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ABSTRACT

This article presents an explicit formula for the value of a withdrawal benefit
when the times of death and withdrawal are dependent. The derivation is
based on an actuarial equivalence principle. As a special case, we show that
in the fully continuous case, the withdrawal benefit is the reserve when the
decrements are independent. We also present a definition of antiselection
and prove that the withdrawal benefit will be smaller under antiselection.
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1. INTRODUCTION

In some markets, like the United States, life insurance products have a
withdrawal benefit when the policy is terminated. This article will examine
the implications of dependent probabilities of withdrawal and death on
withdrawal benefits for life insurance in discrete time. Specifically, we will
give an explicit expression of the withdrawal benefit under a dependent
decrement model thus allowing us to characterize the withdrawal benefit
under antiselection.

In the book, Actuarial Mathematics (1986), the authors state that "if the
withdrawal benefit in a double decrement model whole life insurance, fully
continuous payment basis, is the reserve under the single decrement model
whole life insurance, the premium and reserves under the double decrement
model are equal to the premium and reserves under the single decrement
model." This incredible result is not always true. The reason that the reserve
is not always equal to the withdrawal benefit was given by D.R. Schuette
(reported by Nesbitt (1964)), who found the withdrawal benefit is not the
reserve in the discrete model because "the probability of withdrawal depends
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on the force of mortality." Thus, this article delves into the issue of
dependent mortality and withdrawal in a discrete model. For an introduc-
tion to the mathematics of dependent decrement theory, consult Carriere
(1994).

2. THE SINGLE-DECREMENT MODEL

In this section, we present the classical single-decrement model for life
insurance pricing and reserving. Let Td denote the time and death for some
life aged JC. Next, let

Sd(t) = Pr{Td > t),t>0, (1)

be the survival function of Td. Throughout the discussion we will assume
that this survival function is absolutely continuous with a density denoted as

fd(t) and a force of mortality equal to / / ( / ) = fd(?)/Sd(t). Thus
Sd(t) = ex.p{- f{j(i

d(z)dz}. Now consider the probability that the life
survived to time t + s given that it survived to time t. This survival function
is denoted as sp

d and it is equal to:

Sdlt 4- v) ( f'+s 1
sp

d = P r { T d > t + s \ T d > t ) = { J > = e x p \ - / , / ( z ) < f e . ( 2 )

It will be convenient to define Td(t) as the random variable induced by
sp

d so that sp
d = Pr(Td{t) > s). Note that Td = Td(0) and tp\ = Sd(t).

Moreover, if Td > t then Td{t) = Td — t, otherwise Td{t) is undefined. It is
instructive to note that if the expectation E[g(Td(t))} exists for some function
g(s), then

E\g(Td(t))] = E\g(Td - t)\Td > t]. (3)

This last fact will be used repeatedly.
Usually we will assume that premiums and death benefits are paid at the

discrete times t = k/m where k — 0, 1,2, ... and m > 0. Therefore, it is
convenient to define the discrete random variable

(4)7 .
where |_-J is the floor function. In other words, \y\ is the integer part of y.
Thus, if y > 0 then \y\ = k if and only if k < y < k + 1. Note that Td is
simply equal to K™ when m — oo and so any discussion about the
continuous model is subsumed within the discrete model.

In this article, we assume that the life insurance has a varying death
benefit equal to b(t), if death occurs at time t. Typically, b(t) — 1 for all t.
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Next, let

v{t) = e x p | - ! Szdz\ (5)

denote the interest discount function. Traditionally, actuaries have assumed
that 5Z = 6 is constant thus implying that v(t) = e~St. Using the equivalence
principle and the functions v(t) and b(t), we define the net single premium at
time t for the future benefits from the life insurance as:

+ l/m)v(K? + l/m)/v(t)\Td > t]

= E[b([mTd + \\/m)v([mTd + \\/m)/v{t)\Td > t) (6)

= E[b(\m{Td{t) + t) + l\/m)v([m(Td(t) + t) + \\/m)/v(t)].

Note that the last equality in equation (6) follows from equation (3). Now,
let us focus on the valuation of the premium payments. Assume that
payments of \jm are made at the times t = 0, 1/ra, 2/m,... . Then the present
value at time / = 0 of all the payments made in the period [r,s) will be
denoted as a[r,s) and calculated as:

a[r,s) =-Y1 v(k/m)l(r < (k/m) <s). (7)
mk=o

In this definition, \(e) is an indicator function that is equal to 1 if the event e
is true and 0, otherwise. It is instructive, to verify that a[r,s) — a[0,s) — a[0,r).
Using this annuity-certain formula and the equivalence principle, we find
that the net single premium for the future payments from the life annuity at
time t is:

= E[a[t, \mTd + \\/m)/v{t)\Td > t) (8)

= E[a[t,[m(Td(t) + t) + l\/m/v(t)}.

Under the single decrement model, the net level premium for the life
insurance is denoted as P% and it is equal to:

(0), (9)

under the equivalence principle. Thus, we can define the link function as:

C(r,s) = b(s) v(s)/v(r) - P^a[r,s)/v(r), (10)

This link function will be useful when the withdrawal benefit is derived for
the double-decrement model in the next section. This link function can also
be used to define the prospective loss at time t, which is:

Lm{t) = C{t,K^ + \/m). (11)
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Note that E[Lm(0)] = 0. Finally, we find that the prospective reserve at any
time / is:

Vm(t) = E[Lm(t)\Td > t] = E[C(t, \mTd + \\/m)\Td > t]

l(T(t) + t) + \\/m)]A"J(t)P%a™(t)

Note that the random variable \m{Td{t) + t) + lj/ra has a central role. Thus
it will be convenient to define

With this notation, we can write

Ad>(t)=E[b(lCd'(t))v(lCd'(t))/v(t)],

<q{t)=E[a[t,lCd'(t))/v(t)}, (14)

Vm(t)=E[C(t,ICd
t(t))]-

Let Sd(s\t,m) denote the survival function of K,™(t). Let us derive this
function. Consider the fact that if y > 0 and x > 0, then [y\ + 1 > x if and
only if y > [x\. Using this result we find that K!^(t) > s if and only if
Td(t) > ([ms\/m) - t. Therefore,

( [•\ms\/m
- I iid(z)dz). (15)

3. THE DOUBLE-DECREMENT MODEL

In this section, we present the probabilistic structure for a dependent double-
decrement model. This will allow us to derive an expression for the
withdrawal benefit, W^Ai), that represents the benefit that is returned to the
policyholder at time \mt + \\jm when withdrawal occurs at time t.

Let Tw denote the time at withdrawal from a life insurance contract for a
life aged x, where fw{t) is the density, Sw(t) — f™fw(z)dz is the survival
function and fiw(t) —fw{t)/Sw{t) is the force. We will find it useful to define
the discrete random variable

Generally, we assume that Td and Tw are not stochastically independent.
Therefore, let us consider the conditional density of Td given that Tw = t,
which is denoted asfd\w{td\t). Also, let Sd^'(td\t) = f^f'^"'(z\t)dz denote the
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conditional survival function of Td given that Tw — t. Hence, the conditional
force of mortality is

Thus Sd^'(td\t) = exp{-/„'"' nd\w(z\t)dz}. In the case of independence, we get
fd]w{td\t) = fd(td), S'^(td)t) = Sd{td), and ^w{td\t) = fid(td). It is impor-
tant to note that the ensuing discussion and results assume that we know the
density fd\w(td\t). However, estimating this density is not a trivial exercise
because we can only observe the minimum of the random variables Td and Tw.

Now consider the probability that the life survived to time t + s given
that it survived to time / and withdrawal occurred at time /. This survival
function is denoted as xpt and it is equal to:

d\w Dlrr , , , „ t „ A Pr{Td > t + s,Td > t\Tw = t)
Pr(Td > t\Tw = t)

It will be convenient to define Td\w(t) as the random variable induced by sp, 'V1

so that spfw = Pr{TdVv{t) > s). Note that tp
d = Sd\w(t\0). We let

7 /̂|H.(0) = Td\w. It is instructive to note that if the expectation E[g(Td\w(t)))
exists for some function g(s), then

E[g(Td]w(t))} = E[g(Td - t)\Td > t, Tw = /]. (19)

This last fact will be used repeatedly. In the definition of the withdrawal
benefit, the random variable \m{Td\w(t) + t) + \\/m has a central role. Thus
it will be convenient to define

JC"d\w{t)=[m{Td]w{t) + t) + \\/m. (20)

With this notation, we can write

C'"dV(t)v(K^{t))/v{t)i

Let Sd\w(s\t,m) denote the survival function ofK^t). Note that K^w(t) > s
if and only if Td\w{t) > [ms\/m — t. Therefore,

Sdlw{s\t,m) = expJ - [ fidlw(z)dz I. (22)

We are now ready to state our first theorem.
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Theorem 3.1. Let C(t,s) be the link function. If the equivalence principle holds,
then under a double-decrement model where the premiums are equal to P™, the
withdrawal benefit function is:

= E[C([mt+ lj/m, [m(Td{w(t) + t) + l\/m)]

= E[C{lmt+l\/m,lmTd + l\/m)\Td>t,Tye = t]

= E[£(lmt+l\/m,K% + l/m)\Td > t, Tw = /].

Proof. If W™,(t) is the withdrawal benefit, then under the equivalence
principle,

% +1 /m)v(K™ + \/m)l(Td< Tw) + W%w{Tw)v(K™ +\/m)\{Td> Tw)].

Therefore,

- a^K™ + \/m))\{Td > Tw)} =
n + l/m)}+

\/m) - b(K™ + \/m) v(K™ + \/m)]\(Td > Tw)}.

But

Pm
d x E[a[0, K™ + \/m)) = E[b(K? + l/m) v(K

For simplicity, let Y = \(Td > Tw) v(K™ + l/m). Then

E[Yb(K? + l/m) v{K% + l/m)/v(KZ + 1/m)]-

0,K^ + l/m) - a[0,K% + \/m))/v(K^ + l/m)].

Note that a[Q,K% + l/m) - a[0,K% + l/m) = a[K% + l/m, AJ + l/m),
hence the right-hand side of the last equation is equal to

E[YC{K™ + l/m,Kd
n + l/m)] = E[YE[C{K% + \/m,Kd

n + \/m)\Td > TW,TW}] =

Hence, the result is proved. •

Now, let us compare the withdrawal benefit W™,(t), as denned in
equation (23), with the reserve formula Vm(t), shown in equation (12).
Clearly, they are different, even when Td and Tw are stochastically
independent. In the case of independence, Td(t) and Td\w(t) are identically
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distributed. Let W™(t) denote the withdrawal benefit under the independent
decrement model, then

W?(t) = E[C(lmt+l\/m,KZ(t))]- (24)

Thus

hm Vm{t) = lim W%w{t)
m o o moc '

In other words, the withdrawal benefit is equal to the reserve in the
continuous model, thus confirming a well-known fact.

4. WITHDRAWAL BENEFITS UNDER ANTISELECTION

In this section, we give a definition of antiselection and we show that the
withdrawal benefit under antiselection is smaller than the benefit under the
single-decrement model, as expected. We are now ready to give a definition
of antiselection. We say that life insurance is subject to antiselection at
withdrawal, if

^witd\tw) < nd(td) Vfc > tw. (25)

If we reverse this inequality, then we have antiselection for life annuities.
Using our definition of antiselection, we immediately find that

Sdlw(s\t,m) > Sd{s\t,m). (26)

for alls s > 0.
First, we discuss the implications of antiselection to the valuation of the

life insurance. Assume that g(s) = b(s)v(s) is an absolutely continuous
function with g'(s) < 0 so that

g(s)=g(0)+ f g'{z)dz.
Jo

Actually, this is a weak assumption because the assumption is obviously true
when b(s) = 1 and v(s) = exp(—6 s).

Lemma 4.1. Suppose that g(s) = b(s) v(s) for s > 0 is absolutely continuous
and g'(s) < 0. If g(s) is integrable with respect to the cumulative distribution
functions 1 - Sd^(s\t,m) and 1 — Sd(s\t,m), then under the antiselection
condition fi^w(td\tw) < lid(td) and the equivalence principle, we get
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Proof. First, note that

[0,oo)

r
[0,oo)

g(s)d(l-Sd(s\t,m))

f g'{z)dz
Jo

d(\-Sd(s\t,m))

g'(z)d(l-Sd(s\t,m))dz

= g(0)+ r g\z)Sd{z\t,m)dz.
Jo

Next, under antiselection Sd^w(z\t,m) > Sd{z\t,m) and so g'(z)S^w(z\t,m) <
g'(z)Sd(z\t,m). Integrating both sides of the inequality yields the result. •

Next, we present a lemma on the implications of antiselection to the
valuation of life annuities.

Lemma 4.2. Under the equivalence principle and the antiselection condition
^w{td\tw)<nd{td),weget

>

Proof. First, note that

k=o

m
v{k/m)\(t<k/m)E[\(k/m

/t=0

= -sTv{k/m)l{t < k/m)Sd(k/m\t,m).
m k=0

But under antiselection Sd^w(s\t,m) > Sd(s\t,m). Summing both sides of the
inequality yields the result. •

Applying Lemma 4.1 and 4.2, we immediately find that under
antiselection the withdrawal benefit under the classical independent
decrement model is too large. We summarize this result with the following
theorem.
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Theorem 4.3. Under the conditions in Lemma 4.1 and 4.2, we get

Wd\*{*) < W7it)- (27)
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