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CRITERIA FOR a-SMOOTHNESS, x-SMOOTHNESS, 
AND TIGHTNESS OF LATTICE REGULAR 

MEASURES, WITH APPLICATIONS 

GEORGE BACHMAN AND PANAGIOTIS D. STRATIGOS 

Introduction. Consider an arbitrary set X and an arbitrary disjunc
tive lattice of subsets of X, Jzf. The algebra of subsets of X generated 
byi?f is denoted byj/(J*f ), the set of all .if-regular measures onj/(o£f ), 
by MR(J^), and the associated Wallman space, a compact 7\ space, by 
IR(J£) ; assume X is embedded in IR{^£) (otherwise, consider the image 
o f X i n Ji?(«^)). 

In part of an earlier paper [4] the work of Knowles [15] and Gould and 
Mahowald [11] was generalized from the explicit topological setting of 
X, a Tychonoff space, with J?f the lattice of zero sets of X, to the above 
setting, with the added assumption that J2? was also 8 and normal. This 
was done so that the important Alexandroff Representation Theorem [1] 
could be utilized in order to induce two associated measures p, and fi 
defined onj/(W(&)) and*/(tW(&)), respectively, where W(&) is the 
Wallman lattice in IR{^). In terms of these measures, conditions were 
then given for the general element of MRÇ^), /x, to be a-smooth, 
r-smooth, and tight, and applications were given. These conditions were 
expressed in terms of the measures ju and ft and the remainder IR(J£) — X. 

However, these results precluded a consideration of certain important 
lattices wrhich are either not 8 or not normal, such as the lattice of clopen 
sets in a T2, O-dimensional space or the lattice of closed sets in a 7\ 
topological space. 

By utilizing regular measure-extension theorems, we can now generalize 
the above results, so that we need not assume ££ is 8 and normal, but 
just disjunctive or at times separating. This has the advantage that we 
can systematically consider all the important topological lattices and 
can treat, for the first time, in a unified measure theoretical fashion, the 
particular remainders œX — X, fiX — X, and j30X — X, where œX is 
the Wallman compactification of X, [22], fiX is the Stone-Cech com-
pactification of X, [10], and PQX is the Banachewski compactification 
oiX [6]. 

Our techniques, in particular, lead to new measure-extension results 
for regular r-smooth measures (Theorem 2.5), and for certain countably 
additive measures (Theorem 3.3). They also yield new criteria for lattice 
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countable compactness (Theorem 3.1), and for lattice repleteness 
(Theorems 3.2 and 3.5) having specific applications thence to «-complete
ness, realcompactness, iV-compactness, etc. 

Finally, the general results give new proofs and generalizations of 
various measure decomposition theorems, such as the Yosida-Hewitt 
Decomposition Theorem (Lemmas 4.1 and 4.2 and Theorem 4.1). 

1. Terminology and notation, a). Consider any set X and any 
lattice of subsets of X, S£. We shall always assume, without loss of 
generality for our purposes, that 0 , l f S£.S£ is said to be 8, if for every 
subset of cSf, {La; a G A], if A is countable, then P\ {La; a G A} G «Sf. 
«if is said to be complemented, if for every element of «if, L, V G i f . «if is 
said to be T2, if for any two elements of X, a, 6, if a ^ b, then there exist 
two elements of i f , A, B, such that a e A' and 6 6 5 ' and A' C\ Bf = 0. 
i f is said to be separating, if for any two elements oi X, a, b, iî a 9e b, 
then there exists an element of «if, A, such that a £ A and b (? ^4. «if is 
said to be disjunctive, if for every element of X, a, and for every element 
of S£, B, if a g 5 , then there exists an element of «if, A, such that a £ A 
and 4̂ Pi B = 0. «if is said to be regular, if for every element of X, a, 
and for every element of S£, B, if a G A, then there exist two elements 
of i f , C, D, such that a G C" and 5 C £>' and C H £>' = 0. i ^ is said 
to be normal if for any two elements of «if, A, B, if A C\ B = 0, then there 
exist two elements of i f , C, D, such that A C C and B C D' and 
C C\ Df = 0. S£ is said to be Lindelof if for every subset of S£, 
\La\ a G A\,\i C\ {La; a G 4̂} = 0, then there exists a subset of ^4, ^4*, 
such that (^ {La; a £ A*} = 0 and ^4* is countable. S£ is said to be 
compact if for every subset of «if, {La ; a G ^4}, if P\ {La ; a G 4̂} = 0, then 
there exists a subset of A, A*, such that r\ {La; a £ A*} = 0 and ^4* is 
finite. J^ is said to be countably compact if for every subset of S£, 
{La; a G A},iî (^i {La] a G A} = 0 and 4̂ is countable, then there exists 
a subset of A, A*, such that C\ {La\ a G 4̂*} = 0 and ^4* is finite, «if is 
said to be countably paracompact if for every sequence in i f , (An), if (^4n) 
is decreasing and lim^ ^4n = 0, then there exists a sequence in «if, (Bn), 
such that for every n, An C Bn', and ( iV) is decreasing and limn Bn

f = 0. 
Next, consider any two lattices of subsets of X, «if i, ££\. «if i is said to 

separate J£Î if for any two elements of «if 2, L2, L2, if L%C\ L2 = 0, then 
there exist two elements of «if i, L\, L\, such that L2 C Li and L2 C Li 
and L1C\L1 = 0. 

b). The set of natural numbers is denoted by N. For an arbitrary 
function / , the domain of / is denoted by Df. The set whose general 
element is the intersection of an arbitrary subset of S£ which is countable 
is denoted by hS£\ The set whose general element is the intersection of 
an arbitrary subset of S£ is denoted by tS£\ A function, / , from X to 
R U {±oo} is said to be S£-continuous if for every closed subset of 

https://doi.org/10.4153/CJM-1981-115-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-115-4


1500 G. BACHMAN AND P. D. STRATIGOS 

R U {ztco }, C,f~l(C) Ç e£f. The set whose general element is a function 
from X to R^J { ±00 } which is if-continuous is denoted by C{J£). The 
set whose general element is an element of C(«=èf ) which is bounded is 
denoted by Cb(J^ ). The set whose general element is a zero set of ^£ is 
denoted by 2? (J£ ). The algebra of subsets of X generated by ££ is 
denoted by j / ( i f ) . The c-algebra of subsets of X generated by <if is 
denoted by a{££). Next, consider any algebra of subsets of X, s/. A 
measure on-i^ is defined to be a function, /x, from J3^ to R, such that /x is 
bounded and finitely additive. (See [1], p. 567.) The set whose general 
element is a measure on stf (J£) is denoted by M ( i f ) . An element of 
Af(«Sf), M> is said to be J£-regular if for every element of J^/( i f ) , E, for 
every positive number e, there exists an element of ££, L, such that 
L C E and |MCE) — ix(L)\ < e. The set whose general element is an 
element of M («if) which is if-regular is denoted by MRÇSf). For the 
general element of M(J£)} /x> the support of M is defined to be 
Pi {Z, 6 i ? | / i ( £ ) = M P O } and is denoted by S(/x). An element of 
M{J£), M, is said to be ££ -{h-smooth) if for every sequence in <stf(J£)y 

{An), if (An) is decreasing and limn An = 0, then limw/x(^4n) = 0. (See 
[21].) The set whose general element is an element of M(££) which is 
££- (ex-smooth) is denoted by M(<r,J£). An element of Af(«£f ), /x, is said 
to be if- (r-smooth) if for every net in «if, (L«), if (La) is decreasing and 
\ima La = 0, then lima/x(La) = 0. (See [21].) The set whose general 
element is an element of M{J£), JU, which is if-(r-smooth) is denoted 
by M(e , i f ) . An element of M(if),M, is said to be if-^g/*/if/x G M(* , i f ) 
and for every positive number e, there exists an ££-compact set, K, such 
that v*{Kf) < e. (See [21].) The set whose general element is an element 
of M(j£) which is i f - t ight is denoted by M(t,J£). The set whose 
general element is an element of i!f(«Sf ), /x, such that for every element 
of C(if ) , / , / / d/x G R is denoted by MIÇ&). The set whose general 
element is an element of ikf(if), /x, such that n(#/Ç&)) = {0, 1) is 
denoted by / ( i f ).o$f is said to be replete if for every element of 7i?(o-,if ), 

M, SG0 ^ 0-
Since every element of M{££) is equal to the difference of nonnegative 

elements of M{J£), in the sequel we shall work, exclusively, with non-
negative elements of M<J£), without loss of generality. 

2. In this section we work with an arbitrary set X and a fairly arbitrary 
lattice of subsets of X , i f ; with this pair we associate the general Wallman 
space IR{££) (see below) and for the general element of MR(££) we 
investigate how the properties of c-smoothness, r-smoothness, and 
tightness reflect over to IR{££) and conversely. 

Preliminaries, (i). Consider any set X and any lattice of subsets of 
X,J^, such that i f is separating and disjunctive. It is known that the 
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topological space (IR(J^), tW(J£)) is compact and 7\; it is T2, if and 
only if Jzf is normal. (See e.g. [2] and [18].) Consider the function (j> 
which is such that D^ = X and for every element of X, x, 0(x) = \xx. 
Then, <j> is a (/J?f, ^(J^))-homeomorphism. For this reason, <t>(X) is 
identifiable with X. Moreover, <t>(X) is dense in IR(J£). Consequently, 
IR{££) is a compactification of X\ it is known as the general Wallman 
compactification of X. In case 4>{X) is identified with X, then X is said 
to be embedded in IR(J£). 

Denote the general element of stf<J£) by A. Then, {/x G /J?( if) | 
lx{A) = 1} is denoted by W(-4). The following statements are true: 

1. If A 6 j / ( S f ), then WX^)' = W(A'). 
2. If 4 , 5 6 ^ ( S f ) , then a) W{A \J B) = ÏT(i4) U W(B); 

^ ( i H J 5 ) = W(i4) H îT(B);7) If -4 D 5 , then W(i4) D WTB);«) 
If TF(i4) D JF(£), then,4 D £ ; e ) , 4 = B, if and only if W(A) = W(B). 

Z.s/(W{?)) = lW(if)). 
(Proofs are omitted. Note all these statements are true, if «if is simply 

disjunctive.) 
Next, consider any element of M(J£), /x, and the function A which is 

such that Di = s/(W{&)) and for every element of j / ( T T ( i f )), W>X4)f 
ja(ÎT(i4)) = /*(i4). Then, A G M ( W ( i O ) and, if /x € MRÇ&), then 
M G MR{W(¥)). Conversely, consider any element of M(W{££)), v, 
and the function xx which is such that DM = <$& (J£ ) and for every element 
ofs/(&), 4 , M(4) = *(W(i4)). Then, ju G M( i f ) and v = A, and, if 
v 6 Afi?(IF(if )), then /x £ MR(^). Note since W(if ) is compact, 

Mi?(P7(oSf )) = Mi?(cr, W(&)) = MR(T, WÇ&)) = MR(t, W(&)). 

Next, consider any element of MRÇSf), /x. Then, 

A G M2?(TT(^f)) = MJS((T, W(if )). 

Hence, A is extendible to the o--algebra of A*-measurable sets, uniquely, 
and the extension is bW(J£)-regular. Continue to use A for this extension, 

(ii). The following statement is true: 

(Proof omitted.) Next, consider any element of M(<^), /*, and the 
function \t! which is such that D^ = s/(W<,(<&?)) and for every element 
ols/(W9{V))% W,(B), »'{W„{B)) = M(5) . Then, /x' G M(W.(Sf)) and, 
if /x £ MR ( i f ) , then / G MR{W„{<£)). Conversely, consider any 
element of M(Wa(J£)), p, and the function /x which is such that 
D, =J2f(¥) and for every element of j / ( S f ) , B, /x(£) = p(W,(B)). 
Then, M 6 M ( i f ) a n d p = /x', and, if p G M#(W„(if )), then/x G MRÇ&). 
The following statement is true: If /x G MR ( i f ) , then /x Ç MR(<x,^) 
if and only if / G Mi?(cr, W„(if )). (Proof omitted.) 
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Observation. Note \X^IR(<J,<£) if and only if M' G IR(<r, W9<J£)). 
Next, for the general element of IR((r} W«{££)), /x'> note 

S(M') = r\ {W9(L)\L G i f a n d / * ' W ( £ ) ) = 1}. 

Further, note for every element of i f , L, if / / ( ^ ( L ) ) = 1, then 
ju(L) = 1, by the definition of // , and, consequently,, jut £ Wa(L). Hence, 
M G S (M' ) . Hence, S(M') J* 0- Consequently, IR(<J,£?) is fl7„ (if)-replete. 

Par/ I. (On o--smoothness.) 

THEOREM 2.1. Consider any set X and any lattice of subsets of X, Jzf', 
swcfr /fea/ i f is {separating) and disjunctive. If \x Ç MR(J£), then the 
following statements are equivalent: 

1. M 6 MR(<r,^). 
2. If (Li\i 6 N)isinJ^ and (Lt) is decreasing and 

HiWÇLi) CIR&) -X, 

thenfiinnWiLi)) = 0. 
3. If (Li; i £ N) is in^£ and (Lt) is decreasing and 

Hi W(Li) C IR&) - IR(<r,&), 

thenfi(C\iW{Li)) = 0. 
4 .£*PO = A(I2?(i?)). 
5.£*(/i?(<r,if)) =fi(IR(J?)). 

Proof, a). Show 1 and 2 are equivalent. Assume 1, and show 2. Con
sider any sequence in =£?, (£*), such that (Lt) is decreasing and 
(~)t W(Lt) C I K ( i O - X and show £ ( 0 . W(£«)) = 0. Note 

fi(C\iW(Lt)) = \imtfi(W{Lt)), 

since (W(Li)) is decreasing (because (Lt) is decreasing), and 

A e M(v, W{<?)) = limt»(Lt) = M(r i i i«) , 

since (£*) is decreasing, and ju Ç M(<r,Jzf), by the assumption. Since 
DiW(Lt) C ZR(.S?) - X, riiLt = 0. Consequently, 

/Kn«w(£«)) = o. 
Hence, 2 is true. Conversely, assume 2, and show 1. Consider any 
sequence in=êf, (Lt), such that (Z,4) is decreasing and lim*!^ = 0, and 
show lim(/x(Lj) = 0. Note 

limtviL,) = lim«ja(W(Z,)) = A(H* W(£«)). 

Show n ( W(Z,,) C IR(&) - X. Assume 

HiWiLt) ÇLIR<&) - X. 
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Then, there exists an element of X,x, such that px G Pu W(Lf). Consider 
any such x. Since \ix G C\iW{Li), for every i, nx(Lt) = 1. Hence, 
lim* iix{Li) = 1. Since \kx G I{<J,J£), a contradiction has arisen. Hence, 
the assumption is wrong. Hence, Pu W(Lt) C IR{S£) — X. Hence, 
since 2 is true, fi(Di W(Lt)) = 0. Consequently, lim* ix(Lt) = 0. Hence, 
M 6 MR((r, if) , since /x G MR(^), i.e., 1 is true. 

0). Show 1 and 3 are equivalent. Assume 1, and show 3. (Proof 
omitted.) 

Conversely, assume 3, and show 1. Consider any sequence in «if, 
(Li), such that (Lt) is decreasing and lim* L t = 0, and show lim* n(Li) 
= 0. Note 

lim<M(i«) = limtfiiWiLi)) = fi(rnW(Lt)). 

Show Hi W(Lt) C ZR(i?) - IR(<r,&). Assume 

H< T^(i«) <Z ^ ( < ^ ) - IR(v,&). 

Then, there exists an element of IR(J£), v, such that y G Pu W(Lt) and 
v G IR((Ty^f). Consider any such v. Since v G C\t W{Lt), for every i, 
v(Lt) = 1. Hence, lim^(L*) = 1. Since v G / ( o - , ^ ) , a contradiction 
has arisen. Hence, the assumption is wrong. Hence, 

H< W(£,) C / « ( i f ) - IR(*,&). 

Hence, since 3 is true, 

fi(ntW(Lt)) =0. 

Consequently, limi/x(Li) = 0. Hence, M G MR(a^), since n G MR{J£), 
i.e., 1 is true. 

7). Show 2 and 4 are equivalent. Note 

p*(X) + h(IR&) - X) = fi(IR&)) 

and, since jit is W(J£)-regular, 

h(IRÇSf) - X) = sup {£(#)!# G ôWÇSf) andKC IR(J£) - X}. 

Hence, p*(X) = jtt(ZR(if )), if and only if j&*(ZR(if ) - X) = 0, if and 
only if whenever i£ G ÔWÇ&) and IT C / « ( i f ) - X, then jft(2C) = 0, 
if and only if whenever (Lt; i G N) is in<if and (L<) is decreasing and 
Or- WXLO C IR&) - X, then ja(n* W(Lt)) = 0. Hence, 2 and 4 are 
equivalent. 

5). Show 3 and 5 are equivalent. (Use the same method as for 7).) 
Thus, the theorem is proved. 

Remark. The part of the assumption "<if is separating" is not needed, 
in case <I>(X) is not identified with X. Whenever we wish to indicate this 
in a theorem, we shall enclose the word "separating" (e.g., in the hypoth
esis), in parentheses. 
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Observation 1. Note the statement \x*(IR(J£) — X) = 0 is equivalent 
to the statement "X is ju-thick". (See [13], pp. 74, 75.) Consequently, 
4 is equivalent to the statement UX is jut-thick". Next, assume 
M Ç MR(a,J£). Then, by the theorem, X is ju-thick. Hence, since 

j/(w&)) nx = s/(w(&) r\x) = */(<?), 
the projection of ju on X is defined. Denote the projection of ju on X by £i-
Then, for every element ofstf (J£), A, 

nM) = fii(w(A) n x) = j&(T7(4)), 
by the definition of the projection, = /x(^4). Hence, jui = /*. 

Observation 2. Note the statement 

fa(IR&) - IR(v,&)) = 0 

is equivalent to the statement uIR(a,J?f) is ju-thick". Consequently, 5 
is equivalent to the statement uIR(a,^) is ju-thick". Next, assume 
M £ MR(<r,J^). Then, by the theorem, IR(a,J^) is ju-thick. Hence, since 

s/(W{&))C\IR(v,&) =s/(W(&)C\IR(<r,&)) = J^(W„(£?))J 

the projection of ju on IR{v,J£) is defined. Denote the projection of ju 
on IR(a,^) by fa. Then, for every element of j / ( W „ ( i ? ) ) , 

T7,(3),A2WrtB)) = p2(T7(5)n/^(<r,o$f)) = 0(17(3)), 

by the definition of the projection, = JJL(B) = yJ{Wa{B)). Hence, 
M2 = M • 

Examples. (Note if L £ J?f, since J?f is (separating) and disjunctive, 
W(L) = L.) 

(1). Consider any topological space X such that X is 7\, and denote 
its collection of closed sets by J r . Then, IR(Jr) is known as the 
Wallman compactification of X and is denoted by coX. (See [22].) If 
JU G MR(^), then the following statements are equivalent: 

1. M G MR(c r , ^ ) . 
2. If <F<; i G N) is in ^ and (F^ is decreasing and O* Ft CuX - X, 

then fiiHiFi) = 0. 
3. If (Ft) i G N) is in ^ and (Ft) is decreasing and n ^ t C c o I -

IR(a,^), then //(Hz F*) = 0. 
4. fi*(X) = A(coX). 
b.^{IR{a^)) = fi(uX). 

(2). Consider any topological space X, such that X is r 3 i , and denote 
its collection of zero sets byi2T. Then, IRÇ3?) is known as the Stone-Cech 
compactification of X and is denoted by (3X\ IR(a,2f) is known as the 
Realcompactification of X and is denoted by vX. (See [10].) 
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If /it G MRÇ2f), then the following statements are equivalent: 
1. M € MR(c,&). 
2. If <Z<; t 6 N) is in<2T and (Zt) is decreasing and C\iZi C j&X" — -X", 

then £(PuZ*) = 0 . 
3. If (Zt; i G N) is i n l a n d (Zt) is decreasing and Hi Zt C. @X — vX, 

then fi(r\iZi) = 0. 
4. £*PO = fitfX). 
5. £*(uX) = A GMT). 

(3). Consider any topological space X such that X is T\ and 0-dimen-
sional, and denote its collection of clopen sets by ^. Then, IR(^€) is 
known as the Banaschewski compactification of X and is denoted by 
PoX (see [6]), and IR(a, *$) is known as the iV-compactification of X and 
is denoted by v0X. (See [14].) Since <€ is an algebra, MR(&) = M($). 

If IJL 6 M(^ê), then the following statements are equivalent: 
1. M € M ( t r , <*f ) . 
2. If <Ci;i G N) is i n l a n d (C\) is decreasing and Hi Ct C PoX - X, 

then fi(Di Ci) = 0 . 
3. If (Cù i Ç N) is in ^ and (C<) is decreasing and Hi Ct C jSo-X" — 

u0Z, then ju(Of Cf) = 0. 
4.£*(X) = AÛM0. 
5. A*(uo^) = A(/3o*). 

(4). Consider any topological space X such that X is 7\, and denote 
its collection of Borel sets by ^?. Since ^ is an algebra, MR {Se) = M(S§). 

If ix £ M (Se), then the following statements are equivalent: 
1. M 6 M(a,S§). 
2. If <5<;i G_N) is i n l a n d (5,) is decreasing and DiBiC I(0S) -

X, then fl(rnBi) = 0. 
3. If <5<;i e N) ism ^ and (Bt) is decreasing and O ^ i C I{@)-

I(a,&), then fiiDiBi) = 0. 
4 .£*(*) = M ( / ( ^ ) ) . 

5.0*(J(er,,0)) = M ( / ( ^ ) ) . 

THEOREM 2.2. Consider any set X and any lattice of subsets of X, «if, 
such thatJ£ is separating and disjunctive. The following statements are true: 

\. If J£ is à and normal, then 

2T(fW(&)) C 6W(2r(&)). 

2. If ££ is countably paracompact and normal, then if (Lt; i 6 N) is in 
££ and (Li) is decreasing and C\t W(Lt) C IR(J£) — X, then there exists 
an element of 3?(tW{J£)), K0, such that 

niW(Li)CK0CIR(^) -X. 

Proof. 1. Assume J^ is ô and normal. Consider any element of 
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3f(tW(J£)), Ko. It is known that, since i f is separating, disjunctive, S, 
and normal, the function which maps the general element of Cb(J£), f, 
into the element of C(tWÇ£f)), f, which is such that for every element 
of IR(J£), M,/(M) = J / du, is surjective; (it is even a congruence between 
C&(eêf ) and C(tW(J£)). (See [3] and [18].) Consequently, there exists an 
element of Ch{J£),f, such that K0 = /—1({0} ). Consider any such/. Then 

oo 

Ko= H ( ^ ZR(JSf)| I/O*)I £ l / n } . 

Note since / Ç C(tW {<£)), for every », 

U 6 IR( i ? ) | | / ( M ) | ^ 1/n} € ^ ( W ( i f )) . 

Denote {/x 6 ^ ( ^ ) | | / ( M ) | ^ 1/»} by Kn. Then 

# n n X = {x 6 Z | | / ( * ) | g 1/»}. 

Note since/ Ç C&(o^), 

{xez| |/(x)| g i/»} e^(if). 
Denote {x G X\ \f(x)\ ^ 1/n} by Ln. 

Show i£0 = On W(Ln). a ) . Show i£0 D _H» t^( in) . Notejor every », 
Kn Z) A*- Hence, since Kn is closed, i£n D Ln. Hence, since Ln = W(Ln), 
Kn D TF(Ln). Consequently, i£0 D O» W(£*). 

/?). Show K0 C On W(Ln). Assume K0 5* 0. Consider any element of 
-Ko, M- Then, since X is dense in IR{££), there exists a net in X, (/Xxa), 
such that lima fjiXa = ju. Consider any such (/**«)• Then, since / is con
tinuous, 

lima/(/i*a) = / ( M ) . 

Since /x 6 K0 and .Ko = / - 1({0}), / (M) = 0. Consequently, 

lim* f(nxa) = 0. 

Hence, for every », there exists a value of a, «o, such that if a ^ ao, then 
l/O-OI < 1/w. Consider any such a0. Then, if a ^ a0, then 

M*aeL„= i f ( y n i c ^ ( L n ) . 
Hence, since lima \xXa = /x, ^ 6 W(£n)- Hence, M € Pin W(Ln). Hence, 
K,C nnW(Ln). 

y). Consequently, K0 = C]n W(Ln), and for every », Ln G 3? {<££). 
Hence, i£0 € W ( ^ ( i f ) ) . Hence, 2? (tWÇ¥)) C 5 T ^ ( ^ ( i f ) ) . 

2. Assume Ĵ f is countably paracompact and normal. Consider any 
sequence in oSf, (L<), such that (L t) is decreasing and Di W{Lt) C 
IR(J£) — X, and show there exists an element of 2f(tW(^)), i£o, such 
that 
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Since Di W(Lt) C IRÇSf) - X,DiLt = 0. Consequently, limtLi = 0. 
Hence, since & is countably paracompact, there exists a sequence inJSf, 
(Lt)y such that for every i, Lt C L/, and ( L / ) is decreasing and 
lim* L / = 0. Consider any such {£*). Then, for every w, since Ln C A/» 
W{Ln) C ^ ( I „ ' ) = W(L n ) ' .^ Hence, ritW(Lt) C ^ ( 4 ) ' . Note 
Ply W(Lt) is compact and W(Ln)

f is open. Since *£? is normal, IR(J£) 
is TV Consequently, IR(££) is locally compact and T2. Hence, by the 
Baire Sandwich Theorem (see [13]), there exists a compact Gs-set, Kn, 
such that Di W{Lt) C Kn C PF(Ln)'. Consider any such i£n. Then, 

n<^(£*)c Hn^c DnW(Lny. 
Note On ^ is a compact Gs-set. Hence, since IRÇSf) is T2 and normal, 
Dn Kn e &(tWÇ&)). Denote Dn Kn by tf0. Then, 

DiW(Li)CKoC DiW(Li)'. 

Since ( L / ) is decreasing and limt- L/ = 0, Di L/ = 0. Hence, 

DiW(Li')CIR&) -X. 

Consequently, Di W(Lt) C K0 C IRÇ&) - X. 
Thus, the theorem is proved. 

The following theorem generalizes part of [4], which was itself a 
generalization of the work of Knowles [15]. 

THEOREM 2.3. Consider any set X and any lattice of subsets of X, Jzf, 
such that oSf is separating, disjunctive, b, normal, and countably para
compact. If /x £ MR{££), then the following statements are equivalent: 

1. /x 6 MR(a,&). 
2. If Ko 6 ^ (W(JSf )) and K0 C IR( i? ) - X, then fi(K0) = 0. 

Proof. (Note since «5? is separating, disjunctive, ô, and normal, 
2f(tW(&)) C W ( ^ ( i f )), by Theorem 2.2, Part 1, C hW{&) C D%. 
Note, in general, for an arbitrary lattice of subsets of X, ££, for every 
element of 2f (tW(^)), Z, there exists a sequence inJ*f, (Ln), such that 
Z = Dn W(Lny. Consequently, 2f(fW(&)) C *(Wtff)) C £>*•) 

Assume 1, and show 2. Consider any element of 2f(tWÇ^)), 2£o, such 
that i£0 C IR(££) — X, and show jLt(î o) = 0. Since ££ is separating, 
disjunctive, 5, and normal, K0 Ç 5PF(o$f). Hence, since ju G MR(v,££), 
by assumption, by Theorem 2.1, j&(i£0)

 = 0. Hence, 2 is true. Conversely, 
assume 2, and show 1. Use Theorem 2.1, namely, show if (L f; i Ç N) is 
i n i ? and (L<) is decreasing and Di W{Lt) C IR{S£) - X, then 

fi(DiW(Li)) = 0. 

Consider any sequence in <if, (Li), such that (L*) is decreasing and 
Dt W(Li) C IR(J£) — X. Then, since S£ is countably paracompact 
and normal, by Theorem 2.2, Part 2, there exists an element of 
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&(tW(¥)),Ko, such that 

ntW(Lt) CK,CIR(^) -X. 

Consider any such KQ. Then, fi(K0) = 0, by the assumption. Con
sequently, jft(n< W(Li)) = 0. Hence, by Theorem 2.1, M £ MR(<rt&), 
i.e., 1 is true. 

Thus, the theorem is proved. 

Examples. (We use the notation introduced earlier in this section.) 

(1). Consider any topological space X such that X is 7\, normal, and 
countably paracompact. If /x G MR(^), then /x Ç MR{G,&~), if and 
only if whenever i£0 is a zero set of uX and i£o C coX — X, then 
A(#o) = 0. 

(2). Consider any topological space X such that X is Tz%. If 
M Ç MR(3f), then /x G MR(a,2f)J if and only if whenever K0 is a zero 
set of PX and i£0 C fiX - X, then £(i£0) = 0. (This result is due to 
Knowles [15].) 

(3). Consider any topological space X such that X is 7\. If M ê M(&), 
then /x G M (a, Se), if and only if whenever Ko is a zero set of / ( ^ ) and 
Ko C 1(08) - X, then fi(K0) = 0. 

Par/ II. (On r-smoothness.) 

LEMMA 2.1. Consider any set X and any two lattices of subsets of X, Jzf i, 
J$f 2, swcfe ihatJ£\ C -^2 . / / MI 6 MR(<y?i), then there exists an element of 
MRÇ^?), /x2, ŝ cfr /feâ  M2|̂ (̂ f1) = Mi and, if J^i separates J^2, then /X2 f's 
unique. (See [5] and [16].) 

Next, consider any set X and any lattice of subsets of X, <=£?, such 
that ££ is disjunctive. Consider any element of MR(J£), /x- Then, 
A Ç MR(W(J£)). Hence, by the lemma, there exists an element of 
MR(tW(££)), ju, such that p\^(W(^)) = M and, since W(^£) separates 
tW{££) (because W{££) is compact), fi is unique. 

Note since tW(J^) is compact, 

MR(tW(&)) = MR{v,tW(&)) = MP(r,/TF(if)) 

= M £ ( U l F ( i f ) ) . 

Consequently, /x Ç MR(<J, tW{0£)). Hence, jtx is extensible to the 
c-algebra of /Immeasurable sets, uniquely, and the extension is tW(^£)-
regular. Continue to use /x for this extension. 

LEMMA 2.2. Consider any set X and any lattice of subsets of X,J£, such 
thatS£ is h. The following statements are equivalent: 
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1. M 6 MR(T,&). 

2. If (La'yOL G A) (net) is inf£ and (La) is decreasing, then 

n*(r\aLa) = infan(La). 

3. If {La; a £ A} C ^ and {La;a £ A} is a filter base, then 

M * ( P l a ^ a ) = mfa n(La). 

(See [19].) 

THEOREM 2.4. Consider any set X and any lattice of subsets of X, J*f', 
such that Jzf is (separating) and disjunctive. If n Ç MR(J£), then the 
following statements are equivalent: 

i. M e MR(T,&). 

2. / / (La;a d A) (net) is in ^£ awrf (L„) w decreasing and 
H» W(I«,) CIR(&) -X, then 

U(Da W(La)) = 0. 

3. p*(Z) = p(IR<&)). 

Proof, a). Show 1 and 2 are equivalent. Assume 1, and show 2. Consider 
any net in i f , (La), such that (L«) is decreasing and H« WCA*) C 
/£(.£?) - X, and show 

p(DaW(La)) = 0 . 

Since (La) is decreasing, (W(La)) is decreasing. Hence, since p, £ 
MR(T,^) and *W(if ) is <5, by Lemma 2.2, 

n(C\*W(La)) = \imafi(W(La)). 

Consequently, 

fi(naW(La)) = \imafi(W(La)) = \imafl(W(La)) = limaM(£«). 

Since (La) is decreasing, lima La — f|« A*. Since f|« W(£a) C IR(<&) — 
X, C\a La = 0. Consequently, lima La = 0. Hence, since /* G Af(tr,if), 
by the assumption, 

lima n(La) = 0. 

Consequently, 

M(n«^(La)) = o. 

Hence, 2 is true. Conversely, assume 2, and show 1. Consider any net 
in <if, (L«), such that (La) is decreasing and lima La = 0, and show 
lirn* n(La) = 0. Note 

\ima n(La) = \imajl(W(La)) = limafi(W(La)). 
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Since (La) is decreasing, (W(La)) is decreasing. Consequently, 

lim* H(W(L*)) =fi(naW(La)). 

Since fl« La = 0, fl« W(£«) C IR(&) - X. Hence, since 2 is true, 

M(n«w(£«)) = o. 

Consequently, lima/z(La) = 0. Hence, /x G MR{ry^), i.e., 1 is true. 
0). Show 2 and 3 are equivalent. 

Remark. The method of proof of this statement is the same as that of 
the statement "2 and 4 are equivalent" in Theorem 2.1, and, for this 
reason, it is omitted. 

Thus, the theorem is proved. 

Observation. Statement 2 is equivalent to the statement: If K G tW(££) 
and K C IR(¥) - X, then fi(K) = 0. 

Examples. (1). If M 6 MR(#~), then M G MR(r^) if and only if p 
vanishes on every closed subset of œX, contained in œX — X. 

(2). If JU G MR&), then M € MR(a,2?) if and only if jz vanishes on 
every closed subset of fiX, contained in fiX — X. 

(3). If M G M((iû),then n G M(r, fé7) if and only if # vanishes on every 
closed subset of PQX, contained in f30X — X. 

(4). If M G M(âiï), then JLC £ M(T, ^ ) if and only if p. vanishes on every 
closed subset of 1(31), contained in I(Se) — X. 

THEOREM 2.5. Consider any set X and any lattice of subsets of X, J£y 

such that <j£f is separating and disjunctive. If M € MR(T,J^) then there 
exists an element of MR(T, tJ^), v, such that v\^^) = n and v is unique in 
the sense that if p G MR(T, t££) and p\^^) = M» then p = v; moreover, v i$ 
J£-regular on (tJ?)'. 

Proof, (i). Existence. Since M G MR(r,Jf), by Theorem 2.4, p*(X) = 
iX(IR(J^)). Hence, X is ju-thick. Hence, since 

s/(tw(¥)) r\ x = s/(tw(&) r\ x) = s/(t&), 
the projection of # on X is defined. Denote the projection of fi on X by v. 
Denote the general element of stf(t££) by A. Then, there exists an 
element of s/(tW(J£ )), 4* , such that 4 = i l * H I Consider any such 
A*. Then, v(A) = fi(A*), by the definition of the projection. 

a). Show ^U(̂ f) = M- Note if 4̂ G stf (££), then 

^(-4) = y(ÏT(i4) H X) = p(W(4)) = U(W(A)) = /*(i4). 

Hence, ^ ^ = JU. 

https://doi.org/10.4153/CJM-1981-115-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-115-4


LATTICE REGULAR MEASURES 1511 

P). Show v is & -regular. Note 

v{A) = p.(A*) = sup {U{K)\K G tW(&) and K C 4̂*} 

= sup{v(Kr\X)\K G tW(&) andKCA*} 

£ sup{v(KnX)\Kr>iX et& andKniX CA*r>iX} 

= sup {v(F)\F £t& and F C i | ^ K^) -

Hence, 

v(A) = s u p { ^ ( F ) | F É ^ f and ^ C ^ } . 

Hence, v is &-regular. 
7). Show y G M{j,t££). Consider any net in t££, (Fa; a G A), such 

that (Fa; a G A) is decreasing and lima Fa = 0, and show lima v(Fa) = 0. 
Consider any positive number e. For every a, consider the set whose 
general element is an element of «if, L, such that 7^ C L, and denote 
it by {Laffia; /3a G Aa}. Then, since Fa G ^if, 

F« = H {La^JjSa 6 Aa}. 

Since (Fa) is decreasing and lima Fa = 0, Ha Fa = 0. Consequently, 

0 = ^ ^ = r\{Latpa;a G A, ft, 6 Aa}. 

Consider {La)/3a;a: G A, @a G Aa}, and denote it by {Ly; y G T}. Consider 
the partial ordering ^ , of I\ which is such that whenever 71, 72 G I\ 
then 71 ^ 72 if and only if L7l C £72- Then, T is directed by ^ and 
(L7; 7 6 T) is decreasing and lim7 Ly = 0. Hence, since p|jtf(^) = M> and 
M G ikf(r,=êf ), by the assumption, lim7 ^(L7) = 0. 

Hence, there exists a value of 7, 70, such that v(LyQ) < e. Consider 
any such 70. Note there exists a value of a, a0, such that FaQ C L7Q. 
Consider any such a0. Then, since (Fa) is decreasing, if a ^ a0, then 
Fa C -?<*„. Consequently, if a ^ a0, then 

Kft) ^ *(F„0) ^ K^y0) < e-

Hence, lima^(Fa) = 0. Hence, v G ikT(r,/if). 
5). Consequently, 1/ G MR(j,t<£). 
(ii). Uniqueness. (Proof omitted.) 

(iii). Show *> is«èf-regular on (t^)'. Consider any element of (&)', B, 
and show 

*(£) = sup {v(L)\L Ç ^ a n d L C 5 } . 

Consider any positive number e. Since B G (£if ) ' and the relativization 
of tW(J£) to X is /«if, there exists an element of (tW (££))', G, such that 
B = G r\ X. Consider any such G. Then, since p is tW(J£)-regular, there 
exists an element of tW(J£), K, such that K C G and jl(G — K) < e. 
Consider any such K. Then, consider the set whose general element is 
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an element of W(J£), W{L), such that K C W(L), and denote it by 
{W(La);a e A}. Then, since K 6 tWÇ&), 

K = r\ {W(La);a G A}. 

Then, since K C. G, 

H {W(La);a e A} C\ G' = 0. 

Hence, since 1/F(if ) is compact, there exists a subset of ^4, A*, such that 

n {î (Ltt);a u*|nff = e 
and ^4* is finite. Consider any such A*. Then, 

H [W(La);a e ,4*} = W(H {La;« 6 4*}). 

Note H {La;a € 4̂*} G i f . Denote n { L a ; a Ç , 4 * } by I . Then, 
X C W(L) C G. Hence, 

W(L) n i C G H I 

Consequently, L C B. Consequently, L Ç oèf and L (Z B and 

K 5 ~ i ) = K(G - W(£)) H X) 

= p(G - TT(I)) ^ J2(G - X) < e. 
Hence, 

y(5) = sup {v(L)\L e i f and L C 5 } . 

Hence, y is if-regular on (/if)''. 
Thus, the theorem is proved. 

Remark. For a related type of extension involving content see [20]. 

Examples. (1). If M £ MR{T,2f)} then there exists an element of 
MR{r,t2f) = MR{T^), V, such that v\^(^) = /x and v is unique; 
moreover, v is 2?-regular on J^f 

(2). If M G M(r, ^ ) , then there exists an element of MR(j, fâ) = 
M(T, <^~), v, such that v\<$ = IJL and v is unique; moreover, v is &-regular 
o n ^ f 

(3). If M € M(T, £#), then there exists an element of MR(T, t3J) = 
M(T, &(X)), V, such that v\® = y and v is unique; moreover, v is 
^-regular on 0>(X). 

THEOREM 2.6. Consider any set X and any lattice of subsets of X, J£', 
such that ^£ is disjunctive. If y. £ MR{J£), then the following statements 
are equivalent: 

1. M' £ ^ ( T , W„(if )) . 
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2. If {La;a € A) {net) is in££ and (La) is decreasing and 

H . W(La) C IR&) - IR(a,&), 

then p(na W(La)) = 0. 
3. H*(IR(a,SC)) = p(IR&)). 

Proof, a). Show 1 and 2 are equivalent. Assume 1, and show 2. Consider 
any net in .if, (La), such that (La) is decreasing and 

Ha W(Z*) C I £ ( i ? ) - IR(<r,&), 

and show / i f r i a ^ W ) = 0 . Since (La) is decreasing, (W(La)) is 
decreasing. Consequently, 

M ( H « WCW) = limafl(W(La)) = \imafi(W(La)) 

= lim«/i(L«) = limajLi'(W^ (£«))• 

Since (W(La)) is decreasing, (W„(La)) is decreasing. Show lima Wa(La) 
= 0. Since n« W(Z*) C J2î( i?) - IR{v,&), 

riaW(La)rMR(*,&) = 0. 

Hence, fla ^ ( ^ a ) = 0. Consequently, lima PFff(La) = 0. Hence, since 
/x' G M(r, Wcr(oêf)), by the assumption, 

l i n W W C W ) = 0. 

Consequently, jK(Pla W(La)) = 0. Hence, 2 is true. Conversely, assume 
2, and show 1. Consider any net in W„{££)> {W<,(La)), such that 
(W<r(La)) is decreasing and 

lim« Wa{La) = 0, 

and show 

limav'(W.(La)) = 0. 

Note 

H n W W C ^ ) ) = l i m a M ( ^ ) = \ima fi(W(La)) 

= \lmafi(W(La)) =jï(naW(La)). 

Show jliHa W(La)) = 0. Since (W<r(La)) is decreasing and 

lim« W9(La) = 0, n « W.(L«) = 0. 

Hence, 

H* W(Z*) C /^ («^ ) - IR(<r,&). 

Hence, since 2 is true, /Z(Da W(^«)) = 0- Consequently, 

\imaix'{Wff{La)) = 0. 
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Hence, // 6 MR(T, W,(J?)), i.e., 1 is true. 
jS). Show 2 and 3 are equivalent. (Proof omitted.) 
Thus, the theorem is proved. 

Observation. Statement 2 is equivalent to the statement: If K Ç tW(££) 
and K C IRÇ&) - IR(<r,&), then /*(#) = 0. 

Examples. (1). If M € MR{^), then / G M2?(T, W , ( ^ ) ) , if and only 
if p vanishes on every closed subset of wX, contained in ooX — IR(v,^~). 

(2). If M G M i ? ( ^ ) , then M' 6 MR(r, IF, (3T)), if and only if p vanishes 
on every closed subset of &X, contained in pX — vX. (Note Wff(3f) is 
just the collection of zero sets of IR(a,2f) = vX.) 

(3). If M G M ( ^ ) , then M' G M(r, Wff(^f)), if and only if ft vanishes 
on every closed subset of poX, contained in fioX — voX. 

Part III. (On tightness.) 

THEOREM 2.7. Consider any set X and any lattice of subsets of X} <if, 
such ihat££ is separating, disjunctive, and normal, {or T2). / / M € MR{££), 
then the following statements are equivalent: 

1. M € MR(t,&). 
2. p*(X) = p{IR(J£)) and X is p.*-measurable. 

Proof. Assume 1, and show 2. Note it suffices to show 

H*(IR(&) - X) = 0. 

Consider any positive number e. Then, since /* Ç MR(t,££), by assump
tion, there exists an ££-compact set, K, such that ii+(K') < e. Consider 
any such K. Since M 6 MR{t,<£) and MR(t,&) C M2?(r , i f) , 
M G MR{j,J£). Hence, by Theorem 2.5, there exists an element of 
MR(j, /J5f ), J/, such that v\^^) — M and v is unique; moreover, v is 
«if -regular on (t££ ) '. Since X is jSf -compact, and «if is separating, dis
junctive, ^nd normal, (or T2), K £ ^if. Hence, K' £ (&)'. Consider 
the extension of /* to cr(jSf) and denote it by the same symbol; also, 
consider the extension of v to v(t££) and denote it by the same symbol. 
Then, 

V(K') = sup {v{L)\L e i f and L C X7} 

= sup {n(L)\L Ç ^ a n d L C JK7} 

g sup [n(E)\E e *(&) and E C X'} 

= sup {v(E)\E e aÇSf) and £ C K'}, 

s i n c e ^|«• CJSP> = M» 

g sup {*(E)LE 6 <r(*if ) and E C K'} = v{K'). 
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Hence, 

v(K') = sup [v(E)\E € <r(S£) and E C K'} = n*(K'). 

Note K' = X - K = (/22(oSf ) - K)C\X. Also, since if is if-compact 
and tW(J£) is T2 (becauseif is normal), K G tWÇ^f). Consequently, 

H*(IR(^) - X) S p.(JR(&) - K) 

= v{{iR{se) -K)r\x) = »(#') = /*•(*') < 6. 
Hence, p*(IR(&) - X) = 0. Hence, £*(X) = JL(IR(&)) and X is 
/^-measurable. Hence, 2 is true. 

Conversely, assume 2, and showl. Since fi*(X) = /l(Ii?(if )) by assump
tion, by Theorem 2.4, /* G Afiî(r, o^7). Consequently, M G M2î((r, oSf). 
Now, consider any positive number e, and show there exists a n i f -compact 
set, K, such that n*(K') < €. Since X is /Immeasurable, by assumption, 
and jK is ^W(if)-regular on the o-algebra of /immeasurable sets, 

H*(X) = sup {ft(K)\K G *IF(if ) and KCX}. 

Consequently, there exists an element of tW(££)y K, such that K C X 
and fi(K) > fi*(X) — e. Consider any such K. Note K is «if -compact. 
Hence, since i f is separating, disjunctive, and normal, (or JH2), K G ^ , 
and K-K7) = n*(K') (as above). Consequently, v{K) = ^(K). Also, 

K#) = K ^ n i ) = jï(Z). 

Consequently, n*(K) > fl*(X) - e. Hence, since n*(X) = p.(IR(&)), 
by assumption, 

M*(iO > U(IR&)) - e. 

Hence, since Jl{IR{^)) = n(X), /**(#) > M P O - e. Consequently, 
/x*(iT) < e. Hence, M G MR(t,Jf ), i.e., 1 is true. 

Thus, the theorem is proved. 

Remark. J£ is said to be strongly measure replete if MR(a,J^) = 
MR(ty^). The following statement is true: If ^£ is separating, dis
junctive, ô, and normal, then i f is strongly measure replete, if and only 
if for every element of Mi?(cr,if ), /z, there exists an S£-compact set, K, 
such that /x*(if) > 0. (Proof omitted.) (This generalizes a result of [17].) 

Examples. (1). Consider any topological space X such that X is TV If 
M 6 MRi^), then M G MR(t,^) if and only if £*(X) = # («*) and X 
is /Immeasurable. (Note that since X is normal, wX = I3X.) 

(2). If/i G M i ? ( ^ ) , then M G MR(t,&) if and only if ja*(X) = ja(|8Jf) 
and X is /Immeasurable. 

(3). If/i G i l f (^ ) , then M G M(*, ^ ) if and only if p*(X) = p.{IR{@)) 
and X is /Immeasurable. 
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(4). i f is said to be Cech-complete if and only if IR{^) — X is an 
J V s e t of tWÇ&). (See [9], p. 142.) 

THEOREM. If ££ is also normal, Cech-complete, and Lindelôf, then 
MR(<r,&) = MR{j,<£) = MR(t,<£). 

Proof. Since & is Lindelôf, MR(<r,<^) = MR{j,<£). Next, show 
MR(T,&) C MR(t,&). Consider any element of MR{T,^), /X. Then, 
by Theorem 2.4, U*(X) = fx(IRÇ^)). Also, since X is Cech-complete, 
IR(¥) - X is an J V s e t of *W%Sf ). Hence, IR(<£) - X £ a(tWÇ^)). 
Hence, X Ç <s(tW {££)). Consequently, X is immeasurable. Con
sequently, M*(X) = jK(/i?(jSf)) and X is #*-measurable. Hence, by 
Theorem 2.7, M 6 MR(t,&). Hence, MR(r,&) C MR{t,^). Con
sequently, MR(er, JSf) = MR(T,&) = MR(t,^). 

APPLICATION 1. Consider any topological space X such that X is complete, 
separable, and metrizable. Then 

M(a,^) = MR(a,^) = MR{T,^) = MR(t,^). 

Proof. Since X is metrizable, 2f =^\ also, 3T is Ô and cr(âT) C $(3T). 
Consequently, Af(cr,«^") = MRÇcr,^). (See [3].) Since X is metrizable, 
it is separating and disjunctive. Since X is metrizable and separable, it 
is Lindelôf. Since X is metrizable and complete, it is Cech-complete. (See 
[9], p. 105.) Consequently, 

M(a,J^) = MR(a,^) = MR{r,^) = MR(t,^). 

APPLICATION 2. Consider any topological space X such that X is locally 
compact, T2, and Lindelôf. Then, 

MR{a,^) = MR(T,#~) = MR(t,#~). 

Proof. Since X is T2, &~ is separating and disjunctive. Since X is locally 
compact and T2, Ĵ ~ is regular. Consequently, JF" is 6, regular, and 
Lindelôf. Hence, Ĵ ~ is normal. Since X is locally compact, it is Cech-
compact. (See [9], pp. 142, 143). Consequently, 

MR(o,^) = MR(T,#~) = MR{t,^). 

APPLICATION 2'. Consider any topological space X such that X is locally 
compact, T2, and paracompact and separable. Then 

MR(a,^) = MR{r,^) = MR(t,^). 

Proof. Since X is paracompact and separable, it is Lindelôf. (See [7].) 
Now, see Application 2. 

3. In this section we give certain further applications of the theory 
developed in Section 2. 
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Part I. (On countable compactness.) 

THEOREM 3.1. Consider any set X and any lattice of subsets of X, J£, 
such that oaf is (separating) and disjunctive. The following statements are 
equivalent: 

1. j£f is countably compact. 
2. IRÇSf) — X does not contain any nonempty element of ÔWÇ&). 

Proof. Assume 1, and show 2. Assume 2 is false. Then, IR(££) — X 
does contain a nonempty element of bW(££). Consider any such element 
of ÔW&), PU W(Lt). Since fl< W(Lt) 9* 0, consider any element of 
Di W(Lt), M- Then, /x Ç IR(J£) and for every i, ju(L*) = 1. Also, since 
Dt W(Li) C 7iî( if) - X, HiLi = 0. Consequently, M g IR(a,&). 
Hence, IR(J£) Çt_ IR(a,J^). Hence, j£f is not countably compact. Since 
this statement is false, the assumption is wrong. Hence, 2 is true. 

Conversely, assume 2, and show 1. (Proof omitted.) 
Thus, the theorem is proved. 

Examples. (1). Consider any topological space X such that X is 7\. 
Then, X is countably compact if and only if a>X — X does not contain 
any nonempty closed set of the form O i Fi} with Ft Ç J^", for every i. 

(2). Consider any topological space X such that X is r 3 i . Then, X is 
pseudocompact if and only if I3X — X does not contain any nonempty 
closed set which is a Ga. 

(3). Consider any topological space X such that X is 7Y Then, X is 
countably compact if and only if coX — X does not contain any non
empty zero set. 

(4). Consider any topological space X such that X is 7\ and 0-dimen-
sional. Then, X is clopen-countably compact (i.e., mildly countably 
compact) if and only if fioX — X does not contain any nonempty closed 
set of the form Hi Cu with Ct £ ^ , for every i. 

Part II. (The sets MR(^) and MR{^).) 

The set MR(^). Preliminaries. Consider any set X and any lattice of 
subsets of XjJ^, such t h a t i f is disjunctive. Then, the set whose general 
element is an element of MR(J£), M, such that \x £ MR(r, WV(J£)) is 
denoted by ÛR(&). 

THEOREM 3.2. (On MR{££).) The following statements are true: 
1. ÛR{¥) C MR(*,&). 
2.IR(tr,&) C&R(¥). 
3. <£ is replete if and only if MR(<£) C MR(r} i f ) . 

Proof. 1. Consider any element of MR(^)} /x. Then // Ç 
MR(T, W9(&)). Hence, / € MR(a, Wv(&)). Hence, /x G MR(a^). 
Hence, 1 is true. 
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2. Consider any element of Ji?(<7,if), /x. Then S(fi) = {/x}. (Proof 
omitted.) Hence, whenever K 6 tW(&) and if C IR{&) - IR(v,&), 
then fi(K) = 0. Hence, by Theorem 2.6, 

M' G MR(T, W,(&)). 

Consequently, /z Ç MR{J£). Hence, 2 is true. 
3. Assume i f is replete, and show MR{££) C MR(T,J£). Consider 

any element of MR&), /x. Then, // G A«2(T , W ^ i f ) ) . Hence, by 
Theorem 2.6, whenever K 6 tW(&) and K C IR(&) - IR(<r,&)9 

then jLc(-KT) = 0. Sinceif is replete, 7i?(o-, i f ) = X. Consequently, when
ever K g /W(if ) and if C Jiî(JSf) - X, then ju(if) = 0. Hence, by 
Theorem 2.4, M € M2?(r , i f ) . Hence, MR(¥) C MR(r,^). Conversely, 
assume MR(^£) C Af^(r,oSf), and show i f is replete. Show / £ ( * , i f ) = 
X. Assume IR{<J,^) ^ X. Then, i 7 ? 0 , i f ) - X ^ 0. Consider any 
element of i7?(o-,if ) — X, /x. Since 2 is true, /x Ç MR(££). Hence, since 
ÛRÇ&) C M2?(r, if) , M G MR(T,3f). Hence, by Theorem 2.4, when
ever if G tW(<£) and if C 7£ ( i f ) - X, then jS(if) = 0. Hence, since 
{/x} 6 tWÇSf) and {M} C LR(if ) - X, p({M}) = 0. Since S(p) = {/*}, a 
contradiction has arisen. Hence, the assumption is wrong. Hence, 
i7?(o-,if) = X. Hence, i f is replete. Consequently, 3 is true. 

Thus, the theorem is proved. 

Examples. (1). X is «-complete, if and only if MR^) C MR(r^) 
[8]. 

(2). X is realcompact if and only if MR(2?) C MR(T,2?) [10]. 
(3). X is iV-compact if and only if M{^) C M(T, <£) [14]. 
(4). X is Borel-complete if and only if M{2ë) C M(T, Se) [12]. 

The following theorem gives a useful condition on extension of certain 
countably additive measures to countably additive measures. 

THEOREM 3.3. (On MR{J£).) Consider any set X and any two lattices 
of subsets of X, i f i, ^£2, such that i f i is separating and disjunctive, i f 2 is 
disjunctive and <5, and i f i C i f 2 - Assume there exists a function from 
LR(o-,ifi) to IR(a,^2), &j such that ^ is a homeomorphism and \p leaves 
X fixed, pointwise. If /x Ç M7?(ifi), ^ w //^re exists an element of 
MR(a}J^2), €, such that e]^^^ = /x. 

Outline of proof. Consider any such \p and any element of MR(J£), xx. 
Then, \x Ç MR(T, W^(ifi)). Hence, by Theorem 2.5, there exists an 
element of MR(T, tW0(J?i)), 7, such that 

1f\s*(w<j(&i)) — M' 

and 7 is unique. Next, consider the element of M(tWff(Jif 2)), p, which is 
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such that for every element of stf(tWa{J£*)), E2l 

p(£2) = 7 (^(£2)). 

Then, 

p g MR(T,tW9{&%)). 

Consider p\jf(w<r(&2)), a n d denote it by v. Then, 

v e MR(tr, W,(&i)). 

Next, consider the element of MR(a,<^2), e, which is such that e' = v. 
Then, e\^^i) = M-

Remark. This theorem generalizes a result of [4]. 

77&e s£/ MR{Sf). Preliminaries. The set whose general element is an 
element of M # (if),/*> such that whenever p 6 IR(J£) - IR(a,J£ ), then 
there exists an element of (/W(e£f )) ' , 0, such that pG 0 and jl(0) = 0, 
is denoted by MRÇ&). Then, MRÇ&) C ÛRÇ&). (For a proof of this 
statement use a compactness argument.) 

THEOREM 3.4. (On MR(^).) If ££ is also 5, normal, and countably 
paracompact, then MRÇSf) = MRI(^). 

Proof, a). Show MR(£?) C MRI{S£). Consider any element of 
MRÇSf), /x. Then, consider any element of C{££), / , and show 

I f I 
I /d/i < +oo. 

I *̂  l 

Consider the function 6 which is such that De = [ — oo, +oo], and for 
every element of ( — oo, +oo) , r, 6(r) = r / ( l + |r|), and 0( —oo) = —1 
and 0(+co ) = 1. Then, 0([ — oo, +oo]) = [ — 1, 1] and 6 is a homeo-
morphism. Next, consider the function/* which is such t h a t / * = d"1 o 
(0 of y. (See Section 2 for the notation related to (0 of )".) Then, / * 
maps IR(J£) into [ — oo, +oo ] and is tWÇOf)-continuous. Also, 

ffd»=j f*dp. 

(See [4], p. 283.) Next, consider 

{p € IR&) - IR(*,&)\f*(P) = +oo}. 

N o t e / * is finite on IR(<r,J£). Hence, s ince /* is tW(J£)-continuous, 

{p € /* ($?) - IR{v,£>)\f*(P) = +a>} € ^ ( i f ) . 

Denote j P 6 7i?(iO - Ji?(<r,i?)|/*(p) = + 0 0 } by if. Then, since 
ji £ MR(J£) and if is compact, there exists an element of (tW(^))', 0, 
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such that K C 0 and jù(0) = 0. Consider any such 0. Then, 

f/aj = ff*dfl\ = J f*dfl+f }*dn\ = \ f*du 

Note t h a t / * is finite on (7. Hence, s ince /* is continuous on 0' and 0' 
is compact, 

/ . O' 

Consequently, 

< +oo. 

/ . fdul < +co. 

Hence, M G MRI&). Hence, MR(^) C MRIÇ&). 
0). Show MRI{^) C MR{^). (See [4].) 

Examples. (1). Consider any topological space X such that X is T4 

and countably paracompact. Then, /x G MR(Sr) if and only if /x inte
grates all continuous functions. 

(2). Consider any topological space X such that X is r 3 i . Then, 
/x G MR(<S£) if and only if jit integrates all continuous functions. 

(3). Consider any topological space X such that X is 7\. Then, 
jit G M(âiï) if and only if JU integrates all Borel measurable functions. 

THEOREM 3.5. (On MR(J£).) The following statements are true: 
1. IR(a,^) C JÏÏRÇ&). 
2. If ne MR(^), then M G MRÇ&) if and only if S (p.) C IR(<r,&). 
3. «if is replete if and only if whenever /x G MR(J£), then S(p) C -X". 
4. i f w r^Zete # a»d ow/y # MR(J£) C MR(T,^). 

Proof. 1. Consider any element of IR(a,J£), /x- Next, consider any 
element of /£(«£?) - IR(<r,J?), p. Then, p ^ JU. Hence, since *W(if ) is 
Ti, there exists an element of {tW(J£))', 0, such that p G 0 and p, G 0. 
Consider any such 0. Since M G IR(J£), S (p.) = {/*}. Consequently, 
/x(0) = 0. Consequently, /* G MR(J£). Hence, 1 is true. 

2. Consider any element of MR(J£), /x- Assume M G MRfé), and 
show S (Ji) CIR(<r,J?). Assume S (pi) <£ IR(<r,J?). Then there exists 
an element of IR{£/?), p, such that p G S(#) and p G IR(a,^f). Consider 
any such p. Then, since M G MR(J£), there exists an element of 
(tW{^))', 0, such that p G 0 and #(0) = 0. Consider any such 0. Then 
0 ' G JWXif ) and #(0') = 1. Hence, since p G S(p), p G 0' . This is a 
contradiction. Hence, S(p) C IR(a,^). 

Conversely, assume S(p) C IR(ay^)y and show /x G MR{^£). Con
sider any element of IR{££) — IR(a,J^)} p. Since p G IR(<r,J£) and 
5(ju) C IR(<r,J£), p G 5(jK). Hence, there exists an element of (tWÇSf))', 
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0, such that ju(O') = /x(Ift(if )) and p G 0'. Consider any such 0. Then, 
p £ 0 and #(0) = 0. Hence, /x G MR(££). Consequently, 2 is true. 

3. Assume .if is replete, and show whenever \x G MR(££), then 
SO*) C X. Consider any element of MR(££), /x. Then, since 2 is true, 
5(M) C IR(<J,^). Since i f is replete, /i?(cr,if) = X. Consequently, 
S{p) C X. 

Conversely, assume whenever /x G MRÇ^f), then S(#) C X, and show 
i f is replete. Show IR(a,<£) = X. Assume IR(a^) ^ X. Then, 
7i^((7,if ) - Z ^ 0 . Consider any element of IR(a,Jf) - X, p. Then, 
since 1 is true, p G MR(££). Hence, by assumption, 5(p) C -X". Since 
p G IR(££), S(p) = {p}. Consequently, p f I , a contradiction. Hence, 
IR(a,^) = X. Hence, i f is replete. Consequently, 3 is true. 

4. Assume i f is replete, and show MR(<£) C MR(T,J£). Since i f is 
replete, by Theorem 3.2, Part 3, MR(^) C MR(r^). Hence, since 
MRÇ¥) C ÛR&), MR(¥) C MR{j,<£). 

Conversely, assume MRÇ^f) C MR(T,J^), and show ^£ is replete. 
(Proof omitted.) Consequently, 4 is true. 

Thus, the theorem is proved. 

Examples. (1). a). If /x G MR(^), then /x G MR(^) if and only if 
S(p) C / * ( * , J r ) . 

ft). X is «-complete if and only if whenever JU G MR(^), then 
SOD C X. 

7). X is «-complete if and only if MR(&) C MR(r^). 
(2). a). If M G MR(2f), then/x G MR(2f) if and only if S(ju) C uX. 
P). X is realcompact if and only if whenever /x G MR(2f)y then 

5(p) C X. 
7). X is realcompact if and only if MRi^) C MR(r,2f). 
(3). a) . If /x G M^), then M G MR(^) if and only if 5(jK) C v0X. 
P). X is iV-compact if and only if whenever /x G M((if)1 then S(fi) C ^ -
7). X is iV-compact if and only if M ( ^ ) C M(r, ^ ) . 
(4). a) . If M G M ( ^ ) , then ju G i ? ( ^ ) if and only if 5(/Z) C /(cr, 38). 
P). X is Borel complete if and only if whenever /x G M(38), then 

5(JB) C X. 
T ) . X is Borel complete if and only if M (38) C M(r, 38). 

4. In this section, as a result of our previous development, we give a 
different proof of the well-known Yosida-Hewitt Decomposition 
Theorem. 

Preliminaries. Consider any set X and any lattice of subsets of X, J£. 
An element of MR(^£), /x, (such that /x ^ 0), is said to be purely finitely 
additive (p.f.a.), if whenever y G M ( i f ) , 0 ^ y S M, and y G M(a,^P)J 

then 7 = 0. 

https://doi.org/10.4153/CJM-1981-115-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-115-4


1522 G. BACHMAN AND P. D. STRATIGOS 

LEMMA 4.1. Consider any set X and any lattice of subsets of X, J£. 
Consider any element of MR(J£), p, (such that p ^ 0), and the measures 
fi on a(W(^)) and ju on a{tW(S£)). (Recall fi is ôW Ç&)-regular and jl is 
tW{££)-regular.) Next, consider any subset of X, H. Then, 

Case 1: There exists a countably additive measure on <j(yV(J£)), p, such 
that 0 ^ p ^ p, p w 5W(if )-regular, and p*(H) = p(IRÇ^)) = p.*(H). 

Case 2: TT^re exis/s a countably additive measure on <j(tW(££)), p, swcfe 
/ t o 0 ^ p ^ p, p is tWÇSf)-regular, and 

P*(H) = p(IR(&)) = fl*(ff). 

Proof. (For Case 1.) Since p is W(eSf)-regular, 

£*(#) = inî{p(A)\A 6 (5IF( i f ) ) 'andi4 D # } . 

Hence, there exists a sequence in (8W(&))', (An), such that for every 
n, An Z) H, and (^4n) is decreasing and 

limnju(^n) = £*(#) . 

Consider any such (^4n). Then, On -4» € <r(W(<&)). Denote Pin An by A. 
Next, consider the function p which is such that Dp = c(PF(oéf )) and for 
every element of G(W(£?)), E, p(E) = p (£ H ^4). Since p is a countably 
additive measure on <J(W(J£)), p is a countably additive measure on 
v(W(J£)). Note that 0 ^ p ^ ju. Also, since p is 5W(if )-regular, p is 
W(if)-regular . 

Next, show p*(H) = p(IR(^)) = £*(#) . a) . Note for every «, 

p*(ff) ^ p(4n) = P(AVC\A) = P U ) = limnp(4w) = £*(#)• 

Hence, 

P *(#) ^ A(4) = p(IK(i?)) = p*(H). 

0). Show P*(H) ^ U*(H). Since p is 5W(&)-regular, 

p*(H) = inf {p(G)\G <E (5W(.S?))' and G D # ] . 

Consider any element of (hW{££))', G, such that G D if. Then, 

P(G) = M ( G H ^ ) = fi(Gn (DnAn)) 

= ja(nn (G C\An)) = limn £(G H ,4,). 

Note for every », since G Pi 4 B D # , jiï(G H 4„) è jtt*(iï). Hence, 

\[mnfi{Gr\An) à jî*(H). 

Consequently, p(G) è A*(-??)- Consequently, p*(H) à A*(if). 
7). Consequently, p*(H) = p(IRÇ&)) = p.*(H). (Similarly, for Case 

2.) 
Thus, the lemma is proved. 
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Observation. p\jt{6ww)) 6 MR(a, ôWÇ^)). Hence, since W(££) separ
ates ôWfê) (because W{^) is compact), 

PUWV» 6 MR(a, W&)). 

Continue to use p for p\tf(wm)' 

Remark. This lemma generalizes a result of Knowles ([15], p. 143). 

LEMMA 4.2. Consider any set X and any lattice of subsets of X,££, such 
thatJ£ is complemented, i.e.,££ is an algebra. Thens/ÇSf) = <$£\ Hence, 
MR&) = M( i f ) o«d LR( iO = / ( i O - 7/ M 6 Af(JS )̂ (and M è 0), 
then p is p.f.a. if and only if fi*(X) = 0. 

Proof. Assume p is p.f.a., and show (l*(X) = 0. Assume fl*(X) 7e 0. 
By Lemma 4.1, there exists an element of MR(a, W(J£)), p, such that 
0 ^ p g A and 

p*(X) = p(/i?(i?)) = £*(*)• 

Consider any such p. Next, consider the element of M{J£), v, which is 
such that p = v. Then, since O ^ p ^ / x , O ^ P ^ / x . Hence, 0 S v ^ p.. 
Also, since j / ( i f ) = i f , * G MRÇ&), and, since p*(X) = P(J2?(i?)), 
P*(X) = v(IR(¥)). Hence, by Theorem 2.1,* G MR(<r,&) = Af(crf«Sf). 
Hence, since /x is p.f.a., by assumption, * = 0. Moreover, since p(IR(J£)) 
= £*(*), 

KZ) = v{IR{^)) = P(IR(&)) = -fi*(X) * 0, 

by assumption, a contradiction. Hence, £*PO = 0. 
Conversely, assume M*(X) = 0, and show M is p.f.a. Consider any 

element of MÇ&), v, such that 0 ^ v ^ /* and * Ç M(cr,J£), and show 
* = 0. Note that * Ç MR(a,^f). Hence, by Theorem 2.1, 

**(X) = P(IR(Sf)). 

Also, since 0 ^ ^ ^ M , 0 ^ P ^ £. Hence, 0 ^ y* ^ j&*. (Proof omitted.) 
Hence, 0 ^ i>*(X) ^ ju*(X). Hence, since fi*(X) = 0, by assumption, 
v*(X) = 0. Consequently, v(IR(J£)) = 0. Consequently, * = 0. Hence, 
/x is p.f.a. 

Thus, the lemma is proved. 

THEOREM 4.1. (The Yosida-Hewitt Decomposition Theorem.) Consider 
any set X and any lattice of subsets of X,J£, such thatJ£ is complemented, 
i.e., i f is an algebra. If p £ M{J£) {and p ^ 0), then there exist two 
elements of M(J£), X, v, such that p = X + v, and X is p.f.a. and 
v G M(o-,oèf ); moreover, such a representation of p is unique. 

Proof. Existence. Note that p £ MR(J£). Consider p. Then, by Lemma 
4.1, there exists an element of MR(a, W(J£)), p, such that 0 ^ p ^ p 
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and 

p*(X) = „(IR(&)) = fi*(X). 

Consider any such p. 
Next, consider the element of M{^£), v, which is such that p = v. Then, 

since O^p^fi, O^v^p,. Hence, 0 ^ v ^ \x. Also, since se ( if) = 
i f , * € MR(&), and, since p*(Z) = p(LR(5f)), £*(X) = p(IR(&)). 
Hence, by Theorem 2.1, 

i/ € MR(<r,&) = M(<r,&). 

Next, consider jit — v, and denote it by A. Since ^ ^ M, A ^ 0. Since 
\ = n — v, IJL = \ + v. Hence, ju = X + v. Hence, ju* = X* + £*• (See 
[24], p. 33.) Hence, X* = £* - *>*. Hence, A*(X) = fi*(X) - *>*(X). 
Since p*(X) = fl*(X), P*(X) = p*(X). Consequently, A*(X) = 0. 
Hence, by Lemma 4.2, X is p.f.a. Consequently, p = X + v, and X is 
p.f.a. and v G M(a,^). 

Uniqueness. Consider any two elements of M(J^), Xi, vu such that 
H = Xi + vu and Xi is p.f.a. and v\ £ M(<?,<&), and show Xi = X and 
?>i = *>. Note that Xi + *>i = X + v. Hence, v\ — v — X — Xi. Hence, 
since Xi ^ 0, v\ — v ^ X. Hence, since X ^ 0, 

0 ^ ( i / i - ?)+ ^ A and 0 ^ - (^ - *>)" ^ X. 

Hence, since (vi - v)+ 6 M(o->aSf) and — (*/i - v)~ £ M(o-,if) and X 
is p.f.a., (i>i — *>) + = 0 and — (v\ — v)~ = 0. Hence, v\ — v = 0. Con
sequently, Xi = X and v\ = v. 

Thus, the theorem is proved. 

Remark 1. Although there is nothing new in the uniqueness proof, we 
have included it for completeness. 

Remark 2. Using the techniques developed in this paper, it is possible 
to extend the Yosida-Hewitt Decomposition Theorem to more general 
lattices than the complemented ones (i.e., algebras) considered, and to 
even obtain further refinements, but we will not pursue these matters 
here any further. The previous applications should already give an 
indication of the scope of the techniques developed. 
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