ become normal operators on the Banach space $\mathcal{E}(\mathbf{H})$ and the Hilbert space $(C_2(\mathbf{H}), \|\cdot\|_2)$, respectively. It follows (see [6, Theorem A] or [1]) that the null space $N(\Delta)$ is orthogonal to the range $R(\Delta)$ of Δ . Hence we have

$$R(\Delta)^- \oplus N(\Delta) \supset (R(\Delta | C_2(\mathbf{H}))^- \oplus N(\Delta | C_2(\mathbf{H})))^- = C_2(\mathbf{H})^-,$$

where the superscripts "-" and "=" denote the closure relative to $\|\cdot\|$ and $\|\cdot\|_2$, respectively. Thus $R(\Delta)^- \oplus N(\Delta)$ contains all compact operators while it is in general strictly less than $\mathcal{L}(\mathbf{H})$ [1].

Since a general operator on a normed linear space is not necessarily of the form H + IK, with H and K Hermitian, it is not known from Theorem 2.2 whether a normal $\Delta_{A,B} | S (A \in \mathcal{L}(X), B \in \mathcal{L}(Y))$ must be made of two normal A and B. But, at least when X is equal to Y and when $S = \mathcal{L}(X)$, this is true, as is shown by the following extension of Kyle's result.

THEOREM 2.4. Let A and B be operators on a normed linear space X. Then $\Delta_{A,B}$ is normal in $\mathfrak{L}(\mathfrak{L}(\mathbf{X}))$ if and only if both A and B are normal in $\mathfrak{L}(\mathbf{X})$.

This will follow from Theorem 2.2 (with $S = \mathcal{L}(X)$) and the next

LEMMA 2.5. $\Delta_{A,B} = \Phi + i\Psi$ for some Hermitian operators Φ and Ψ in $\mathcal{L}(\mathcal{L}(\mathbf{X}))$ if and only if A = H + iK and B = M + iN for some Hermitian operators H, K, M and N in $\mathcal{L}(\mathbf{X})$.

PROOF. Suppose $\Delta = \Phi + i\Psi$ where Φ and Ψ are Hermitian. Fix a pair (x_0, f) in $\pi(X)$ and define operators H_1 , K_1 , M_1 and N_1 by $H_1x := (\Phi(x \otimes f))x_0$, $K_1x := (\Psi(x \otimes f))x_0$ $(x \in X)$, $M_1 := H_1 - \Phi(I)$ and $N_1 := K_1 - \Psi(I)$, respectively, where I is the identity operator on X.

We first show that these operators are Hermitian. To show that H_1 is Hermitian, we will prove that $g(H_1x)$ is real for any pair (x, g) in $\pi(X)$. Indeed, for a fixed (x, g) in $\pi(X)$ there corresponds the linear functional $G: T \to g(Tx_0)$ $(T \in \mathcal{L}(X))$ on $\mathcal{L}(X)$ which satisfies: $||G|| = G(x \otimes f) = ||x \otimes f|| = 1$, that is, $(x \otimes f, G) \in \pi(\Lambda(X))$. This implies that

$$g(H_1x) = g((\Phi(x \otimes f))x_0) = G(\Phi(x \otimes f)) \in W(\Phi; \mathcal{L}(\mathcal{L}(X))) \subset R.$$

By a similar way one can show that K_1 is also Hermitian. To claim that $\Phi(I)$ is Hermitian we observe that $F(\Phi(I))$ belongs to $W(\Phi, \mathcal{L}(\mathcal{L}(\mathbf{X})))$ for every (I, F) in $\pi(\mathcal{L}(\mathbf{X}))$, or equivalently, $V(\Phi(I); \mathcal{L}(\mathbf{X})) \subset (\Phi; \mathcal{L}(\mathcal{L}(\mathbf{X}))) \subset R$. Similarly, $\Psi(I)$ is Hermitian.

Now we have, for $D \in \mathcal{C}(\mathbf{X})$ and $x \in \mathbf{X}$,

$$(\Delta_{H_1,M_1}(D))x = (H_1D - DM_1)x = H_1Dx - DH_1x + D\Phi(I)x$$
$$= (\Phi(Dx \otimes f))x_0 - D(\Phi(x \otimes f))x_0 + D\Phi(I)x,$$

and similarly

$$(\Delta_{K_1,N_1}(D))x = (\Psi(Dx \otimes f))x_0 - D(\Psi(x \otimes f))x_0 + D\Psi(I)x.$$

Thus

$$((\Delta_{H_1,M_1} + i\Delta_{K_1,N_1})D)x$$

$$= (\Delta_{A,B}(Dx \otimes f))x_0 - D(\Delta_{A,B}(x \otimes f))x_0 + D(A - B)x$$

$$= A(Dx \otimes f)x_0 - (Dx \otimes f)Bx_0$$

$$- D(A(x \otimes f) - (x \otimes f)B)x_0 + D(A - B)x$$

$$= ADx - DAx + D(A - B)x$$

$$= \Delta_{A,B}(D)x.$$

That is, $(A - H_1 - iK_1)D = D(B - M_1 - iN_1)$ holds for every D in $\mathcal{L}(X)$. It follows from Corollary 1.4 that $A = H_1 + iK_1 + \lambda I$ and $B = M_1 + iN_1 + \lambda I$ for some scalar λ . Now we can take $H = H_1 + (\text{Re }\lambda)I$, $K = K_1 + (\text{Im }\lambda)I$, $M = M_1 + (\text{Re }\lambda)I$ and $N = N_1 + (\text{Im }\lambda)I$ as the desired Hermitian operators.

So far, the question about when $\Delta_{A,B}|S$ is Hermitian in $\mathcal{L}(S)$ ($S \subset \mathcal{L}(Y,X)$) has been answered by Corollary 2.1, and the question about when $\Delta|S$ is normal has been answered by Theorem 2.2 for special operators A and B on normed linear spaces X and Y, by Corollary 2.3 for the case where X and Y are Hilbert spaces, and by Theorem 2.4 for the case where Y is the same normed linear space as Y and Y is Y and Y in the latter question for the more general case where Y is where Y and Y are Y and Y is unknown whether there exist nonnormal operators Y is normal.

On the other hand, when X = Y = H is a Hilbert space, one can deduce a stronger result than Corollaries 2.1 and 2.3. Indeed, a result of Sinclair [12, page 213] states that a Hermitian operator on a C^* -algebra (with identity) is the sum of a left multiplication by a Hermitian element in the algebra and a *-derivation, and a result of Kadison [7] and Sakai [11] asserts that every derivation of a C^* -algebra acting on H is spatial (that is, of the form $\Delta_{A,A}$, with A and element in the weak operator closure of the algebra). These facts together with Corollary 2.1 imply that an operator on a C^* -algebra S in E(H) is Hermitian if and only if it is of the form $\Delta_{H,M}|S$ for some Hermitian operators H and M (in the weak operator closure of S). Recently, Sourour [13] has proved the same assertion for the case where S is a minimal norm ideal (including the $C_p(H)$ ideals, $P \neq 2$). Thus every

normal operator on such S has to be of the form $\Delta_{A,B}|S$, with A=H+iK and B=M+iN for some Hermitian H,K,M and N. Using Theorem 2.2 we obtain the following

THEOREM 2.6. Let S be a minimal norm ideal or a C^* -algebra in $\mathfrak{L}(\mathbf{H})$, which contains all finite rank operators. Then an operator U on S is Hermitian (resp. normal) in $\mathfrak{L}(S)$ if and only if $U = \Delta_{A,B} | S$ for some Hermitian (resp. normal) operators A and B.

3. Berberian's theorem

As another application of Theorem 1.1, we shall derive an extension of the Fuglede-Putnam theorem to hyponormal operators A and B^* on Hilbert spaces \mathbf{H}_1 and \mathbf{H}_2 , respectively. It is also a slight extension of a theorem of Berberian [3] who proved in a different way the special case where $\mathbf{H}_1 = \mathbf{H}_2$.

A natural and consistent definition for a hyponormal operator A on a normed linear space X is that it can be written as A = H + iK for some Hermitian operators H and K such that A*A - AA* = 2i(HK - KH) is positive (that is, has nonnegative numerical range). Suppose B* = M - iN is a hyponormal operator on another normed linear space Y. Then the operator $\Delta_{A,B} | S$ is also hyponormal. Indeed, from the easily verified identity:

$$\Delta^*\Delta - \Delta\Delta^* = 2i(\Delta_{H,M}\Delta_{K,N} - \Delta_{K,N}\Delta_{H,M}) = 2i\Delta_{HK-KH,MN-NM}$$
$$= \Delta_{A^*A^*-AA^*,B^*B-BB^*}$$

we see that the numerical range of $(\Delta|S)^*(\Delta|S) - (\Delta|S)(\Delta|S)^*$, as the sum of the numerical ranges of the two positive operators $A^*A - AA^*$ and $BB^* - B^*B$ is nonnegative.

In particular, if $\mathbf{X} = \mathbf{H}_1$ and $\mathbf{Y} = \mathbf{H}_2$ are two Hilbert spaces, then $\Delta \mid C_2(\mathbf{H}_2, \mathbf{H}_1)$ is a hyponormal operator on the Hilbert space $(C_2(\mathbf{H}_2, \mathbf{H}_1), \|\cdot\|_2)$. Hence we have $\|\Delta T\|_2 \ge \|\Delta^* T\|_2$ for all T in $C_2(\mathbf{H}_2, \mathbf{H}_1)$. Since $(\Delta_{A,B})^* = \Delta_{A^*,B^*}$, we have proved the following

THEOREM 3.1. Let A and B^* be hyponormal operators on the Hilbert spaces \mathbf{H}_1 and \mathbf{H}_2 , respectively. If T is a Hilbert-Schmidt operator from \mathbf{H}_2 to \mathbf{H}_1 such that AT = TB, then $A^*T = TB^*$.

References

- [1] J. Anderson and C. Foias, 'Properties which normal operators share with normal derivations and related operators', *Pacific J. Math.* **61** (1975), 313-325.
- [2] J. P. Aubin, Applied functional analysis (Wiley-Interscience, New York, 1979).
- [3] S. K. Berberian, 'Extensions of a theorem of Fuglede and Putnam', *Proc. Amer. Math. Soc.* 71 (1978), 113-114.
- [4] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras (London Math. Soc. Lecture Note Series 2, Cambridge Univ. Press, 1971).
- [5] L. Fialkow, 'A note on the operator $X \rightarrow AX \sim XB$ ', Trans. Amer. Math. Soc. 243 (1978), 147-168.
- [6] C. K. Fong, 'Normal operators on Banach spaces', Glasgow Math. J. 20 (1979), 163-168.
- [7] R. V. Kadison, 'Derivations of operator algebras', Ann. of Math. 83 (1966), 280-293.
- [8] J. Kyle, 'Numerical ranges of derivations', Proc. Edinburgh Math. Soc. 21 (1978), 33-39.
- [9] A. Pietsch, Operator ideals (North-Holland Mathematical library vol. 20, 1980).
- [10] W. Rudin, Functional analysis (McGraw-Hill, New York, 1973).
- [11] S. Sakai, 'Derivations of W*-algebras', Ann. of Math. 83 (1966), 273-279.
- [12] A. M. Sinclair, 'Jordan homomorphisms and derivations on semi-simple Banach algebras', Proc. Amer. Math. Soc. 24 (1970), 209-214.
- [13] A. R. Sourour, 'Isometries of norm ideals of compact operators', preprint.

Department of Mathematics National Central University Chung-Li, Taiwan 320 Republic of China